Properties

Label 243.2.g.a.73.4
Level $243$
Weight $2$
Character 243.73
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.4
Character \(\chi\) \(=\) 243.73
Dual form 243.2.g.a.10.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.507233 - 0.254742i) q^{2} +(-1.00193 + 1.34582i) q^{4} +(0.832798 - 2.78174i) q^{5} +(1.23966 - 2.87385i) q^{7} +(-0.362501 + 2.05585i) q^{8} +(-0.286203 - 1.62314i) q^{10} +(3.33963 + 0.791507i) q^{11} +(3.33176 - 2.19133i) q^{13} +(-0.103295 - 1.77350i) q^{14} +(-0.622571 - 2.07953i) q^{16} +(-0.878443 - 0.319727i) q^{17} +(-4.55845 + 1.65914i) q^{19} +(2.90932 + 3.90789i) q^{20} +(1.89560 - 0.449266i) q^{22} +(2.43678 + 5.64910i) q^{23} +(-2.86709 - 1.88571i) q^{25} +(1.13175 - 1.96026i) q^{26} +(2.62564 + 4.54773i) q^{28} +(0.104644 - 1.79666i) q^{29} +(-0.671302 - 0.0784640i) q^{31} +(-3.71068 - 3.93309i) q^{32} +(-0.527023 + 0.0616002i) q^{34} +(-6.96191 - 5.84174i) q^{35} +(-8.73079 + 7.32600i) q^{37} +(-1.88954 + 2.00280i) q^{38} +(5.41694 + 2.72049i) q^{40} +(-5.94501 - 2.98570i) q^{41} +(1.53472 - 1.62671i) q^{43} +(-4.41129 + 3.70151i) q^{44} +(2.67508 + 2.24466i) q^{46} +(-3.14822 + 0.367974i) q^{47} +(-1.91856 - 2.03355i) q^{49} +(-1.93465 - 0.226128i) q^{50} +(-0.389036 + 6.67950i) q^{52} +(4.18963 + 7.25666i) q^{53} +(4.98301 - 8.63082i) q^{55} +(5.45881 + 3.59032i) q^{56} +(-0.404606 - 0.937983i) q^{58} +(4.89526 - 1.16020i) q^{59} +(-0.340761 - 0.457722i) q^{61} +(-0.360495 + 0.131209i) q^{62} +(1.19553 + 0.435136i) q^{64} +(-3.32104 - 11.0930i) q^{65} +(0.794778 + 13.6458i) q^{67} +(1.31043 - 0.861882i) q^{68} +(-5.01945 - 1.18963i) q^{70} +(2.31784 + 13.1452i) q^{71} +(-1.17142 + 6.64347i) q^{73} +(-2.56230 + 5.94009i) q^{74} +(2.33432 - 7.79718i) q^{76} +(6.41467 - 8.61639i) q^{77} +(0.666057 - 0.334506i) q^{79} -6.30319 q^{80} -3.77609 q^{82} +(3.25233 - 1.63338i) q^{83} +(-1.62096 + 2.17733i) q^{85} +(0.364070 - 1.21608i) q^{86} +(-2.83784 + 6.57885i) q^{88} +(2.27781 - 12.9181i) q^{89} +(-2.16732 - 12.2915i) q^{91} +(-10.0441 - 2.38050i) q^{92} +(-1.50314 + 0.988632i) q^{94} +(0.819027 + 14.0621i) q^{95} +(-3.58656 - 11.9799i) q^{97} +(-1.49119 - 0.542748i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.507233 0.254742i 0.358668 0.180130i −0.260335 0.965518i \(-0.583833\pi\)
0.619003 + 0.785388i \(0.287537\pi\)
\(3\) 0 0
\(4\) −1.00193 + 1.34582i −0.500963 + 0.672910i
\(5\) 0.832798 2.78174i 0.372439 1.24403i −0.542368 0.840141i \(-0.682472\pi\)
0.914807 0.403891i \(-0.132343\pi\)
\(6\) 0 0
\(7\) 1.23966 2.87385i 0.468546 1.08621i −0.506103 0.862473i \(-0.668914\pi\)
0.974649 0.223739i \(-0.0718263\pi\)
\(8\) −0.362501 + 2.05585i −0.128164 + 0.726852i
\(9\) 0 0
\(10\) −0.286203 1.62314i −0.0905055 0.513282i
\(11\) 3.33963 + 0.791507i 1.00694 + 0.238648i 0.700814 0.713344i \(-0.252820\pi\)
0.306122 + 0.951992i \(0.400968\pi\)
\(12\) 0 0
\(13\) 3.33176 2.19133i 0.924064 0.607766i 0.00419461 0.999991i \(-0.498665\pi\)
0.919869 + 0.392225i \(0.128294\pi\)
\(14\) −0.103295 1.77350i −0.0276067 0.473989i
\(15\) 0 0
\(16\) −0.622571 2.07953i −0.155643 0.519883i
\(17\) −0.878443 0.319727i −0.213054 0.0775452i 0.233289 0.972408i \(-0.425051\pi\)
−0.446342 + 0.894862i \(0.647274\pi\)
\(18\) 0 0
\(19\) −4.55845 + 1.65914i −1.04578 + 0.380633i −0.807068 0.590458i \(-0.798947\pi\)
−0.238711 + 0.971091i \(0.576725\pi\)
\(20\) 2.90932 + 3.90789i 0.650543 + 0.873831i
\(21\) 0 0
\(22\) 1.89560 0.449266i 0.404144 0.0957838i
\(23\) 2.43678 + 5.64910i 0.508104 + 1.17792i 0.958501 + 0.285089i \(0.0920233\pi\)
−0.450397 + 0.892828i \(0.648717\pi\)
\(24\) 0 0
\(25\) −2.86709 1.88571i −0.573417 0.377143i
\(26\) 1.13175 1.96026i 0.221955 0.384438i
\(27\) 0 0
\(28\) 2.62564 + 4.54773i 0.496198 + 0.859441i
\(29\) 0.104644 1.79666i 0.0194318 0.333631i −0.974556 0.224143i \(-0.928042\pi\)
0.993988 0.109488i \(-0.0349212\pi\)
\(30\) 0 0
\(31\) −0.671302 0.0784640i −0.120569 0.0140925i 0.0555942 0.998453i \(-0.482295\pi\)
−0.176164 + 0.984361i \(0.556369\pi\)
\(32\) −3.71068 3.93309i −0.655961 0.695278i
\(33\) 0 0
\(34\) −0.527023 + 0.0616002i −0.0903837 + 0.0105643i
\(35\) −6.96191 5.84174i −1.17678 0.987434i
\(36\) 0 0
\(37\) −8.73079 + 7.32600i −1.43533 + 1.20439i −0.492858 + 0.870110i \(0.664048\pi\)
−0.942475 + 0.334277i \(0.891508\pi\)
\(38\) −1.88954 + 2.00280i −0.306524 + 0.324897i
\(39\) 0 0
\(40\) 5.41694 + 2.72049i 0.856494 + 0.430147i
\(41\) −5.94501 2.98570i −0.928455 0.466288i −0.0807376 0.996735i \(-0.525728\pi\)
−0.847718 + 0.530448i \(0.822024\pi\)
\(42\) 0 0
\(43\) 1.53472 1.62671i 0.234042 0.248071i −0.599699 0.800226i \(-0.704713\pi\)
0.833741 + 0.552155i \(0.186194\pi\)
\(44\) −4.41129 + 3.70151i −0.665026 + 0.558023i
\(45\) 0 0
\(46\) 2.67508 + 2.24466i 0.394419 + 0.330957i
\(47\) −3.14822 + 0.367974i −0.459214 + 0.0536745i −0.342556 0.939498i \(-0.611293\pi\)
−0.116659 + 0.993172i \(0.537218\pi\)
\(48\) 0 0
\(49\) −1.91856 2.03355i −0.274080 0.290508i
\(50\) −1.93465 0.226128i −0.273601 0.0319794i
\(51\) 0 0
\(52\) −0.389036 + 6.67950i −0.0539497 + 0.926280i
\(53\) 4.18963 + 7.25666i 0.575490 + 0.996779i 0.995988 + 0.0894851i \(0.0285221\pi\)
−0.420498 + 0.907294i \(0.638145\pi\)
\(54\) 0 0
\(55\) 4.98301 8.63082i 0.671909 1.16378i
\(56\) 5.45881 + 3.59032i 0.729464 + 0.479776i
\(57\) 0 0
\(58\) −0.404606 0.937983i −0.0531274 0.123163i
\(59\) 4.89526 1.16020i 0.637309 0.151045i 0.100755 0.994911i \(-0.467874\pi\)
0.536554 + 0.843866i \(0.319726\pi\)
\(60\) 0 0
\(61\) −0.340761 0.457722i −0.0436300 0.0586053i 0.779773 0.626063i \(-0.215335\pi\)
−0.823403 + 0.567457i \(0.807927\pi\)
\(62\) −0.360495 + 0.131209i −0.0457829 + 0.0166636i
\(63\) 0 0
\(64\) 1.19553 + 0.435136i 0.149441 + 0.0543920i
\(65\) −3.32104 11.0930i −0.411924 1.37592i
\(66\) 0 0
\(67\) 0.794778 + 13.6458i 0.0970975 + 1.66710i 0.597924 + 0.801553i \(0.295992\pi\)
−0.500826 + 0.865548i \(0.666971\pi\)
\(68\) 1.31043 0.861882i 0.158913 0.104519i
\(69\) 0 0
\(70\) −5.01945 1.18963i −0.599939 0.142188i
\(71\) 2.31784 + 13.1452i 0.275078 + 1.56004i 0.738715 + 0.674017i \(0.235433\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(72\) 0 0
\(73\) −1.17142 + 6.64347i −0.137105 + 0.777560i 0.836266 + 0.548324i \(0.184734\pi\)
−0.973371 + 0.229236i \(0.926377\pi\)
\(74\) −2.56230 + 5.94009i −0.297862 + 0.690521i
\(75\) 0 0
\(76\) 2.33432 7.79718i 0.267765 0.894398i
\(77\) 6.41467 8.61639i 0.731019 0.981929i
