Properties

Label 243.2.g.a.73.3
Level $243$
Weight $2$
Character 243.73
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 243.73
Dual form 243.2.g.a.10.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.744407 + 0.373855i) q^{2} +(-0.779943 + 1.04765i) q^{4} +(-0.345929 + 1.15548i) q^{5} +(-0.520803 + 1.20736i) q^{7} +(0.478230 - 2.71217i) q^{8} +(-0.174471 - 0.989477i) q^{10} +(-2.11479 - 0.501215i) q^{11} +(-3.80561 + 2.50299i) q^{13} +(-0.0636874 - 1.09347i) q^{14} +(-0.0912185 - 0.304691i) q^{16} +(-3.54217 - 1.28924i) q^{17} +(-2.50517 + 0.911807i) q^{19} +(-0.940731 - 1.26362i) q^{20} +(1.76165 - 0.417519i) q^{22} +(2.38967 + 5.53988i) q^{23} +(2.96197 + 1.94812i) q^{25} +(1.89717 - 3.28599i) q^{26} +(-0.858686 - 1.48729i) q^{28} +(-0.241756 + 4.15079i) q^{29} +(-7.40674 - 0.865723i) q^{31} +(3.96165 + 4.19911i) q^{32} +(3.11881 - 0.364536i) q^{34} +(-1.21492 - 1.01944i) q^{35} +(7.47819 - 6.27494i) q^{37} +(1.52398 - 1.61533i) q^{38} +(2.96844 + 1.49081i) q^{40} +(-5.17242 - 2.59769i) q^{41} +(3.46904 - 3.67697i) q^{43} +(2.17451 - 1.82463i) q^{44} +(-3.85000 - 3.23053i) q^{46} +(-2.97767 + 0.348040i) q^{47} +(3.61722 + 3.83402i) q^{49} +(-2.93322 - 0.342844i) q^{50} +(0.345914 - 5.93911i) q^{52} +(6.22987 + 10.7905i) q^{53} +(1.31071 - 2.27022i) q^{55} +(3.02550 + 1.98990i) q^{56} +(-1.37183 - 3.18026i) q^{58} +(10.6138 - 2.51552i) q^{59} +(7.04237 + 9.45955i) q^{61} +(5.83728 - 2.12460i) q^{62} +(-3.92120 - 1.42720i) q^{64} +(-1.57569 - 5.26317i) q^{65} +(0.0482665 + 0.828703i) q^{67} +(4.11336 - 2.70540i) q^{68} +(1.28552 + 0.304673i) q^{70} +(-1.25916 - 7.14107i) q^{71} +(-1.41006 + 7.99685i) q^{73} +(-3.22089 + 7.46687i) q^{74} +(0.998639 - 3.33569i) q^{76} +(1.70654 - 2.29228i) q^{77} +(-10.2764 + 5.16099i) q^{79} +0.383620 q^{80} +4.82155 q^{82} +(4.26695 - 2.14294i) q^{83} +(2.71504 - 3.64693i) q^{85} +(-1.20772 + 4.03408i) q^{86} +(-2.37074 + 5.49599i) q^{88} +(-0.578632 + 3.28158i) q^{89} +(-1.04003 - 5.89829i) q^{91} +(-7.66763 - 1.81726i) q^{92} +(2.08648 - 1.37230i) q^{94} +(-0.186967 - 3.21010i) q^{95} +(-0.390985 - 1.30598i) q^{97} +(-4.12605 - 1.50176i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.744407 + 0.373855i −0.526375 + 0.264356i −0.692081 0.721820i \(-0.743306\pi\)
0.165706 + 0.986175i \(0.447010\pi\)
\(3\) 0 0
\(4\) −0.779943 + 1.04765i −0.389972 + 0.523823i
\(5\) −0.345929 + 1.15548i −0.154704 + 0.516747i −0.999842 0.0178015i \(-0.994333\pi\)
0.845137 + 0.534549i \(0.179518\pi\)
\(6\) 0 0
\(7\) −0.520803 + 1.20736i −0.196845 + 0.456338i −0.987838 0.155487i \(-0.950305\pi\)
0.790993 + 0.611825i \(0.209565\pi\)
\(8\) 0.478230 2.71217i 0.169080 0.958899i
\(9\) 0 0
\(10\) −0.174471 0.989477i −0.0551727 0.312900i
\(11\) −2.11479 0.501215i −0.637634 0.151122i −0.100931 0.994893i \(-0.532182\pi\)
−0.536703 + 0.843771i \(0.680330\pi\)
\(12\) 0 0
\(13\) −3.80561 + 2.50299i −1.05549 + 0.694204i −0.953748 0.300607i \(-0.902811\pi\)
−0.101738 + 0.994811i \(0.532440\pi\)
\(14\) −0.0636874 1.09347i −0.0170212 0.292242i
\(15\) 0 0
\(16\) −0.0912185 0.304691i −0.0228046 0.0761727i
\(17\) −3.54217 1.28924i −0.859102 0.312688i −0.125356 0.992112i \(-0.540007\pi\)