\(78\) 0 0
\(79\) 0.666057 0.334506i 0.0749373 0.0376349i −0.410936 0.911664i \(-0.634798\pi\)
0.485873 + 0.874029i \(0.338502\pi\)
\(80\) −6.30319 −0.704718
\(81\) 0 0
\(82\) −3.77609 −0.417000
\(83\) 3.25233 1.63338i 0.356989 0.179287i −0.261261 0.965268i \(-0.584138\pi\)
0.618250 + 0.785982i \(0.287842\pi\)
\(84\) 0 0
\(85\) −1.62096 + 2.17733i −0.175818 + 0.236165i
\(86\) 0.364070 1.21608i 0.0392586 0.131133i
\(87\) 0 0
\(88\) −2.83784 + 6.57885i −0.302515 + 0.701308i
\(89\) 2.27781 12.9181i 0.241447 1.36931i −0.587154 0.809475i \(-0.699752\pi\)
0.828601 0.559839i \(-0.189137\pi\)
\(90\) 0 0
\(91\) −2.16732 12.2915i −0.227197 1.28850i
\(92\) −10.0441 2.38050i −1.04717 0.248185i
\(93\) 0 0
\(94\) −1.50314 + 0.988632i −0.155037 + 0.101970i
\(95\) 0.819027 + 14.0621i 0.0840304 + 1.44275i
\(96\) 0 0
\(97\) −3.58656 11.9799i −0.364160 1.21638i −0.922249 0.386597i \(-0.873650\pi\)
0.558089 0.829781i \(-0.311535\pi\)
\(98\) −1.49119 0.542748i −0.150633 0.0548258i
\(99\) 0 0
\(100\) 5.41044 1.96924i 0.541044 0.196924i
\(101\) 3.57328 + 4.79974i 0.355554 + 0.477592i 0.943530 0.331286i \(-0.107483\pi\)
−0.587976 + 0.808878i \(0.700075\pi\)
\(102\) 0 0
\(103\) 1.72093 0.407867i 0.169568 0.0401883i −0.144955 0.989438i \(-0.546304\pi\)
0.314523 + 0.949250i \(0.398156\pi\)
\(104\) 3.29728 + 7.64395i 0.323325 + 0.749551i
\(105\) 0 0
\(106\) 3.97370 + 2.61354i 0.385960 + 0.253850i
\(107\) 3.57628 6.19429i 0.345732 0.598825i −0.639755 0.768579i \(-0.720964\pi\)
0.985486 + 0.169754i \(0.0542974\pi\)
\(108\) 0 0
\(109\) −5.68613 9.84867i −0.544633 0.943332i −0.998630 0.0523287i \(-0.983336\pi\)
0.453997 0.891003i \(-0.349998\pi\)
\(110\) 0.328913 5.64722i 0.0313606 0.538441i
\(111\) 0 0
\(112\) −6.74803 0.788732i −0.637629 0.0745281i
\(113\) −3.99674 4.23629i −0.375981 0.398517i 0.511558 0.859249i \(-0.329068\pi\)
−0.887539 + 0.460732i \(0.847587\pi\)
\(114\) 0 0
\(115\) 17.7437 2.07394i 1.65461 0.193396i
\(116\) 2.31313 + 1.94095i 0.214769 + 0.180213i
\(117\) 0 0
\(118\) 2.18749 1.83552i 0.201375 0.168973i
\(119\) −2.00781 + 2.12816i −0.184056 + 0.195088i
\(120\) 0 0
\(121\) 0.696696 + 0.349894i 0.0633360 + 0.0318086i
\(122\) −0.289447 0.145366i −0.0262053 0.0131608i
\(123\) 0 0
\(124\) 0.778193 0.824836i 0.0698838 0.0740725i
\(125\) 3.48865 2.92733i 0.312034 0.261828i
\(126\) 0 0
\(127\) 8.22802 + 6.90413i 0.730119 + 0.612643i 0.930164 0.367144i \(-0.119664\pi\)
−0.200045 + 0.979787i \(0.564109\pi\)
\(128\) 11.4586 1.33932i 1.01281 0.118380i
\(129\) 0 0
\(130\) −4.51040 4.78075i −0.395588 0.419299i
\(131\) −7.11419 0.831529i −0.621570 0.0726511i −0.200521 0.979689i \(-0.564264\pi\)
−0.421048 + 0.907038i \(0.638338\pi\)
\(132\) 0 0
\(133\) −0.882797 + 15.1570i −0.0765482 + 1.31428i
\(134\) 3.87930 + 6.71914i 0.335120 + 0.580446i
\(135\) 0 0
\(136\) 0.975746 1.69004i 0.0836695 0.144920i
\(137\) −7.20952 4.74178i −0.615951 0.405117i 0.202838 0.979212i \(-0.434984\pi\)
−0.818789 + 0.574095i \(0.805354\pi\)
\(138\) 0 0
\(139\) −2.33653 5.41669i −0.198182 0.459438i 0.789925 0.613203i \(-0.210119\pi\)
−0.988107 + 0.153765i \(0.950860\pi\)
\(140\) 14.8372 3.51649i 1.25398 0.297198i
\(141\) 0 0
\(142\) 4.52431 + 6.07720i 0.379672 + 0.509988i
\(143\) 12.8613 4.68113i 1.07552 0.391456i
\(144\) 0 0
\(145\) −4.91069 1.78735i −0.407811 0.148431i
\(146\) 1.09819 + 3.66820i 0.0908866 + 0.303583i
\(147\) 0 0
\(148\) −1.11188 19.0902i −0.0913956 1.56920i
\(149\) −11.5252 + 7.58026i −0.944184 + 0.620999i −0.925468 0.378825i \(-0.876328\pi\)
−0.0187156 + 0.999825i \(0.505958\pi\)
\(150\) 0 0
\(151\) 6.10780 + 1.44758i 0.497046 + 0.117802i 0.471490 0.881871i \(-0.343716\pi\)
0.0255559 + 0.999673i \(0.491864\pi\)
\(152\) −1.75849 9.97291i −0.142633 0.808910i
\(153\) 0 0
\(154\) 1.05877 6.00461i 0.0853185 0.483865i
\(155\) −0.777326 + 1.80204i −0.0624363 + 0.144744i
\(156\) 0 0
\(157\) 0.0476363 0.159116i 0.00380179 0.0126989i −0.956068 0.293146i \(-0.905298\pi\)
0.959869 + 0.280448i \(0.0904829\pi\)
\(158\) 0.252633 0.339346i 0.0200984 0.0269969i
\(159\) 0 0
\(160\) −14.0311 + 7.04667i −1.10925 + 0.557088i
\(161\) 19.2554 1.51754
\(162\) 0 0
\(163\) 16.2014 1.26899 0.634495 0.772927i \(-0.281208\pi\)
0.634495 + 0.772927i \(0.281208\pi\)
\(164\) 9.97467 5.00947i 0.778891 0.391174i
\(165\) 0 0
\(166\) 1.23360 1.65701i 0.0957457 0.128609i
\(167\) −5.24163 + 17.5083i −0.405610 + 1.35483i 0.474582 + 0.880211i \(0.342599\pi\)
−0.880191 + 0.474619i \(0.842586\pi\)
\(168\) 0 0
\(169\) 1.14965 2.66518i 0.0884345 0.205014i
\(170\) −0.267548 + 1.51734i −0.0205200 + 0.116375i
\(171\) 0 0
\(172\) 0.651580 + 3.69529i 0.0496825 + 0.281763i
\(173\) −18.3456 4.34799i −1.39479 0.330572i −0.536572 0.843855i \(-0.680281\pi\)
−0.858219 + 0.513283i \(0.828429\pi\)
\(174\) 0 0
\(175\) −8.97346 + 5.90193i −0.678329 + 0.446144i
\(176\) −0.433193 7.43764i −0.0326532 0.560633i
\(177\) 0 0
\(178\) −2.13540 7.13274i −0.160055 0.534621i
\(179\) −9.67521 3.52149i −0.723159 0.263209i −0.0458930 0.998946i \(-0.514613\pi\)
−0.677266 + 0.735738i \(0.736836\pi\)
\(180\) 0 0
\(181\) 0.770198 0.280329i 0.0572484 0.0208367i −0.313237 0.949675i \(-0.601414\pi\)
0.370486 + 0.928838i \(0.379191\pi\)
\(182\) −4.23049 5.68254i −0.313585 0.421218i
\(183\) 0 0
\(184\) −12.4970 + 2.96185i −0.921292 + 0.218350i
\(185\) 13.1080 + 30.3879i 0.963723 + 2.23416i
\(186\) 0 0
\(187\) −2.68061 1.76306i −0.196025 0.128928i
\(188\) 2.65905 4.60561i 0.193931 0.335899i
\(189\) 0 0
\(190\) 3.99766 + 6.92415i 0.290021 + 0.502330i
\(191\) −0.0444838 + 0.763757i −0.00321873 + 0.0552635i −0.999535 0.0304908i \(-0.990293\pi\)
0.996316 + 0.0857543i \(0.0273300\pi\)
\(192\) 0 0
\(193\) −9.29144 1.08601i −0.668812 0.0781730i −0.225091 0.974338i \(-0.572268\pi\)
−0.443721 + 0.896165i \(0.646342\pi\)
\(194\) −4.87102 5.16298i −0.349719 0.370680i
\(195\) 0 0
\(196\) 4.65905 0.544564i 0.332789 0.0388975i
\(197\) −0.857832 0.719807i −0.0611180 0.0512841i 0.611717 0.791077i \(-0.290479\pi\)
−0.672835 + 0.739793i \(0.734924\pi\)
\(198\) 0 0
\(199\) 5.88368 4.93699i 0.417083 0.349974i −0.409969 0.912099i \(-0.634461\pi\)
0.827052 + 0.562125i \(0.190016\pi\)
\(200\) 4.91606 5.21072i 0.347618 0.368453i
\(201\) 0 0
\(202\) 3.03518 + 1.52433i 0.213555 + 0.107251i
\(203\) −5.03360 2.52797i −0.353290 0.177429i
\(204\) 0 0
\(205\) −13.2564 + 14.0510i −0.925870 + 0.981365i
\(206\) 0.769010 0.645276i 0.0535794 0.0449585i