−0.733746 + 0.679424i \(0.762230\pi\)
\(18\) 0 0
\(19\) −2.50517 + 0.911807i −0.574725 + 0.209183i −0.612998 0.790084i \(-0.710037\pi\)
0.0382728 + 0.999267i \(0.487814\pi\)
\(20\) −0.940731 1.26362i −0.210354 0.282554i
\(21\) 0 0
\(22\) 1.76165 0.417519i 0.375585 0.0890153i
\(23\) 2.38967 + 5.53988i 0.498281 + 1.15514i 0.962955 + 0.269663i \(0.0869122\pi\)
−0.464674 + 0.885482i \(0.653829\pi\)
\(24\) 0 0
\(25\) 2.96197 + 1.94812i 0.592393 + 0.389623i
\(26\) 1.89717 3.28599i 0.372065 0.644435i
\(27\) 0 0
\(28\) −0.858686 1.48729i −0.162276 0.281071i
\(29\) −0.241756 + 4.15079i −0.0448929 + 0.770782i 0.898473 + 0.439028i \(0.144677\pi\)
−0.943366 + 0.331753i \(0.892360\pi\)
\(30\) 0 0
\(31\) −7.40674 0.865723i −1.33029 0.155488i −0.578927 0.815379i \(-0.696529\pi\)
−0.751362 + 0.659891i \(0.770603\pi\)
\(32\) 3.96165 + 4.19911i 0.700328 + 0.742304i
\(33\) 0 0
\(34\) 3.11881 0.364536i 0.534871 0.0625174i
\(35\) −1.21492 1.01944i −0.205359 0.172317i
\(36\) 0 0
\(37\) 7.47819 6.27494i 1.22941 1.03159i 0.231129 0.972923i \(-0.425758\pi\)
0.998277 0.0586711i \(-0.0186863\pi\)
\(38\) 1.52398 1.61533i 0.247222 0.262040i
\(39\) 0 0
\(40\) 2.96844 + 1.49081i 0.469351 + 0.235717i
\(41\) −5.17242 2.59769i −0.807797 0.405691i −0.00355548 0.999994i \(-0.501132\pi\)
−0.804241 + 0.594303i \(0.797428\pi\)
\(42\) 0 0
\(43\) 3.46904 3.67697i 0.529024 0.560732i −0.406657 0.913581i \(-0.633305\pi\)
0.935680 + 0.352849i \(0.114787\pi\)
\(44\) 2.17451 1.82463i 0.327820 0.275074i
\(45\) 0 0
\(46\) −3.85000 3.23053i −0.567652 0.476316i
\(47\) −2.97767 + 0.348040i −0.434338 + 0.0507669i −0.330453 0.943822i \(-0.607202\pi\)
−0.103885 + 0.994589i \(0.533127\pi\)
\(48\) 0 0
\(49\) 3.61722 + 3.83402i 0.516745 + 0.547718i
\(50\) −2.93322 0.342844i −0.414820 0.0484855i
\(51\) 0 0
\(52\) 0.345914 5.93911i 0.0479696 0.823607i
\(53\) 6.22987 + 10.7905i 0.855739 + 1.48218i 0.875958 + 0.482388i \(0.160230\pi\)
−0.0202187 + 0.999796i \(0.506436\pi\)
\(54\) 0 0
\(55\) 1.31071 2.27022i 0.176737 0.306117i
\(56\) 3.02550 + 1.98990i 0.404300 + 0.265912i
\(57\) 0 0
\(58\) −1.37183 3.18026i −0.180130 0.417588i
\(59\) 10.6138 2.51552i 1.38180 0.327493i 0.528510 0.848927i \(-0.322751\pi\)
0.853292 + 0.521434i \(0.174603\pi\)
\(60\) 0 0
\(61\) 7.04237 + 9.45955i 0.901684 + 1.21117i 0.976834 + 0.213999i \(0.0686490\pi\)
−0.0751502 + 0.997172i \(0.523944\pi\)
\(62\) 5.83728 2.12460i 0.741336 0.269824i
\(63\) 0 0
\(64\) −3.92120 1.42720i −0.490150 0.178400i
\(65\) −1.57569 5.26317i −0.195440 0.652816i
\(66\) 0 0
\(67\) 0.0482665 + 0.828703i 0.00589669 + 0.101242i 0.999972 0.00744893i \(-0.00237109\pi\)
−0.994076 + 0.108691i \(0.965334\pi\)
\(68\) 4.11336 2.70540i 0.498818 0.328078i
\(69\) 0 0
\(70\) 1.28552 + 0.304673i 0.153649 + 0.0364154i
\(71\) −1.25916 7.14107i −0.149435 0.847489i −0.963698 0.266993i \(-0.913970\pi\)
0.814263 0.580496i \(-0.197141\pi\)
\(72\) 0 0
\(73\) −1.41006 + 7.99685i −0.165035 + 0.935960i 0.783993 + 0.620769i \(0.213180\pi\)
−0.949028 + 0.315191i \(0.897931\pi\)
\(74\) −3.22089 + 7.46687i −0.374421 + 0.868006i
\(75\) 0 0
\(76\) 0.998639 3.33569i 0.114552 0.382629i
\(77\) 1.70654 2.29228i 0.194478 0.261229i
\(78\) 0 0