\(207\) 0 0
\(208\) −6.63120 5.56424i −0.459791 0.385811i
\(209\) −16.5368 + 1.93287i −1.14387 + 0.133699i
\(210\) 0 0
\(211\) 7.02525 + 7.44633i 0.483638 + 0.512627i 0.922536 0.385910i \(-0.126113\pi\)
−0.438898 + 0.898537i \(0.644631\pi\)
\(212\) −13.9638 1.63214i −0.959041 0.112096i
\(213\) 0 0
\(214\) 0.236059 4.05298i 0.0161367 0.277056i
\(215\) −3.24697 5.62391i −0.221441 0.383547i
\(216\) 0 0
\(217\) −1.05768 + 1.83195i −0.0717999 + 0.124361i
\(218\) −5.39307 3.54708i −0.365265 0.240238i
\(219\) 0 0
\(220\) 6.62292 + 15.3537i 0.446517 + 1.03514i
\(221\) −3.62739 + 0.859707i −0.244005 + 0.0578301i
\(222\) 0 0
\(223\) −2.77779 3.73122i −0.186014 0.249861i 0.699327 0.714802i \(-0.253483\pi\)
−0.885342 + 0.464941i \(0.846076\pi\)
\(224\) −15.9031 + 5.78824i −1.06257 + 0.386743i
\(225\) 0 0
\(226\) −3.10644 1.13065i −0.206637 0.0752098i
\(227\) 4.04954 + 13.5264i 0.268777 + 0.897779i 0.980700 + 0.195521i \(0.0626397\pi\)
−0.711922 + 0.702258i \(0.752175\pi\)
\(228\) 0 0
\(229\) 0.301500 + 5.17655i 0.0199237 + 0.342076i 0.993509 + 0.113753i \(0.0362872\pi\)
−0.973585 + 0.228323i \(0.926676\pi\)
\(230\) 8.47186 5.57203i 0.558618 0.367409i
\(231\) 0 0
\(232\) 3.65572 + 0.866423i 0.240010 + 0.0568834i
\(233\) −0.773336 4.38581i −0.0506629 0.287324i 0.948941 0.315452i \(-0.102156\pi\)
−0.999604 + 0.0281287i \(0.991045\pi\)
\(234\) 0 0
\(235\) −1.59822 + 9.06397i −0.104257 + 0.591268i
\(236\) −3.34327 + 7.75057i −0.217628 + 0.504519i
\(237\) 0 0
\(238\) −0.476298 + 1.59095i −0.0308738 + 0.103126i
\(239\) 17.3543 23.3108i 1.12255 1.50785i 0.287420 0.957805i \(-0.407202\pi\)
0.835134 0.550047i \(-0.185390\pi\)
\(240\) 0 0
\(241\) 22.3266 11.2128i 1.43818 0.722281i 0.452635 0.891696i \(-0.350484\pi\)
0.985545 + 0.169415i \(0.0541877\pi\)
\(242\) 0.442520 0.0284463
\(243\) 0 0
\(244\) 0.957429 0.0612931
\(245\) −7.25459 + 3.64339i −0.463479 + 0.232768i
\(246\) 0 0
\(247\) −11.5519 + 15.5169i −0.735031 + 0.987319i
\(248\) 0.404658 1.35165i 0.0256958 0.0858299i
\(249\) 0 0
\(250\) 1.02385 2.37354i 0.0647538 0.150116i
\(251\) −2.46091 + 13.9565i −0.155331 + 0.880926i 0.803152 + 0.595775i \(0.203155\pi\)
−0.958483 + 0.285151i \(0.907956\pi\)
\(252\) 0 0
\(253\) 3.66665 + 20.7946i 0.230521 + 1.30735i
\(254\) 5.93230 + 1.40598i 0.372226 + 0.0882191i
\(255\) 0 0
\(256\) 3.34511 2.20011i 0.209069 0.137507i
\(257\) 0.854668 + 14.6741i 0.0533127 + 0.915344i 0.913874 + 0.405997i \(0.133076\pi\)
−0.860562 + 0.509347i \(0.829887\pi\)
\(258\) 0 0
\(259\) 10.2306 + 34.1727i 0.635700 + 2.12339i
\(260\) 18.2566 + 6.64487i 1.13223 + 0.412098i
\(261\) 0 0
\(262\) −3.82038 + 1.39050i −0.236024 + 0.0859056i
\(263\) −9.78683 13.1460i −0.603482 0.810617i 0.390449 0.920625i \(-0.372320\pi\)
−0.993931 + 0.110008i \(0.964912\pi\)
\(264\) 0 0
\(265\) 23.6753 5.61114i 1.45436 0.344690i
\(266\) 3.41335 + 7.91304i 0.209286 + 0.485180i
\(267\) 0 0
\(268\) −19.1611 12.6024i −1.17045 0.769817i
\(269\) −5.68131 + 9.84032i −0.346396 + 0.599975i −0.985606 0.169057i \(-0.945928\pi\)
0.639211 + 0.769032i \(0.279261\pi\)
\(270\) 0 0
\(271\) −1.38266 2.39483i −0.0839903 0.145476i 0.820970 0.570971i \(-0.193433\pi\)
−0.904961 + 0.425496i \(0.860100\pi\)
\(272\) −0.117990 + 2.02580i −0.00715416 + 0.122832i
\(273\) 0 0
\(274\) −4.86484 0.568618i −0.293896 0.0343515i
\(275\) −8.08246 8.56691i −0.487391 0.516604i
\(276\) 0 0
\(277\) −18.2717 + 2.13566i −1.09784 + 0.128319i −0.645673 0.763614i \(-0.723423\pi\)
−0.452167 + 0.891933i \(0.649349\pi\)
\(278\) −2.56503 2.15231i −0.153840 0.129087i
\(279\) 0 0
\(280\) 14.5334 12.1950i 0.868538 0.728790i
\(281\) 7.36555 7.80702i 0.439392 0.465728i −0.469395 0.882988i \(-0.655528\pi\)
0.908787 + 0.417260i \(0.137010\pi\)
\(282\) 0 0
\(283\) −12.7718 6.41421i −0.759202 0.381285i 0.0266946 0.999644i \(-0.491502\pi\)
−0.785896 + 0.618358i \(0.787798\pi\)
\(284\) −20.0133 10.0511i −1.18757 0.596421i
\(285\) 0 0
\(286\) 5.33120 5.65074i 0.315241 0.334135i
\(287\) −15.9502 + 13.3838i −0.941512 + 0.790022i
\(288\) 0 0
\(289\) −12.3533 10.3657i −0.726666 0.609745i
\(290\) −2.94618 + 0.344359i −0.173006 + 0.0202215i
\(291\) 0 0
\(292\) −7.76724 8.23279i −0.454543 0.481787i
\(293\) −21.6982 2.53616i −1.26762 0.148164i −0.544428 0.838808i \(-0.683253\pi\)
−0.723195 + 0.690644i \(0.757327\pi\)
\(294\) 0 0
\(295\) 0.849396 14.5836i 0.0494537 0.849088i
\(296\) −11.8962 20.6048i −0.691453 1.19763i
\(297\) 0 0
\(298\) −3.91497 + 6.78092i −0.226788 + 0.392808i
\(299\) 20.4978 + 13.4816i 1.18542 + 0.779663i
\(300\) 0 0
\(301\) −2.77238 6.42711i −0.159798 0.370452i
\(302\) 3.46684 0.821656i 0.199494 0.0472810i
\(303\) 0 0
\(304\) 6.28819 + 8.44650i 0.360652 + 0.484440i
\(305\) −1.55705 + 0.566720i −0.0891564 + 0.0324503i
\(306\) 0 0
\(307\) −28.6368 10.4229i −1.63439 0.594869i −0.648344 0.761347i \(-0.724538\pi\)
−0.986045 + 0.166478i \(0.946760\pi\)
\(308\) 5.16909 + 17.2660i 0.294536 + 0.983820i
\(309\) 0 0
\(310\) 0.0647710 + 1.11207i 0.00367874 + 0.0631616i
\(311\) 22.6519 14.8984i 1.28447 0.844812i 0.290764 0.956795i \(-0.406091\pi\)
0.993710 + 0.111983i \(0.0357203\pi\)
\(312\) 0 0
\(313\) −7.88787 1.86946i −0.445849 0.105668i 0.00155774 0.999999i \(-0.499504\pi\)
−0.447407 + 0.894331i \(0.647652\pi\)
\(314\) −0.0163709 0.0928440i −0.000923863 0.00523949i
\(315\) 0 0
\(316\) −0.217154 + 1.23154i −0.0122159 + 0.0692797i
\(317\) 7.69151 17.8309i 0.431998 1.00148i −0.553662 0.832742i \(-0.686770\pi\)
0.985660 0.168743i \(-0.0539708\pi\)
\(318\) 0 0
\(319\) 1.77154 5.91736i 0.0991872 0.331308i
\(320\) 2.20607 2.96326i 0.123323 0.165652i
\(321\) 0 0
\(322\) 9.76698 4.90516i 0.544293 0.273354i
\(323\) 4.53480 0.252323
\(324\) 0 0
\(325\) −13.6847 −0.759089
\(326\) 8.21787 4.12717i 0.455146 0.228583i
\(327\) 0 0
\(328\) 8.29321 11.1397i 0.457916 0.615088i
\(329\) −2.84521 + 9.50365i −0.156861 + 0.523953i
\(330\) 0 0
\(331\) 0.786897 1.82423i 0.0432518 0.100269i −0.895221 0.445623i \(-0.852982\pi\)
0.938472 + 0.345354i \(0.112241\pi\)
\(332\) −1.06035 + 6.01357i −0.0581945 + 0.330037i
\(333\) 0 0
\(334\) 1.80136 + 10.2160i 0.0985662 + 0.558997i
\(335\) 38.6210 + 9.15334i 2.11009 + 0.500100i
\(336\) 0 0
\(337\) 15.3358 10.0865i 0.835397 0.549449i −0.0582076 0.998304i \(-0.518539\pi\)
0.893604 + 0.448855i \(0.148168\pi\)
\(338\) −0.0957949 1.64473i −0.00521055 0.0894617i
\(339\) 0 0
\(340\) −1.30621 4.36305i −0.0708392 0.236619i