\(79\) −10.2764 + 5.16099i −1.15618 + 0.580657i −0.920334 0.391133i \(-0.872083\pi\)
−0.235849 + 0.971790i \(0.575787\pi\)
\(80\) 0.383620 0.0428900
\(81\) 0 0
\(82\) 4.82155 0.532451
\(83\) 4.26695 2.14294i 0.468358 0.235218i −0.198936 0.980012i \(-0.563749\pi\)
0.667294 + 0.744794i \(0.267452\pi\)
\(84\) 0 0
\(85\) 2.71504 3.64693i 0.294487 0.395565i
\(86\) −1.20772 + 4.03408i −0.130232 + 0.435006i
\(87\) 0 0
\(88\) −2.37074 + 5.49599i −0.252722 + 0.585875i
\(89\) −0.578632 + 3.28158i −0.0613348 + 0.347847i 0.938661 + 0.344842i \(0.112068\pi\)
−0.999995 + 0.00300484i \(0.999044\pi\)
\(90\) 0 0
\(91\) −1.04003 5.89829i −0.109025 0.618309i
\(92\) −7.66763 1.81726i −0.799406 0.189463i
\(93\) 0 0
\(94\) 2.08648 1.37230i 0.215204 0.141542i
\(95\) −0.186967 3.21010i −0.0191824 0.329349i
\(96\) 0 0
\(97\) −0.390985 1.30598i −0.0396985 0.132602i 0.935843 0.352417i \(-0.114640\pi\)
−0.975542 + 0.219814i \(0.929455\pi\)
\(98\) −4.12605 1.50176i −0.416794 0.151701i
\(99\) 0 0
\(100\) −4.35110 + 1.58367i −0.435110 + 0.158367i
\(101\) −1.38233 1.85679i −0.137547 0.184757i 0.728013 0.685564i \(-0.240444\pi\)
−0.865559 + 0.500807i \(0.833037\pi\)
\(102\) 0 0
\(103\) 4.42692 1.04920i 0.436198 0.103381i −0.00664935 0.999978i \(-0.502117\pi\)
0.442847 + 0.896597i \(0.353968\pi\)
\(104\) 4.96858 + 11.5185i 0.487210 + 1.12948i
\(105\) 0 0
\(106\) −8.67163 5.70342i −0.842263 0.553965i
\(107\) −6.14665 + 10.6463i −0.594219 + 1.02922i 0.399438 + 0.916760i \(0.369205\pi\)
−0.993657 + 0.112457i \(0.964128\pi\)
\(108\) 0 0
\(109\) 4.45327 + 7.71330i 0.426546 + 0.738800i 0.996563 0.0828329i \(-0.0263968\pi\)
−0.570017 + 0.821633i \(0.693063\pi\)
\(110\) −0.126970 + 2.17999i −0.0121061 + 0.207854i
\(111\) 0 0
\(112\) 0.415378 + 0.0485507i 0.0392495 + 0.00458761i
\(113\) −11.9342 12.6496i −1.12268 1.18997i −0.979747 0.200238i \(-0.935828\pi\)
−0.142932 0.989733i \(-0.545653\pi\)
\(114\) 0 0
\(115\) −7.22789 + 0.844819i −0.674004 + 0.0787798i
\(116\) −4.16000 3.49065i −0.386246 0.324099i
\(117\) 0 0
\(118\) −6.96056 + 5.84061i −0.640772 + 0.537671i
\(119\) 3.40135 3.60522i 0.311801 0.330490i
\(120\) 0 0
\(121\) −5.60882 2.81686i −0.509893 0.256078i
\(122\) −8.77890 4.40893i −0.794804 0.399166i
\(123\) 0 0
\(124\) 6.68380 7.08442i 0.600223 0.636199i
\(125\) −7.89548 + 6.62509i −0.706193 + 0.592566i
\(126\) 0 0
\(127\) 4.35255 + 3.65222i 0.386226 + 0.324082i 0.815141 0.579263i \(-0.196660\pi\)
−0.428915 + 0.903345i \(0.641104\pi\)
\(128\) −8.01534 + 0.936859i −0.708462 + 0.0828074i
\(129\) 0 0
\(130\) 3.14062 + 3.32886i 0.275450 + 0.291960i
\(131\) −19.3865 2.26596i −1.69381 0.197978i −0.786250 0.617909i \(-0.787980\pi\)
−0.907556 + 0.419931i \(0.862054\pi\)
\(132\) 0 0
\(133\) 0.203823 3.49951i 0.0176737 0.303446i
\(134\) −0.345745 0.598848i −0.0298678 0.0517326i
\(135\) 0 0
\(136\) −5.19062 + 8.99042i −0.445092 + 0.770922i
\(137\) 13.2460 + 8.71204i 1.13168 + 0.744320i 0.970140 0.242546i \(-0.0779825\pi\)
0.161543 + 0.986866i \(0.448353\pi\)
\(138\) 0 0
\(139\) −4.13477 9.58547i −0.350707 0.813029i −0.998680 0.0513663i \(-0.983642\pi\)
0.647973 0.761663i \(-0.275617\pi\)
\(140\) 2.01558 0.477701i 0.170347 0.0403731i
\(141\) 0 0
\(142\) 3.60706 + 4.84512i 0.302697 + 0.406593i
\(143\) 9.30261 3.38587i 0.777923 0.283141i
\(144\) 0 0
\(145\) −4.71253 1.71522i −0.391354 0.142441i
\(146\) −1.94001 6.48007i −0.160556 0.536294i
\(147\) 0 0
\(148\) 0.741356 + 12.7286i 0.0609391 + 1.04628i
\(149\) −2.43554 + 1.60188i −0.199527 + 0.131231i −0.645341 0.763895i \(-0.723285\pi\)
0.445814 + 0.895126i \(0.352914\pi\)
\(150\) 0 0
\(151\) −12.4159 2.94262i −1.01039 0.239467i −0.308098 0.951355i \(-0.599692\pi\)
−0.702293 + 0.711888i \(0.747840\pi\)
\(152\) 1.27493 + 7.23051i 0.103411 + 0.586472i
\(153\) 0 0
\(154\) −0.413378 + 2.34439i −0.0333110 + 0.188916i
\(155\) 3.56253 8.25887i 0.286149 0.663369i
\(156\) 0 0
\(157\) 0.364422 1.21726i 0.0290841 0.0971476i −0.942215 0.335008i \(-0.891261\pi\)
0.971299 + 0.237861i \(0.0764461\pi\)
\(158\) 5.72035 7.68376i 0.455086 0.611287i
\(159\) 0 0
\(160\) −6.22244 + 3.12503i −0.491927 + 0.247055i
\(161\) −7.93316 −0.625221
\(162\) 0 0
\(163\) 12.3636 0.968391 0.484195 0.874960i \(-0.339112\pi\)
0.484195 + 0.874960i \(0.339112\pi\)
\(164\) 6.75565 3.39282i 0.527528 0.264934i
\(165\) 0 0
\(166\) −2.37520 + 3.19044i −0.184351 + 0.247626i
\(167\) 1.09374 3.65334i 0.0846359 0.282704i −0.905186 0.425016i \(-0.860269\pi\)
0.989822 + 0.142312i \(0.0454537\pi\)
\(168\) 0 0
\(169\) 3.06867 7.11397i 0.236051 0.547228i
\(170\) −0.657669 + 3.72983i −0.0504409 + 0.286065i
\(171\) 0 0
\(172\) 1.14650 + 6.50215i 0.0874201 + 0.495784i
\(173\) 23.4213 + 5.55096i 1.78069 + 0.422031i 0.983383 0.181542i \(-0.0581089\pi\)
0.797307 + 0.603574i \(0.206257\pi\)
\(174\) 0 0
\(175\) −3.89467 + 2.56157i −0.294410 + 0.193636i
\(176\) 0.0401925 + 0.690078i 0.00302962 + 0.0520166i
\(177\) 0 0
\(178\) −0.796100 2.65916i −0.0596702 0.199312i
\(179\) −5.95691 2.16814i −0.445240 0.162054i 0.109664 0.993969i \(-0.465023\pi\)
−0.554904 + 0.831915i \(0.687245\pi\)
\(180\) 0 0
\(181\) −5.82014 + 2.11836i −0.432608 + 0.157456i −0.549140 0.835731i \(-0.685045\pi\)
0.116532 + 0.993187i \(0.462822\pi\)
\(182\) 2.97931 + 4.00191i 0.220841 + 0.296641i
\(183\) 0 0
\(184\) 16.1679 3.83187i 1.19192 0.282489i
\(185\) 4.66367 + 10.8116i 0.342880 + 0.794884i
\(186\) 0 0
\(187\) 6.84476 + 4.50187i 0.500539 + 0.329210i
\(188\) 1.95779 3.39100i 0.142787 0.247314i
\(189\) 0 0
\(190\) 1.33929 + 2.31972i 0.0971625 + 0.168290i
\(191\) 0.392632 6.74123i 0.0284098 0.487778i −0.953854 0.300272i \(-0.902923\pi\)
0.982263 0.187506i \(-0.0600404\pi\)
\(192\) 0 0
\(193\) 15.8040 + 1.84722i 1.13759 + 0.132966i 0.663969 0.747761i \(-0.268871\pi\)
0.473626 + 0.880726i \(0.342945\pi\)
\(194\) 0.779300 + 0.826010i 0.0559505 + 0.0593041i
\(195\) 0 0
\(196\) −6.83792 + 0.799238i −0.488423 + 0.0570884i
\(197\) 8.88023 + 7.45140i 0.632690 + 0.530890i 0.901764 0.432229i \(-0.142273\pi\)
−0.269073 + 0.963120i \(0.586717\pi\)
\(198\) 0 0
\(199\) 3.29385 2.76387i 0.233495 0.195925i −0.518531 0.855059i \(-0.673521\pi\)
0.752026 + 0.659133i \(0.229077\pi\)
\(200\) 6.70013 7.10172i 0.473771 0.502168i
\(201\) 0 0
\(202\) 1.72318 + 0.865416i 0.121243 + 0.0608904i
\(203\) −4.88558 2.45363i −0.342900 0.172211i
\(204\) 0 0
\(205\) 4.79087 5.07803i 0.334609 0.354665i
\(206\) −2.90318 + 2.43606i −0.202274 + 0.169728i
\(207\) 0 0