\(341\) −2.17980 0.793381i −0.118043 0.0429640i
\(342\) 0 0
\(343\) 12.3650 4.50048i 0.667646 0.243003i
\(344\) 2.78792 + 3.74483i 0.150315 + 0.201908i
\(345\) 0 0
\(346\) −10.4131 + 2.46796i −0.559813 + 0.132678i
\(347\) −10.6086 24.5935i −0.569499 1.32025i −0.922995 0.384812i \(-0.874266\pi\)
0.353496 0.935436i \(-0.384993\pi\)
\(348\) 0 0
\(349\) 10.9528 + 7.20376i 0.586289 + 0.385608i 0.807719 0.589568i \(-0.200702\pi\)
−0.221430 + 0.975176i \(0.571072\pi\)
\(350\) −3.04816 + 5.27957i −0.162931 + 0.282205i
\(351\) 0 0
\(352\) −9.27922 16.0721i −0.494584 0.856645i
\(353\) −1.13003 + 19.4019i −0.0601456 + 1.03266i 0.824341 + 0.566094i \(0.191546\pi\)
−0.884486 + 0.466566i \(0.845491\pi\)
\(354\) 0 0
\(355\) 38.4967 + 4.49962i 2.04319 + 0.238815i
\(356\) 15.1032 + 16.0085i 0.800469 + 0.848447i
\(357\) 0 0
\(358\) −5.80466 + 0.678468i −0.306786 + 0.0358581i
\(359\) 11.2428 + 9.43384i 0.593373 + 0.497899i 0.889308 0.457309i \(-0.151187\pi\)
−0.295935 + 0.955208i \(0.595631\pi\)
\(360\) 0 0
\(361\) 3.47185 2.91323i 0.182729 0.153328i
\(362\) 0.319258 0.338394i 0.0167798 0.0177856i
\(363\) 0 0
\(364\) 18.7136 + 9.39832i 0.980858 + 0.492606i
\(365\) 17.5049 + 8.79127i 0.916246 + 0.460156i
\(366\) 0 0
\(367\) 7.54456 7.99677i 0.393823 0.417428i −0.499875 0.866098i \(-0.666621\pi\)
0.893698 + 0.448670i \(0.148102\pi\)
\(368\) 10.2304 8.58433i 0.533297 0.447489i
\(369\) 0 0
\(370\) 14.3899 + 12.0746i 0.748096 + 0.627727i
\(371\) 26.0482 3.04460i 1.35236 0.158068i
\(372\) 0 0
\(373\) 14.0118 + 14.8517i 0.725505 + 0.768990i 0.980195 0.198033i \(-0.0634552\pi\)
−0.254691 + 0.967023i \(0.581974\pi\)
\(374\) −1.80882 0.211421i −0.0935319 0.0109323i
\(375\) 0 0
\(376\) 0.384735 6.60564i 0.0198412 0.340660i
\(377\) −3.58843 6.21535i −0.184814 0.320107i
\(378\) 0 0
\(379\) −13.0154 + 22.5433i −0.668556 + 1.15797i 0.309753 + 0.950817i \(0.399754\pi\)
−0.978308 + 0.207155i \(0.933580\pi\)
\(380\) −19.7457 12.9870i −1.01293 0.666217i
\(381\) 0 0
\(382\) 0.171997 + 0.398735i 0.00880015 + 0.0204010i
\(383\) 22.8964 5.42654i 1.16995 0.277283i 0.400686 0.916215i \(-0.368772\pi\)
0.769263 + 0.638932i \(0.220624\pi\)
\(384\) 0 0
\(385\) −18.6264 25.0197i −0.949292 1.27512i
\(386\) −4.98958 + 1.81606i −0.253963 + 0.0924349i
\(387\) 0 0
\(388\) 19.7163 + 7.17615i 1.00094 + 0.364314i
\(389\) −9.48468 31.6810i −0.480892 1.60629i −0.762653 0.646807i \(-0.776104\pi\)
0.281761 0.959485i \(-0.409081\pi\)
\(390\) 0 0
\(391\) −0.334405 5.74151i −0.0169116 0.290361i
\(392\) 4.87615 3.20710i 0.246283 0.161983i
\(393\) 0 0
\(394\) −0.618486 0.146584i −0.0311589 0.00738479i
\(395\) −0.375819 2.13137i −0.0189095 0.107241i
\(396\) 0 0
\(397\) −0.00960087 + 0.0544493i −0.000481854 + 0.00273273i −0.985048 0.172282i \(-0.944886\pi\)
0.984566 + 0.175014i \(0.0559972\pi\)
\(398\) 1.72674 4.00303i 0.0865536 0.200654i
\(399\) 0 0
\(400\) −2.13643 + 7.13619i −0.106822 + 0.356809i
\(401\) 17.1048 22.9757i 0.854173 1.14735i −0.133535 0.991044i \(-0.542633\pi\)
0.987708 0.156310i \(-0.0499598\pi\)
\(402\) 0 0
\(403\) −2.40856 + 1.20962i −0.119979 + 0.0602557i
\(404\) −10.0397 −0.499496
\(405\) 0 0
\(406\) −3.19719 −0.158674
\(407\) −34.9562 + 17.5557i −1.73271 + 0.870202i
\(408\) 0 0
\(409\) 18.7728 25.2163i 0.928255 1.24686i −0.0405846 0.999176i \(-0.512922\pi\)
0.968840 0.247687i \(-0.0796706\pi\)
\(410\) −3.14472 + 10.5041i −0.155307 + 0.518761i
\(411\) 0 0
\(412\) −1.17532 + 2.72471i −0.0579040 + 0.134237i
\(413\) 2.73421 15.5065i 0.134542 0.763024i
\(414\) 0 0
\(415\) −1.83511 10.4074i −0.0900818 0.510879i
\(416\) −20.9818 4.97277i −1.02872 0.243810i
\(417\) 0 0
\(418\) −7.89561 + 5.19302i −0.386187 + 0.253999i
\(419\) −0.196196 3.36855i −0.00958479 0.164564i −0.999704 0.0243352i \(-0.992253\pi\)
0.990119 0.140229i \(-0.0447839\pi\)
\(420\) 0 0
\(421\) −7.24567 24.2022i −0.353133 1.17954i −0.931492 0.363763i \(-0.881492\pi\)
0.578359 0.815782i \(-0.303693\pi\)
\(422\) 5.46033 + 1.98740i 0.265805 + 0.0967451i
\(423\) 0 0
\(424\) −16.4373 + 5.98270i −0.798267 + 0.290545i
\(425\) 1.91566 + 2.57318i 0.0929231 + 0.124817i
\(426\) 0 0
\(427\) −1.73785 + 0.411878i −0.0841005 + 0.0199322i
\(428\) 4.75324 + 11.0192i 0.229756 + 0.532635i
\(429\) 0 0
\(430\) −3.07962 2.02549i −0.148512 0.0976780i
\(431\) −16.4068 + 28.4174i −0.790288 + 1.36882i 0.135501 + 0.990777i \(0.456736\pi\)
−0.925789 + 0.378041i \(0.876598\pi\)
\(432\) 0 0
\(433\) 6.46122 + 11.1912i 0.310507 + 0.537813i 0.978472 0.206379i \(-0.0661680\pi\)
−0.667966 + 0.744192i \(0.732835\pi\)
\(434\) −0.0698141 + 1.19866i −0.00335118 + 0.0575376i
\(435\) 0 0
\(436\) 18.9516 + 2.21513i 0.907618 + 0.106085i
\(437\) −20.4806 21.7081i −0.979719 1.03844i
\(438\) 0 0
\(439\) −36.6280 + 4.28120i −1.74816 + 0.204330i −0.929214 0.369542i \(-0.879515\pi\)
−0.818945 + 0.573872i \(0.805441\pi\)
\(440\) 15.9373 + 13.3730i 0.759781 + 0.637532i
\(441\) 0 0
\(442\) −1.62093 + 1.36012i −0.0770997 + 0.0646943i
\(443\) −23.5817 + 24.9951i −1.12040 + 1.18755i −0.140078 + 0.990140i \(0.544735\pi\)
−0.980320 + 0.197413i \(0.936746\pi\)
\(444\) 0 0
\(445\) −34.0378 17.0944i −1.61355 0.810354i
\(446\) −2.35948 1.18498i −0.111725 0.0561103i
\(447\) 0 0
\(448\) 2.73256 2.89634i 0.129101 0.136839i
\(449\) 13.4520 11.2876i 0.634838 0.532693i −0.267590 0.963533i \(-0.586227\pi\)
0.902428 + 0.430840i \(0.141783\pi\)
\(450\) 0 0
\(451\) −17.4910 14.6767i −0.823617 0.691097i
\(452\) 9.70571 1.13444i 0.456518 0.0533593i
\(453\) 0 0
\(454\) 5.49981 + 5.82945i 0.258119 + 0.273590i
\(455\) −35.9966 4.20740i −1.68755 0.197246i
\(456\) 0 0
\(457\) 0.485445 8.33476i 0.0227081 0.389884i −0.967736 0.251967i \(-0.918922\pi\)
0.990444 0.137916i \(-0.0440405\pi\)
\(458\) 1.47162 + 2.54891i 0.0687641 + 0.119103i
\(459\) 0 0
\(460\) −14.9867 + 25.9577i −0.698758 + 1.21028i
\(461\) 16.9937 + 11.1769i 0.791475 + 0.520561i 0.879694 0.475540i \(-0.157747\pi\)
−0.0882195 + 0.996101i \(0.528118\pi\)
\(462\) 0 0
\(463\) −1.02559 2.37758i −0.0476631 0.110496i 0.892721 0.450610i \(-0.148793\pi\)
−0.940384 + 0.340114i \(0.889534\pi\)
\(464\) −3.80136 + 0.900939i −0.176474 + 0.0418250i
\(465\) 0 0
\(466\) −1.50951 2.02763i −0.0699268 0.0939279i
\(467\) −11.5019 + 4.18635i −0.532244 + 0.193721i −0.594140 0.804361i \(-0.702508\pi\)
0.0618958 + 0.998083i \(0.480285\pi\)
\(468\) 0 0
\(469\) 40.2012 + 14.6320i 1.85632 + 0.675645i
\(470\) 1.49830 + 5.00468i 0.0691116 + 0.230849i