\(208\) 1.10978 + 0.931215i 0.0769493 + 0.0645682i
\(209\) 5.75493 0.672654i 0.398077 0.0465285i
\(210\) 0 0
\(211\) −9.80038 10.3878i −0.674686 0.715126i 0.296077 0.955164i \(-0.404321\pi\)
−0.970763 + 0.240038i \(0.922840\pi\)
\(212\) −16.1635 1.88924i −1.11012 0.129754i
\(213\) 0 0
\(214\) 0.595430 10.2231i 0.0407028 0.698840i
\(215\) 3.04863 + 5.28038i 0.207915 + 0.360119i
\(216\) 0 0
\(217\) 4.90269 8.49171i 0.332816 0.576455i
\(218\) −6.19871 4.07695i −0.419829 0.276126i
\(219\) 0 0
\(220\) 1.35611 + 3.14381i 0.0914286 + 0.211955i
\(221\) 16.7071 3.95965i 1.12384 0.266355i
\(222\) 0 0
\(223\) −12.0568 16.1950i −0.807381 1.08450i −0.994762 0.102214i \(-0.967408\pi\)
0.187382 0.982287i \(-0.440000\pi\)
\(224\) −7.13306 + 2.59622i −0.476598 + 0.173467i
\(225\) 0 0
\(226\) 13.6130 + 4.95474i 0.905526 + 0.329585i
\(227\) 0.781091 + 2.60903i 0.0518428 + 0.173167i 0.979990 0.199046i \(-0.0637843\pi\)
−0.928147 + 0.372213i \(0.878599\pi\)
\(228\) 0 0
\(229\) −0.0887613 1.52397i −0.00586551 0.100707i 0.994105 0.108424i \(-0.0345805\pi\)
−0.999970 + 0.00771732i \(0.997543\pi\)
\(230\) 5.06465 3.33107i 0.333953 0.219645i
\(231\) 0 0
\(232\) 11.1420 + 2.64071i 0.731511 + 0.173371i
\(233\) 1.13347 + 6.42825i 0.0742563 + 0.421128i 0.999162 + 0.0409317i \(0.0130326\pi\)
−0.924906 + 0.380197i \(0.875856\pi\)
\(234\) 0 0
\(235\) 0.627909 3.56105i 0.0409602 0.232297i
\(236\) −5.64280 + 13.0815i −0.367315 + 0.851532i
\(237\) 0 0
\(238\) −1.18416 + 3.95536i −0.0767576 + 0.256388i
\(239\) 10.0905 13.5539i 0.652702 0.876731i −0.345391 0.938459i \(-0.612254\pi\)
0.998093 + 0.0617275i \(0.0196610\pi\)
\(240\) 0 0
\(241\) −11.2588 + 5.65439i −0.725244 + 0.364231i −0.772811 0.634637i \(-0.781150\pi\)
0.0475663 + 0.998868i \(0.484853\pi\)
\(242\) 5.22835 0.336091
\(243\) 0 0
\(244\) −15.4029 −0.986070
\(245\) −5.68145 + 2.85333i −0.362974 + 0.182293i
\(246\) 0 0
\(247\) 7.25145 9.74038i 0.461399 0.619766i
\(248\) −5.89011 + 19.6743i −0.374023 + 1.24932i
\(249\) 0 0
\(250\) 3.40062 7.88353i 0.215074 0.498598i
\(251\) 4.48052 25.4103i 0.282808 1.60388i −0.430204 0.902732i \(-0.641558\pi\)
0.713012 0.701152i \(-0.247331\pi\)
\(252\) 0 0
\(253\) −2.27699 12.9134i −0.143153 0.811861i
\(254\) −4.60547 1.09152i −0.288973 0.0684878i
\(255\) 0 0
\(256\) 12.5892 8.28002i 0.786822 0.517501i
\(257\) 0.841489 + 14.4478i 0.0524906 + 0.901229i 0.917068 + 0.398730i \(0.130549\pi\)
−0.864578 + 0.502499i \(0.832414\pi\)
\(258\) 0 0
\(259\) 3.68144 + 12.2969i 0.228753 + 0.764089i
\(260\) 6.74288 + 2.45421i 0.418176 + 0.152204i
\(261\) 0 0
\(262\) 15.2786 5.56095i 0.943914 0.343557i
\(263\) 6.24306 + 8.38588i 0.384963 + 0.517096i 0.951794 0.306739i \(-0.0992379\pi\)
−0.566830 + 0.823835i \(0.691830\pi\)
\(264\) 0 0
\(265\) −14.6233 + 3.46578i −0.898301 + 0.212901i
\(266\) 1.15658 + 2.68126i 0.0709146 + 0.164398i
\(267\) 0 0
\(268\) −0.905832 0.595775i −0.0553325 0.0363928i
\(269\) −0.105374 + 0.182513i −0.00642476 + 0.0111280i −0.869220 0.494426i \(-0.835378\pi\)
0.862795 + 0.505554i \(0.168712\pi\)
\(270\) 0 0
\(271\) 5.70846 + 9.88735i 0.346765 + 0.600614i 0.985673 0.168669i \(-0.0539470\pi\)
−0.638908 + 0.769283i \(0.720614\pi\)
\(272\) −0.0697097 + 1.19687i −0.00422677 + 0.0725708i
\(273\) 0 0
\(274\) −13.1175 1.53321i −0.792455 0.0926247i
\(275\) −5.28752 5.60444i −0.318850 0.337961i
\(276\) 0 0
\(277\) 11.0740 1.29437i 0.665375 0.0777712i 0.223301 0.974750i \(-0.428317\pi\)
0.442074 + 0.896978i \(0.354243\pi\)
\(278\) 6.66153 + 5.58969i 0.399532 + 0.335247i
\(279\) 0 0
\(280\) −3.34591 + 2.80755i −0.199956 + 0.167783i
\(281\) −14.8936 + 15.7863i −0.888478 + 0.941732i −0.998638 0.0521821i \(-0.983382\pi\)
0.110159 + 0.993914i \(0.464864\pi\)
\(282\) 0 0
\(283\) −0.264982 0.133079i −0.0157515 0.00791072i 0.440906 0.897553i \(-0.354657\pi\)
−0.456658 + 0.889643i \(0.650954\pi\)
\(284\) 8.46338 + 4.25047i 0.502209 + 0.252219i
\(285\) 0 0
\(286\) −5.65910 + 5.99830i −0.334630 + 0.354687i
\(287\) 5.83015 4.89208i 0.344143 0.288770i
\(288\) 0 0
\(289\) −2.13795 1.79396i −0.125762 0.105527i
\(290\) 4.14929 0.484982i 0.243654 0.0284791i
\(291\) 0 0
\(292\) −7.27809 7.71433i −0.425918 0.451447i
\(293\) −14.4085 1.68412i −0.841755 0.0983871i −0.315723 0.948852i \(-0.602247\pi\)
−0.526032 + 0.850464i \(0.676321\pi\)
\(294\) 0 0
\(295\) −0.764985 + 13.1343i −0.0445391 + 0.764707i
\(296\) −13.4425 23.2830i −0.781327 1.35330i
\(297\) 0 0
\(298\) 1.21416 2.10299i 0.0703346 0.121823i
\(299\) −22.9604 15.1013i −1.32783 0.873330i
\(300\) 0 0
\(301\) 2.63273 + 6.10335i 0.151748 + 0.351791i
\(302\) 10.3426 2.45124i 0.595149 0.141053i
\(303\) 0 0
\(304\) 0.506337 + 0.680128i 0.0290404 + 0.0390080i
\(305\) −13.3665 + 4.86501i −0.765364 + 0.278570i
\(306\) 0 0
\(307\) −3.56052 1.29592i −0.203210 0.0739622i 0.238410 0.971165i \(-0.423374\pi\)
−0.441620 + 0.897202i \(0.645596\pi\)
\(308\) 1.07049 + 3.57569i 0.0609969 + 0.203744i
\(309\) 0 0
\(310\) 0.435651 + 7.47984i 0.0247433 + 0.424826i
\(311\) 10.3012 6.77519i 0.584126 0.384186i −0.222777 0.974869i \(-0.571512\pi\)
0.806903 + 0.590684i \(0.201142\pi\)
\(312\) 0 0
\(313\) 6.62237 + 1.56953i 0.374319 + 0.0887151i 0.413469 0.910518i \(-0.364317\pi\)
−0.0391504 + 0.999233i \(0.512465\pi\)
\(314\) 0.183799 + 1.04238i 0.0103724 + 0.0588246i
\(315\) 0 0
\(316\) 2.60810 14.7913i 0.146717 0.832074i
\(317\) 5.91605 13.7150i 0.332279 0.770309i −0.667394 0.744705i \(-0.732590\pi\)
0.999672 0.0256033i \(-0.00815067\pi\)
\(318\) 0 0
\(319\) 2.59170 8.65688i 0.145107 0.484692i
\(320\) 3.00556 4.03717i 0.168016 0.225684i
\(321\) 0 0
\(322\) 5.90550 2.96585i 0.329101 0.165281i
\(323\) 10.0493 0.559156
\(324\) 0 0
\(325\) −16.1482 −0.895740
\(326\) −9.20354 + 4.62219i −0.509737 + 0.256000i
\(327\) 0 0
\(328\) −9.51899 + 12.7862i −0.525598 + 0.706001i
\(329\) 1.13057 3.77638i 0.0623305 0.208198i
\(330\) 0 0
\(331\) −1.46304 + 3.39172i −0.0804162 + 0.186426i −0.953681 0.300821i \(-0.902739\pi\)
0.873265 + 0.487246i \(0.161999\pi\)
\(332\) −1.08293 + 6.14162i −0.0594337 + 0.337065i
\(333\) 0 0
\(334\) 0.551633 + 3.12847i 0.0301840 + 0.171182i
\(335\) −0.974249 0.230901i −0.0532289 0.0126155i
\(336\) 0 0
\(337\) −15.4103 + 10.1355i −0.839450 + 0.552115i −0.894859 0.446349i \(-0.852724\pi\)
0.0554092 + 0.998464i \(0.482354\pi\)
\(338\) 0.375258 + 6.44292i 0.0204113 + 0.350449i
\(339\) 0 0
\(340\) 1.70311 + 5.68879i 0.0923642 + 0.308518i