\(471\) 0 0
\(472\) 0.610652 + 10.4845i 0.0281075 + 0.482587i
\(473\) 6.41295 4.21786i 0.294868 0.193937i
\(474\) 0 0
\(475\) 16.1981 + 3.83903i 0.743221 + 0.176147i
\(476\) −0.852437 4.83441i −0.0390714 0.221585i
\(477\) 0 0
\(478\) 2.86441 16.2449i 0.131015 0.743024i
\(479\) 10.8633 25.1839i 0.496357 1.15068i −0.467435 0.884027i \(-0.654822\pi\)
0.963792 0.266656i \(-0.0859189\pi\)
\(480\) 0 0
\(481\) −13.0352 + 43.5405i −0.594353 + 1.98528i
\(482\) 8.46840 11.3750i 0.385725 0.518118i
\(483\) 0 0
\(484\) −1.16893 + 0.587060i −0.0531333 + 0.0266845i
\(485\) −36.3120 −1.64884
\(486\) 0 0
\(487\) −6.02417 −0.272981 −0.136491 0.990641i \(-0.543582\pi\)
−0.136491 + 0.990641i \(0.543582\pi\)
\(488\) 1.06453 0.534628i 0.0481891 0.0242015i
\(489\) 0 0
\(490\) −2.75164 + 3.69610i −0.124307 + 0.166973i
\(491\) −0.139757 + 0.466819i −0.00630713 + 0.0210673i −0.961085 0.276252i \(-0.910907\pi\)
0.954778 + 0.297320i \(0.0960927\pi\)
\(492\) 0 0
\(493\) −0.666364 + 1.54481i −0.0300115 + 0.0695745i
\(494\) −1.90671 + 10.8135i −0.0857867 + 0.486521i
\(495\) 0 0
\(496\) 0.254765 + 1.44484i 0.0114393 + 0.0648754i
\(497\) 40.6505 + 9.63434i 1.82342 + 0.432159i
\(498\) 0 0
\(499\) −4.58242 + 3.01391i −0.205137 + 0.134921i −0.647921 0.761708i \(-0.724361\pi\)
0.442784 + 0.896628i \(0.353991\pi\)
\(500\) 0.444284 + 7.62806i 0.0198690 + 0.341137i
\(501\) 0 0
\(502\) 2.30705 + 7.70609i 0.102969 + 0.343940i
\(503\) −9.93090 3.61455i −0.442797 0.161165i 0.110993 0.993821i \(-0.464597\pi\)
−0.553790 + 0.832656i \(0.686819\pi\)
\(504\) 0 0
\(505\) 16.3275 5.94271i 0.726562 0.264447i
\(506\) 7.15712 + 9.61368i 0.318173 + 0.427380i
\(507\) 0 0
\(508\) −17.5356 + 4.15601i −0.778015 + 0.184393i
\(509\) 4.91402 + 11.3920i 0.217810 + 0.504940i 0.991730 0.128343i \(-0.0409659\pi\)
−0.773920 + 0.633284i \(0.781707\pi\)
\(510\) 0 0
\(511\) 17.6402 + 11.6021i 0.780355 + 0.513248i
\(512\) −10.4003 + 18.0139i −0.459634 + 0.796110i
\(513\) 0 0
\(514\) 4.17162 + 7.22546i 0.184002 + 0.318701i
\(515\) 0.298604 5.12684i 0.0131581 0.225915i
\(516\) 0 0
\(517\) −10.8051 1.26294i −0.475209 0.0555440i
\(518\) 13.8945 + 14.7273i 0.610491 + 0.647082i
\(519\) 0 0
\(520\) 24.0095 2.80630i 1.05288 0.123064i
\(521\) 13.6270 + 11.4344i 0.597011 + 0.500952i 0.890483 0.455016i \(-0.150366\pi\)
−0.293472 + 0.955968i \(0.594811\pi\)
\(522\) 0 0
\(523\) −10.4002 + 8.72680i −0.454769 + 0.381596i −0.841202 0.540721i \(-0.818151\pi\)
0.386433 + 0.922317i \(0.373707\pi\)
\(524\) 8.24697 8.74128i 0.360271 0.381865i
\(525\) 0 0
\(526\) −8.31304 4.17497i −0.362466 0.182037i
\(527\) 0.564613 + 0.283560i 0.0245949 + 0.0123520i
\(528\) 0 0
\(529\) −10.1908 + 10.8016i −0.443079 + 0.469636i
\(530\) 10.5795 8.87724i 0.459543 0.385603i
\(531\) 0 0
\(532\) −19.5141 16.3743i −0.846045 0.709916i
\(533\) −26.3500 + 3.07988i −1.14135 + 0.133404i
\(534\) 0 0
\(535\) −14.2526 15.1069i −0.616194 0.653127i
\(536\) −28.3418 3.31268i −1.22418 0.143086i
\(537\) 0 0
\(538\) −0.375006 + 6.43861i −0.0161677 + 0.277588i
\(539\) −4.79771 8.30987i −0.206652 0.357931i
\(540\) 0 0
\(541\) 13.6538 23.6492i 0.587025 1.01676i −0.407595 0.913163i \(-0.633632\pi\)
0.994620 0.103594i \(-0.0330342\pi\)
\(542\) −1.31139 0.862517i −0.0563291 0.0370483i
\(543\) 0 0
\(544\) 2.00210 + 4.64139i 0.0858394 + 0.198998i
\(545\) −32.1319 + 7.61539i −1.37638 + 0.326207i
\(546\) 0 0
\(547\) 7.58248 + 10.1850i 0.324204 + 0.435481i 0.934106 0.356995i \(-0.116199\pi\)
−0.609903 + 0.792476i \(0.708791\pi\)
\(548\) 13.6050 4.95181i 0.581176 0.211531i
\(549\) 0 0
\(550\) −6.28204 2.28648i −0.267867 0.0974957i
\(551\) 2.50390 + 8.36360i 0.106670 + 0.356301i
\(552\) 0 0
\(553\) −0.135638 2.32882i −0.00576793 0.0990315i
\(554\) −8.72397 + 5.73785i −0.370646 + 0.243778i
\(555\) 0 0
\(556\) 9.63092 + 2.28257i 0.408442 + 0.0968025i
\(557\) −2.62356 14.8789i −0.111164 0.630441i −0.988578 0.150708i \(-0.951845\pi\)
0.877415 0.479733i \(-0.159266\pi\)
\(558\) 0 0
\(559\) 1.54866 8.78288i 0.0655013 0.371476i
\(560\) −7.81380 + 18.1144i −0.330193 + 0.765474i
\(561\) 0 0
\(562\) 1.74727 5.83630i 0.0737043 0.246189i
\(563\) −3.66195 + 4.91886i −0.154333 + 0.207305i −0.872564 0.488499i \(-0.837545\pi\)
0.718231 + 0.695804i \(0.244952\pi\)
\(564\) 0 0
\(565\) −15.1127 + 7.58990i −0.635798 + 0.319310i
\(566\) −8.11223 −0.340982
\(567\) 0 0
\(568\) −27.8646 −1.16917
\(569\) −1.32201 + 0.663940i −0.0554217 + 0.0278338i −0.476294 0.879286i \(-0.658020\pi\)
0.420872 + 0.907120i \(0.361724\pi\)
\(570\) 0 0
\(571\) 5.26460 7.07158i 0.220317 0.295936i −0.678199 0.734878i \(-0.737239\pi\)
0.898515 + 0.438942i \(0.144647\pi\)
\(572\) −6.58611 + 21.9991i −0.275379 + 0.919830i
\(573\) 0 0
\(574\) −4.68106 + 10.8519i −0.195384 + 0.452950i
\(575\) 3.66611 20.7915i 0.152887 0.867066i
\(576\) 0 0
\(577\) 2.48608 + 14.0993i 0.103497 + 0.586960i 0.991810 + 0.127722i \(0.0407665\pi\)
−0.888313 + 0.459238i \(0.848122\pi\)
\(578\) −8.90659 2.11090i −0.370465 0.0878018i
\(579\) 0 0
\(580\) 7.32559 4.81812i 0.304179 0.200062i
\(581\) −0.662315 11.3715i −0.0274775 0.471770i
\(582\) 0 0
\(583\) 8.24814 + 27.5507i 0.341603 + 1.14103i
\(584\) −13.2333 4.81654i −0.547599 0.199310i
\(585\) 0 0
\(586\) −11.6521 + 4.24102i −0.481344 + 0.175195i
\(587\) 5.09890 + 6.84901i 0.210454 + 0.282689i 0.894799 0.446470i \(-0.147319\pi\)
−0.684345 + 0.729159i \(0.739912\pi\)
\(588\) 0 0
\(589\) 3.19028 0.756110i 0.131453 0.0311550i
\(590\) −3.28421 7.61364i −0.135209 0.313449i
\(591\) 0 0
\(592\) 20.6702 + 13.5950i 0.849539 + 0.558751i
\(593\) 19.8740 34.4227i 0.816125 1.41357i −0.0923915 0.995723i \(-0.529451\pi\)
0.908517 0.417848i \(-0.137216\pi\)
\(594\) 0 0
\(595\) 4.24788 + 7.35754i 0.174146 + 0.301630i
\(596\) 1.34576 23.1057i 0.0551243 0.946448i
\(597\) 0 0
\(598\) 13.8315 + 1.61667i 0.565613 + 0.0661106i
\(599\) −13.9840 14.8221i −0.571370 0.605616i 0.375662 0.926757i \(-0.377415\pi\)
−0.947032 + 0.321140i \(0.895934\pi\)
\(600\) 0 0
\(601\) 13.5963 1.58918i 0.554604 0.0648239i 0.165825 0.986155i \(-0.446971\pi\)
0.388779 + 0.921331i \(0.372897\pi\)
\(602\) −3.04350 2.55380i −0.124044 0.104085i
\(603\) 0 0
\(604\) −8.06774 + 6.76964i −0.328272 + 0.275453i
\(605\) 1.55352 1.64664i 0.0631597 0.0669453i
\(606\) 0 0
\(607\) −4.02143 2.01964i −0.163225 0.0819745i 0.365311 0.930885i \(-0.380963\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(608\) 23.4405 + 11.7722i 0.950636 + 0.477427i
\(609\) 0 0
\(610\) −0.645420 + 0.684105i −0.0261323 + 0.0276986i
\(611\) −9.68275 + 8.12479i −0.391722 + 0.328694i
\(612\) 0 0
\(613\) 27.4040 + 22.9947i 1.10684 + 0.928746i 0.997866 0.0652986i \(-0.0208000\pi\)
0.108971 + 0.994045i \(0.465244\pi\)
\(614\) −17.1807 + 2.00814i −0.693357 + 0.0810418i
\(615\) 0 0
\(616\) 15.3887 + 16.3110i 0.620027 + 0.657190i
\(617\) 27.3964 + 3.20218i 1.10294 + 0.128915i 0.648023 0.761621i \(-0.275596\pi\)
0.454913 + 0.890536i \(0.349670\pi\)
\(618\) 0 0
\(619\) 1.94367 33.3715i 0.0781227 1.34131i −0.700424 0.713727i \(-0.747006\pi\)
0.778546 0.627587i \(-0.215957\pi\)
\(620\) −1.64640 2.85165i −0.0661211 0.114525i
\(621\) 0 0
\(622\) 7.69456 13.3274i 0.308524 0.534379i
\(623\) −34.3009 22.5601i −1.37424 0.903850i
\(624\) 0 0
\(625\) −12.0337 27.8973i −0.481349 1.11589i
\(626\) −4.47722 + 1.06112i −0.178946 + 0.0424109i
\(627\) 0 0
\(628\) 0.166414 + 0.223532i 0.00664063 + 0.00891991i
\(629\) 10.0118 3.64400i 0.399197 0.145296i
\(630\) 0 0
\(631\) 10.2732 + 3.73914i 0.408970 + 0.148853i 0.538309 0.842748i \(-0.319063\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(632\) 0.446247 + 1.49057i 0.0177508 + 0.0592917i
\(633\) 0 0
\(634\) −0.640898 11.0038i −0.0254533 0.437016i
\(635\) 26.0578 17.1385i 1.03407 0.680120i
\(636\) 0 0
\(637\) −10.8484 2.57111i −0.429828 0.101871i
\(638\) −0.608816 3.45277i −0.0241032 0.136696i
\(639\) 0 0
\(640\) 5.81708 32.9903i 0.229940 1.30406i
\(641\) 3.68962 8.55350i 0.145731 0.337843i −0.829679 0.558241i \(-0.811476\pi\)
0.975410 + 0.220398i \(0.0707357\pi\)
\(642\) 0 0
\(643\) −0.369260 + 1.23341i −0.0145622 + 0.0486411i −0.964962 0.262390i \(-0.915489\pi\)
0.950400 + 0.311031i \(0.100674\pi\)
\(644\) −19.2925 + 25.9143i −0.760230 + 1.02117i
\(645\) 0 0
\(646\) 2.30020 1.15521i 0.0905003 0.0454510i
\(647\) 25.7409 1.01198 0.505989 0.862540i \(-0.331128\pi\)
0.505989 + 0.862540i \(0.331128\pi\)
\(648\) 0 0
\(649\) 17.2667 0.677776
\(650\) −6.94132 + 3.48606i −0.272261 + 0.136735i
\(651\) 0 0
\(652\) −16.2326 + 21.8041i −0.635716 + 0.853915i
\(653\) −11.1737 + 37.3227i −0.437259 + 1.46055i 0.401405 + 0.915900i \(0.368522\pi\)
−0.838665 + 0.544648i \(0.816663\pi\)
\(654\) 0 0
\(655\) −8.23778 + 19.0973i −0.321877 + 0.746194i
\(656\) −2.50766 + 14.2217i −0.0979077 + 0.555262i
\(657\) 0 0
\(658\) 0.977797 + 5.54536i 0.0381185 + 0.216181i
\(659\) 32.6776 + 7.74473i 1.27294 + 0.301692i 0.810908 0.585173i \(-0.198973\pi\)
0.462029 + 0.886865i \(0.347122\pi\)
\(660\) 0 0
\(661\) −29.6045 + 19.4712i −1.15148 + 0.757342i −0.973948 0.226773i \(-0.927183\pi\)
−0.177535 + 0.984115i \(0.556812\pi\)
\(662\) −0.0655685 1.12577i −0.00254839 0.0437542i
\(663\) 0 0
\(664\) 2.17901 + 7.27838i 0.0845618 + 0.282456i
\(665\) 41.4278 + 15.0785i 1.60650 + 0.584718i
\(666\) 0 0
\(667\) 10.4045 3.78693i 0.402864 0.146630i
\(668\) −18.3112 24.5963i −0.708483 0.951658i
\(669\) 0 0
\(670\) 21.9216 5.19551i 0.846905 0.200720i
\(671\) −0.775727 1.79834i −0.0299466 0.0694241i
\(672\) 0 0
\(673\) −22.9529 15.0964i −0.884771 0.581923i 0.0237705 0.999717i \(-0.492433\pi\)
−0.908542 + 0.417794i \(0.862803\pi\)
\(674\) 5.20938 9.02292i 0.200658 0.347550i
\(675\) 0 0
\(676\) 2.43499 + 4.21753i 0.0936536 + 0.162213i
\(677\) −0.555469 + 9.53704i −0.0213484 + 0.366538i 0.970668 + 0.240426i \(0.0772870\pi\)
−0.992016 + 0.126112i \(0.959750\pi\)
\(678\) 0 0
\(679\) −38.8746 4.54379i −1.49187 0.174375i
\(680\) −3.88866 4.12174i −0.149123 0.158061i
\(681\) 0 0
\(682\) −1.30777 + 0.152857i −0.0500772 + 0.00585319i
\(683\) −25.4573 21.3612i −0.974095 0.817363i 0.00909301 0.999959i \(-0.497106\pi\)
−0.983188 + 0.182596i \(0.941550\pi\)
\(684\) 0 0
\(685\) −19.1945 + 16.1061i −0.733383 + 0.615381i
\(686\) 5.12547 5.43268i 0.195691 0.207421i
\(687\) 0 0
\(688\) −4.33826 2.17876i −0.165395 0.0830643i
\(689\) 29.8606 + 14.9966i 1.13760 + 0.571324i
\(690\) 0 0
\(691\) 3.72605 3.94938i 0.141746 0.150242i −0.652611 0.757693i \(-0.726327\pi\)
0.794357 + 0.607451i \(0.207808\pi\)
\(692\) 24.2325 20.3335i 0.921183 0.772964i
\(693\) 0 0
\(694\) −11.6460 9.77218i −0.442077 0.370947i
\(695\) −17.0137 + 1.98862i −0.645366 + 0.0754325i
\(696\) 0 0
\(697\) 4.26775 + 4.52355i 0.161652 + 0.171342i
\(698\) 7.39072 + 0.863851i 0.279743 + 0.0326972i
\(699\) 0 0
\(700\) 1.04779 17.9899i 0.0396029 0.679956i
\(701\) 16.8694 + 29.2187i 0.637150 + 1.10358i 0.986055 + 0.166418i \(0.0532200\pi\)
−0.348906 + 0.937158i \(0.613447\pi\)
\(702\) 0 0
\(703\) 27.6440 47.8808i 1.04261 1.80586i
\(704\) 3.64821 + 2.39946i 0.137497 + 0.0904332i
\(705\) 0 0
\(706\) 4.36930 + 10.1292i 0.164441 + 0.381216i
\(707\) 18.2234 4.31902i 0.685360 0.162433i
\(708\) 0 0
\(709\) −11.5762 15.5495i −0.434754 0.583975i 0.529714 0.848176i \(-0.322299\pi\)
−0.964468 + 0.264201i \(0.914892\pi\)
\(710\) 20.6730 7.52437i 0.775846 0.282385i
\(711\) 0 0
\(712\) 25.7319 + 9.36564i 0.964343 + 0.350992i
\(713\) −1.19257 3.98345i −0.0446620 0.149181i
\(714\) 0 0
\(715\) −2.31082 39.6753i −0.0864198 1.48377i
\(716\) 14.4331 9.49282i 0.539391 0.354763i
\(717\) 0 0
\(718\) 8.10592 + 1.92114i 0.302510 + 0.0716963i
\(719\) 0.831346 + 4.71480i 0.0310040 + 0.175832i 0.996378 0.0850387i \(-0.0271014\pi\)
−0.965374 + 0.260871i \(0.915990\pi\)
\(720\) 0 0
\(721\) 0.961210 5.45129i 0.0357973 0.203017i
\(722\) 1.01892 2.36211i 0.0379201 0.0879087i
\(723\) 0 0
\(724\) −0.394408 + 1.31742i −0.0146581 + 0.0489614i
\(725\) −3.68801 + 4.95385i −0.136969 + 0.183982i
\(726\) 0 0
\(727\) −6.75608 + 3.39303i −0.250569 + 0.125841i −0.569651 0.821887i \(-0.692922\pi\)
0.319082 + 0.947727i \(0.396625\pi\)
\(728\) 26.0550 0.965664
\(729\) 0 0
\(730\) 11.1186 0.411516
\(731\) −1.86826 + 0.938278i −0.0691003 + 0.0347035i
\(732\) 0 0
\(733\) 23.0749 30.9950i 0.852292 1.14483i −0.135766 0.990741i \(-0.543349\pi\)
0.988057 0.154086i \(-0.0492432\pi\)
\(734\) 1.78974 5.97815i 0.0660605 0.220657i
\(735\) 0 0
\(736\) 13.1763 30.5460i 0.485684 1.12594i
\(737\) −8.14649 + 46.2010i −0.300080 + 1.70184i
\(738\) 0 0
\(739\) −8.79173 49.8604i −0.323409 1.83414i −0.520627 0.853784i \(-0.674302\pi\)
0.197218 0.980360i \(-0.436809\pi\)
\(740\) −54.0299 12.8053i −1.98618 0.470733i
\(741\) 0 0
\(742\) 12.4369 8.17991i 0.456575 0.300294i
\(743\) 0.892750 + 15.3279i 0.0327518 + 0.562327i 0.974273 + 0.225372i \(0.0723598\pi\)
−0.941521 + 0.336955i \(0.890603\pi\)
\(744\) 0 0