\(341\) 15.2298 + 5.54319i 0.824740 + 0.300181i
\(342\) 0 0
\(343\) −15.1621 + 5.51854i −0.818675 + 0.297973i
\(344\) −8.31358 11.1671i −0.448238 0.602089i
\(345\) 0 0
\(346\) −19.5103 + 4.62402i −1.04888 + 0.248589i
\(347\) 13.3067 + 30.8484i 0.714341 + 1.65603i 0.754049 + 0.656818i \(0.228098\pi\)
−0.0397080 + 0.999211i \(0.512643\pi\)
\(348\) 0 0
\(349\) 27.5190 + 18.0995i 1.47306 + 0.968844i 0.995941 + 0.0900033i \(0.0286878\pi\)
0.477115 + 0.878841i \(0.341683\pi\)
\(350\) 1.94157 3.36289i 0.103781 0.179754i
\(351\) 0 0
\(352\) −6.27342 10.8659i −0.334374 0.579154i
\(353\) 0.775734 13.3188i 0.0412881 0.708890i −0.912623 0.408802i \(-0.865947\pi\)
0.953911 0.300088i \(-0.0970162\pi\)
\(354\) 0 0
\(355\) 8.68696 + 1.01536i 0.461056 + 0.0538897i
\(356\) −2.98664 3.16565i −0.158291 0.167779i
\(357\) 0 0
\(358\) 5.24493 0.613045i 0.277203 0.0324004i
\(359\) −6.91454 5.80199i −0.364936 0.306217i 0.441819 0.897104i \(-0.354333\pi\)
−0.806754 + 0.590887i \(0.798778\pi\)
\(360\) 0 0
\(361\) −9.11037 + 7.64450i −0.479493 + 0.402342i
\(362\) 3.54060 3.75281i 0.186090 0.197243i
\(363\) 0 0
\(364\) 6.99048 + 3.51075i 0.366401 + 0.184013i
\(365\) −8.75244 4.39564i −0.458124 0.230078i
\(366\) 0 0
\(367\) −17.5705 + 18.6236i −0.917171 + 0.972145i −0.999701 0.0244437i \(-0.992219\pi\)
0.0825298 + 0.996589i \(0.473700\pi\)
\(368\) 1.46997 1.23345i 0.0766274 0.0642980i
\(369\) 0 0
\(370\) −7.51364 6.30469i −0.390616 0.327765i
\(371\) −16.2725 + 1.90198i −0.844825 + 0.0987459i
\(372\) 0 0
\(373\) 15.0065 + 15.9060i 0.777008 + 0.823580i 0.988088 0.153888i \(-0.0491796\pi\)
−0.211080 + 0.977469i \(0.567698\pi\)
\(374\) −6.77834 0.792274i −0.350500 0.0409675i
\(375\) 0 0
\(376\) −0.480066 + 8.24241i −0.0247575 + 0.425070i
\(377\) −9.46934 16.4014i −0.487696 0.844714i
\(378\) 0 0
\(379\) −5.26717 + 9.12300i −0.270556 + 0.468617i −0.969004 0.247043i \(-0.920541\pi\)
0.698448 + 0.715661i \(0.253874\pi\)
\(380\) 3.50887 + 2.30782i 0.180001 + 0.118389i
\(381\) 0 0
\(382\) 2.22797 + 5.16500i 0.113993 + 0.264265i
\(383\) −21.2791 + 5.04324i −1.08731 + 0.257698i −0.734919 0.678154i \(-0.762780\pi\)
−0.352393 + 0.935852i \(0.614632\pi\)
\(384\) 0 0
\(385\) 2.05835 + 2.76484i 0.104903 + 0.140909i
\(386\) −12.4552 + 4.53331i −0.633952 + 0.230740i
\(387\) 0 0
\(388\) 1.67315 + 0.608977i 0.0849414 + 0.0309161i
\(389\) 6.99531 + 23.3660i 0.354676 + 1.18470i 0.930242 + 0.366946i \(0.119597\pi\)
−0.575566 + 0.817755i \(0.695218\pi\)
\(390\) 0 0
\(391\) −1.32236 22.7040i −0.0668746 1.14819i
\(392\) 12.1284 7.97698i 0.612577 0.402898i
\(393\) 0 0
\(394\) −9.39625 2.22695i −0.473376 0.112192i
\(395\) −2.40854 13.6595i −0.121187 0.687285i
\(396\) 0 0
\(397\) 4.16728 23.6338i 0.209150 1.18615i −0.681625 0.731702i \(-0.738726\pi\)
0.890775 0.454445i \(-0.150163\pi\)
\(398\) −1.41868 + 3.28887i −0.0711119 + 0.164856i
\(399\) 0 0
\(400\) 0.323387 1.08019i 0.0161694 0.0540094i
\(401\) 22.0434 29.6094i 1.10079 1.47862i 0.239235 0.970962i \(-0.423103\pi\)
0.861558 0.507660i \(-0.169489\pi\)
\(402\) 0 0
\(403\) 30.3540 15.2444i 1.51204 0.759376i
\(404\) 3.02339 0.150419
\(405\) 0 0
\(406\) 4.55416 0.226019
\(407\) −18.9599 + 9.52203i −0.939808 + 0.471989i
\(408\) 0 0