\(745\) 11.4881 + 38.3730i 0.420893 + 1.40588i
\(746\) 10.8906 + 3.96386i 0.398733 + 0.145127i
\(747\) 0 0
\(748\) 5.05853 1.84116i 0.184958 0.0673193i
\(749\) −13.3681 17.9565i −0.488460 0.656115i
\(750\) 0 0
\(751\) −45.3980 + 10.7595i −1.65660 + 0.392621i −0.949319 0.314314i \(-0.898225\pi\)
−0.707278 + 0.706935i \(0.750077\pi\)
\(752\) 2.72520 + 6.31772i 0.0993778 + 0.230384i
\(753\) 0 0
\(754\) −3.40348 2.23851i −0.123948 0.0815216i
\(755\) 9.11335 15.7848i 0.331669 0.574467i
\(756\) 0 0
\(757\) 5.85224 + 10.1364i 0.212703 + 0.368413i 0.952560 0.304352i \(-0.0984399\pi\)
−0.739856 + 0.672765i \(0.765107\pi\)
\(758\) −0.859106 + 14.7503i −0.0312041 + 0.535754i
\(759\) 0 0
\(760\) −29.2065 3.41375i −1.05943 0.123830i
\(761\) 17.9650 + 19.0418i 0.651232 + 0.690265i 0.965894 0.258938i \(-0.0833727\pi\)
−0.314662 + 0.949204i \(0.601891\pi\)
\(762\) 0 0
\(763\) −35.3524 + 4.13211i −1.27984 + 0.149592i
\(764\) −0.983309 0.825094i −0.0355749 0.0298509i
\(765\) 0 0
\(766\) 10.2314 8.58519i 0.369676 0.310195i
\(767\) 13.7675 14.5927i 0.497114 0.526910i
\(768\) 0 0
\(769\) 40.6989 + 20.4398i 1.46764 + 0.737077i 0.989946 0.141448i \(-0.0451758\pi\)
0.477696 + 0.878525i \(0.341472\pi\)
\(770\) −15.8215 7.94586i −0.570168 0.286349i
\(771\) 0 0
\(772\) 10.7709 11.4165i 0.387653 0.410889i
\(773\) −10.7154 + 8.99131i −0.385407 + 0.323395i −0.814821 0.579713i \(-0.803165\pi\)
0.429414 + 0.903108i \(0.358720\pi\)
\(774\) 0 0
\(775\) 1.77672 + 1.49085i 0.0638217 + 0.0535528i
\(776\) 25.9291 3.03067i 0.930799 0.108795i
\(777\) 0 0
\(778\) −12.8814 13.6535i −0.461822 0.489503i
\(779\) 32.0537 + 3.74654i 1.14844 + 0.134234i
\(780\) 0 0
\(781\) −2.66373 + 45.7345i −0.0953159 + 1.63651i
\(782\) −1.63223 2.82710i −0.0583683 0.101097i
\(783\) 0 0
\(784\) −3.03440 + 5.25573i −0.108371 + 0.187705i
\(785\) −0.402948 0.265023i −0.0143818 0.00945909i
\(786\) 0 0
\(787\) 5.62542 + 13.0412i 0.200525 + 0.464869i 0.988573 0.150745i \(-0.0481674\pi\)
−0.788048 + 0.615614i \(0.788908\pi\)
\(788\) 1.82821 0.433295i 0.0651274 0.0154355i
\(789\) 0 0
\(790\) −0.733578 0.985367i −0.0260995 0.0350578i
\(791\) −17.1290 + 6.23446i −0.609039 + 0.221672i
\(792\) 0 0
\(793\) −2.13836 0.778298i −0.0759353 0.0276382i
\(794\) 0.00900064 + 0.0300642i 0.000319421 + 0.00106694i
\(795\) 0 0
\(796\) 0.749293 + 12.8649i 0.0265580 + 0.455983i
\(797\) −34.5075 + 22.6959i −1.22232 + 0.803931i −0.985837 0.167705i \(-0.946364\pi\)
−0.236480 + 0.971636i \(0.575994\pi\)
\(798\) 0 0
\(799\) 2.88318 + 0.683326i 0.102000 + 0.0241743i
\(800\) 3.22216 + 18.2738i 0.113921 + 0.646075i
\(801\) 0 0
\(802\) 2.82324 16.0114i 0.0996920 0.565381i
\(803\) −9.17048 + 21.2596i −0.323619 + 0.750234i
\(804\) 0 0
\(805\) 16.0359 53.5636i 0.565190 1.88787i
\(806\) −0.913559 + 1.22712i −0.0321787 + 0.0432236i
\(807\) 0 0
\(808\) −11.1629 + 5.60619i −0.392708 + 0.197225i
\(809\) −23.8379 −0.838097 −0.419048 0.907964i \(-0.637636\pi\)
−0.419048 + 0.907964i \(0.637636\pi\)
\(810\) 0 0
\(811\) −3.33188 −0.116998 −0.0584991 0.998287i \(-0.518631\pi\)
−0.0584991 + 0.998287i \(0.518631\pi\)
\(812\) 8.44549 4.24148i 0.296378 0.148847i
\(813\) 0 0
\(814\) −13.2588 + 17.8096i −0.464720 + 0.624227i
\(815\) 13.4925 45.0680i 0.472621 1.57866i
\(816\) 0 0
\(817\) −4.29700 + 9.96157i −0.150333 + 0.348511i
\(818\) 3.09855 17.5727i 0.108338 0.614417i
\(819\) 0 0
\(820\) −5.62815 31.9188i −0.196543 1.11465i
\(821\) −8.73468 2.07016i −0.304842 0.0722490i 0.0753477 0.997157i \(-0.475993\pi\)
−0.380190 + 0.924908i \(0.624141\pi\)
\(822\) 0 0
\(823\) 1.08458 0.713338i 0.0378060 0.0248654i −0.530465 0.847707i \(-0.677983\pi\)
0.568271 + 0.822841i \(0.307612\pi\)
\(824\) 0.214674 + 3.68581i 0.00747852 + 0.128401i
\(825\) 0 0
\(826\) −2.56327 8.56192i −0.0891876 0.297907i
\(827\) −29.6308 10.7847i −1.03036 0.375022i −0.229144 0.973392i \(-0.573593\pi\)
−0.801219 + 0.598371i \(0.795815\pi\)
\(828\) 0 0
\(829\) −25.1437 + 9.15156i −0.873277 + 0.317847i −0.739493 0.673164i \(-0.764935\pi\)
−0.133783 + 0.991011i \(0.542713\pi\)
\(830\) −3.58203 4.81150i −0.124334 0.167010i
\(831\) 0 0
\(832\) 4.93674 1.17003i 0.171151 0.0405634i
\(833\) 1.03516 + 2.39977i 0.0358662 + 0.0831472i
\(834\) 0 0
\(835\) 44.3382 + 29.1617i 1.53439 + 1.00918i
\(836\) 13.9673 24.1921i 0.483069 0.836700i
\(837\) 0 0
\(838\) −0.957629 1.65866i −0.0330807 0.0572975i
\(839\) 0.225566 3.87282i 0.00778740 0.133705i −0.992174 0.124867i \(-0.960150\pi\)
0.999961 0.00883795i \(-0.00281324\pi\)
\(840\) 0 0
\(841\) 25.5869 + 2.99068i 0.882306 + 0.103127i
\(842\) −9.84058 10.4304i −0.339129 0.359455i
\(843\) 0 0
\(844\) −17.0602 + 1.99405i −0.587236 + 0.0686380i
\(845\) −6.45643 5.41758i −0.222108 0.186371i
\(846\) 0 0
\(847\) 1.86921 1.56845i 0.0642267 0.0538926i
\(848\) 12.4821 13.2303i 0.428637 0.454329i
\(849\) 0 0
\(850\) 1.62718 + 0.817201i 0.0558119 + 0.0280298i
\(851\) −62.6603 31.4692i −2.14797 1.07875i
\(852\) 0 0
\(853\) 2.36014 2.50160i 0.0808097 0.0856532i −0.685707 0.727878i \(-0.740507\pi\)
0.766517 + 0.642224i \(0.221988\pi\)
\(854\) −0.776573 + 0.651622i −0.0265738 + 0.0222980i
\(855\) 0 0
\(856\) 11.4381 + 9.59772i 0.390947 + 0.328043i
\(857\) 14.5601 1.70183i 0.497362 0.0581333i 0.136286 0.990670i \(-0.456483\pi\)
0.361076 + 0.932536i \(0.382409\pi\)
\(858\) 0 0
\(859\) −6.54336 6.93555i −0.223256 0.236638i 0.606058 0.795421i \(-0.292750\pi\)
−0.829314 + 0.558783i \(0.811269\pi\)
\(860\) 10.8220 + 1.26491i 0.369026 + 0.0431330i
\(861\) 0 0
\(862\) −1.08296 + 18.5938i −0.0368859 + 0.633306i
\(863\) 8.00876 + 13.8716i 0.272621 + 0.472194i 0.969532 0.244964i \(-0.0787760\pi\)
−0.696911 + 0.717158i \(0.745443\pi\)
\(864\) 0 0
\(865\) −27.3732 + 47.4117i −0.930716 + 1.61205i
\(866\) 6.12821 + 4.03059i 0.208245 + 0.136965i
\(867\) 0 0
\(868\) −1.40576 3.25892i −0.0477147 0.110615i
\(869\) 2.48915 0.589939i 0.0844386 0.0200123i
\(870\) 0 0
\(871\) 32.5505 + 43.7229i 1.10293 + 1.48150i
\(872\) 22.3086 8.11966i 0.755464 0.274967i
\(873\) 0 0
\(874\) −15.9184 5.79383i −0.538448 0.195979i
\(875\) −4.08796 13.6547i −0.138198 0.461614i
\(876\) 0 0
\(877\) 1.92577 + 33.0643i 0.0650287 + 1.11650i 0.860147 + 0.510046i \(0.170372\pi\)
−0.795118 + 0.606454i \(0.792591\pi\)
\(878\) −17.4883 + 11.5023i −0.590203 + 0.388182i
\(879\) 0 0
\(880\) −21.0503 4.98902i −0.709607 0.168180i
\(881\) −2.00755 11.3854i −0.0676360 0.383583i −0.999770 0.0214681i \(-0.993166\pi\)
0.932134 0.362115i \(-0.117945\pi\)
\(882\) 0 0
\(883\) −7.24692 + 41.0993i −0.243878 + 1.38310i 0.579206 + 0.815182i \(0.303363\pi\)
−0.823084 + 0.567920i \(0.807748\pi\)
\(884\) 2.47736 5.74317i 0.0833227 0.193164i
\(885\) 0 0
\(886\) −5.59410 + 18.6856i −0.187937 + 0.627755i
\(887\) −14.3927 + 19.3327i −0.483259 + 0.649130i −0.975155 0.221524i \(-0.928897\pi\)
0.491895 + 0.870654i \(0.336304\pi\)
\(888\) 0 0
\(889\) 30.0413 15.0873i 1.00755 0.506013i
\(890\) −21.6198 −0.724697
\(891\) 0 0
\(892\) 7.80468 0.261320
\(893\) 13.7405 6.90072i 0.459807 0.230924i
\(894\) 0 0
\(895\) −17.8534 + 23.9812i −0.596772 + 0.801604i
\(896\) 10.3558 34.5906i 0.345961 1.15559i
\(897\) 0 0
\(898\) 3.94788 9.15221i 0.131742 0.305413i
\(899\) −0.211221 + 1.19789i −0.00704460 + 0.0399519i
\(900\) 0 0
\(901\) −1.36020 7.71410i −0.0453149 0.256994i
\(902\) −12.6108 2.98880i −0.419892 0.0995163i
\(903\) 0 0
\(904\) 10.1580 6.68102i 0.337850 0.222207i
\(905\) −0.138383 2.37595i −0.00460001 0.0789792i
\(906\) 0 0
\(907\) −6.62271 22.1214i −0.219904 0.734529i −0.994746 0.102375i \(-0.967356\pi\)
0.774842 0.632155i \(-0.217829\pi\)
\(908\) −22.2614 8.10250i −0.738771 0.268891i
\(909\) 0 0
\(910\) −19.3305 + 7.03572i −0.640799 + 0.233232i
\(911\) 13.6745 + 18.3680i 0.453055 + 0.608559i 0.968697 0.248246i \(-0.0798540\pi\)
−0.515642 + 0.856804i \(0.672447\pi\)
\(912\) 0 0
\(913\) 12.1544 2.88065i 0.402252 0.0953355i
\(914\) −1.87698 4.35133i −0.0620850 0.143929i
\(915\) 0 0
\(916\) −7.26878 4.78075i −0.240167 0.157961i
\(917\) −11.2088 + 19.4143i −0.370148 + 0.641116i
\(918\) 0 0
\(919\) −9.84136 17.0457i −0.324636 0.562287i 0.656802 0.754063i \(-0.271909\pi\)
−0.981439 + 0.191776i \(0.938575\pi\)
\(920\) −2.16840 + 37.2301i −0.0714902 + 1.22744i
\(921\) 0 0
\(922\) 11.4670 + 1.34030i 0.377645 + 0.0441404i
\(923\) 36.5279 + 38.7173i 1.20233 + 1.27440i
\(924\) 0 0
\(925\) 38.8467 4.54052i 1.27727 0.149292i
\(926\) −1.12588 0.944728i −0.0369988 0.0310457i
\(927\) 0 0
\(928\) −7.45472 + 6.25525i −0.244713 + 0.205339i
\(929\) −19.8444 + 21.0338i −0.651074 + 0.690098i −0.965860 0.259065i \(-0.916586\pi\)
0.314786 + 0.949163i \(0.398067\pi\)
\(930\) 0 0
\(931\) 12.1196 + 6.08669i 0.397204 + 0.199483i
\(932\) 6.67733 + 3.35348i 0.218723 + 0.109847i
\(933\) 0 0
\(934\) −4.76771 + 5.05347i −0.156004 + 0.165355i
\(935\) −7.13679 + 5.98848i −0.233398 + 0.195844i
\(936\) 0 0
\(937\) 14.9990 + 12.5856i 0.489995 + 0.411155i 0.854025 0.520233i \(-0.174155\pi\)
−0.364029 + 0.931388i \(0.618599\pi\)
\(938\) 24.1188 2.81908i 0.787506 0.0920463i
\(939\) 0 0
\(940\) −10.5972 11.2323i −0.345641 0.366358i
\(941\) −10.0278 1.17209i −0.326898 0.0382089i −0.0489390 0.998802i \(-0.515584\pi\)
−0.277959 + 0.960593i \(0.589658\pi\)
\(942\) 0 0
\(943\) 2.37979 40.8595i 0.0774967 1.33057i
\(944\) −5.46032 9.45755i −0.177718 0.307817i
\(945\) 0 0
\(946\) 2.17839 3.77309i 0.0708257 0.122674i
\(947\) 17.5511 + 11.5436i 0.570335 + 0.375115i 0.801677 0.597757i \(-0.203941\pi\)
−0.231342 + 0.972872i \(0.574312\pi\)
\(948\) 0 0
\(949\) 10.6552 + 24.7014i 0.345881 + 0.801843i
\(950\) 9.19419 2.17906i 0.298299 0.0706981i
\(951\) 0 0
\(952\) −3.64733 4.89922i −0.118211 0.158785i
\(953\) −6.34571 + 2.30965i −0.205558 + 0.0748169i −0.442747 0.896647i \(-0.645996\pi\)
0.237189 + 0.971463i \(0.423774\pi\)
\(954\) 0 0
\(955\) 2.08753 + 0.759798i 0.0675508 + 0.0245865i
\(956\) 13.9845 + 46.7114i 0.452290 + 1.51075i
\(957\) 0 0
\(958\) −0.905188 15.5415i −0.0292453 0.502122i
\(959\) −22.5645 + 14.8409i −0.728645 + 0.479237i
\(960\) 0 0
\(961\) −29.7199 7.04375i −0.958706 0.227218i
\(962\) 4.47973 + 25.4058i 0.144432 + 0.819117i
\(963\) 0 0
\(964\) −7.27912 + 41.2819i −0.234445 + 1.32960i
\(965\) −10.7589 + 24.9419i −0.346341 + 0.802909i
\(966\) 0 0
\(967\) −3.38236 + 11.2979i −0.108769 + 0.363315i −0.994993 0.0999421i \(-0.968134\pi\)
0.886224 + 0.463257i \(0.153319\pi\)
\(968\) −0.971882 + 1.30546i −0.0312375 + 0.0419592i
\(969\) 0 0
\(970\) −18.4186 + 9.25019i −0.591387 + 0.297006i
\(971\) −24.4687 −0.785239 −0.392620 0.919701i \(-0.628431\pi\)
−0.392620 + 0.919701i \(0.628431\pi\)
\(972\) 0 0
\(973\) −18.4632 −0.591905
\(974\) −3.05566 + 1.53461i −0.0979096 + 0.0491721i
\(975\) 0 0
\(976\) −0.739699 + 0.993589i −0.0236772 + 0.0318040i
\(977\) 11.1615 37.2820i 0.357088 1.19276i −0.571174 0.820829i \(-0.693512\pi\)
0.928262 0.371927i \(-0.121303\pi\)
\(978\) 0 0
\(979\) 17.8318 41.3387i 0.569907 1.32119i
\(980\) 2.36521 13.4138i 0.0755538 0.428487i
\(981\) 0 0
\(982\) 0.0480294 + 0.272388i 0.00153268 + 0.00869226i
\(983\) −18.2124 4.31641i −0.580885 0.137672i −0.0703395 0.997523i \(-0.522408\pi\)
−0.510545 + 0.859851i \(0.670556\pi\)
\(984\) 0 0
\(985\) −2.71672 + 1.78681i −0.0865618 + 0.0569326i
\(986\) 0.0555250 + 0.953328i 0.00176828 + 0.0303601i
\(987\) 0 0
\(988\) −9.30881 31.0936i −0.296153 0.989219i
\(989\) 12.9292 + 4.70584i 0.411125 + 0.149637i
\(990\) 0 0
\(991\) −2.15353 + 0.783819i −0.0684090 + 0.0248988i −0.375998 0.926620i \(-0.622700\pi\)
0.307589 + 0.951519i \(0.400478\pi\)
\(992\) 2.18238 + 2.93144i 0.0692906 + 0.0930735i
\(993\) 0 0
\(994\) 23.0736 5.46853i 0.731849 0.173451i
\(995\) −8.83352 20.4784i −0.280041 0.649209i
\(996\) 0 0
\(997\) −26.1338 17.1885i −0.827666 0.544365i 0.0635312 0.997980i \(-0.479764\pi\)
−0.891198 + 0.453615i \(0.850134\pi\)
\(998\) −1.55659 + 2.69609i −0.0492729 + 0.0853432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.73.4 144
3.2 odd 2 81.2.g.a.25.5 yes 144
9.2 odd 6 729.2.g.c.703.4 144
9.4 even 3 729.2.g.a.217.5 144
9.5 odd 6 729.2.g.d.217.4 144
9.7 even 3 729.2.g.b.703.5 144
81.13 even 27 inner 243.2.g.a.10.4 144
81.14 odd 54 729.2.g.d.514.4 144
81.16 even 27 6561.2.a.d.1.41 72
81.40 even 27 729.2.g.b.28.5 144
81.41 odd 54 729.2.g.c.28.4 144
81.65 odd 54 6561.2.a.c.1.32 72
81.67 even 27 729.2.g.a.514.5 144
81.68 odd 54 81.2.g.a.13.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.5 144 81.68 odd 54
81.2.g.a.25.5 yes 144 3.2 odd 2
243.2.g.a.10.4 144 81.13 even 27 inner
243.2.g.a.73.4 144 1.1 even 1 trivial
729.2.g.a.217.5 144 9.4 even 3
729.2.g.a.514.5 144 81.67 even 27
729.2.g.b.28.5 144 81.40 even 27
729.2.g.b.703.5 144 9.7 even 3
729.2.g.c.28.4 144 81.41 odd 54
729.2.g.c.703.4 144 9.2 odd 6
729.2.g.d.217.4 144 9.5 odd 6
729.2.g.d.514.4 144 81.14 odd 54
6561.2.a.c.1.32 72 81.65 odd 54
6561.2.a.d.1.41 72 81.16 even 27