\(409\) −1.70501 + 2.29023i −0.0843075 + 0.113245i −0.842276 0.539047i \(-0.818785\pi\)
0.757968 + 0.652291i \(0.226192\pi\)
\(410\) −1.66791 + 5.57121i −0.0823723 + 0.275143i
\(411\) 0 0
\(412\) −2.35356 + 5.45616i −0.115952 + 0.268806i
\(413\) −2.49058 + 14.1248i −0.122553 + 0.695035i
\(414\) 0 0
\(415\) 1.00007 + 5.67169i 0.0490916 + 0.278412i
\(416\) −25.5868 6.06418i −1.25450 0.297321i
\(417\) 0 0
\(418\) −4.03253 + 2.65224i −0.197238 + 0.129725i
\(419\) 1.99872 + 34.3166i 0.0976437 + 1.67648i 0.591016 + 0.806660i \(0.298727\pi\)
−0.493372 + 0.869818i \(0.664236\pi\)
\(420\) 0 0
\(421\) −1.79299 5.98899i −0.0873849 0.291886i 0.903115 0.429398i \(-0.141274\pi\)
−0.990500 + 0.137513i \(0.956089\pi\)
\(422\) 11.1790 + 4.06883i 0.544186 + 0.198067i
\(423\) 0 0
\(424\) 32.2449 11.7362i 1.56595 0.569960i
\(425\) −7.98018 10.7192i −0.387096 0.519960i
\(426\) 0 0
\(427\) −15.0887 + 3.57610i −0.730196 + 0.173060i
\(428\) −6.35952 14.7430i −0.307399 0.712631i
\(429\) 0 0
\(430\) −4.24352 2.79101i −0.204641 0.134594i
\(431\) 1.50862 2.61301i 0.0726679 0.125864i −0.827402 0.561610i \(-0.810182\pi\)
0.900070 + 0.435746i \(0.143515\pi\)
\(432\) 0 0
\(433\) −15.3659 26.6146i −0.738439 1.27901i −0.953198 0.302347i \(-0.902230\pi\)
0.214759 0.976667i \(-0.431104\pi\)
\(434\) −0.474927 + 8.15418i −0.0227972 + 0.391413i
\(435\) 0 0
\(436\) −11.5541 1.35048i −0.553341 0.0646763i
\(437\) −11.0378 11.6994i −0.528011 0.559659i
\(438\) 0 0
\(439\) −0.454536 + 0.0531276i −0.0216938 + 0.00253564i −0.126933 0.991911i \(-0.540513\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(440\) −5.53042 4.64057i −0.263652 0.221231i
\(441\) 0 0
\(442\) −10.9565 + 9.19361i −0.521148 + 0.437296i
\(443\) −23.9557 + 25.3916i −1.13817 + 1.20639i −0.162602 + 0.986692i \(0.551989\pi\)
−0.975568 + 0.219698i \(0.929493\pi\)
\(444\) 0 0
\(445\) −3.59165 1.80379i −0.170260 0.0855080i
\(446\) 15.0297 + 7.54822i 0.711679 + 0.357419i
\(447\) 0 0
\(448\) 3.76531 3.99100i 0.177894 0.188557i
\(449\) 5.48196 4.59991i 0.258710 0.217083i −0.504202 0.863586i \(-0.668213\pi\)
0.762912 + 0.646502i \(0.223769\pi\)
\(450\) 0 0
\(451\) 9.63661 + 8.08607i 0.453770 + 0.380758i
\(452\) 22.5603 2.63692i 1.06115 0.124030i
\(453\) 0 0
\(454\) −1.55685 1.65016i −0.0730665 0.0774459i
\(455\) 7.17515 + 0.838655i 0.336376 + 0.0393167i
\(456\) 0 0
\(457\) 0.737417 12.6610i 0.0344949 0.592255i −0.936130 0.351655i \(-0.885619\pi\)
0.970625 0.240599i \(-0.0773440\pi\)
\(458\) 0.635820 + 1.10127i 0.0297099 + 0.0514591i
\(459\) 0 0
\(460\) 4.75227 8.23117i 0.221576 0.383780i
\(461\) 0.385841 + 0.253772i 0.0179704 + 0.0118193i 0.558462 0.829530i \(-0.311392\pi\)
−0.540492 + 0.841349i \(0.681762\pi\)
\(462\) 0 0
\(463\) 14.6949 + 34.0667i 0.682931 + 1.58321i 0.806740 + 0.590906i \(0.201230\pi\)
−0.123809 + 0.992306i \(0.539511\pi\)
\(464\) 1.28676 0.304968i 0.0597363 0.0141578i
\(465\) 0 0
\(466\) −3.24700 4.36148i −0.150414 0.202042i
\(467\) 25.8480 9.40792i 1.19611 0.435347i 0.334242 0.942487i \(-0.391520\pi\)
0.861863 + 0.507141i \(0.169298\pi\)
\(468\) 0 0
\(469\) −1.02568 0.373316i −0.0473614 0.0172381i
\(470\) 0.863897 + 2.88562i 0.0398486 + 0.133104i
\(471\) 0 0
\(472\) −1.74669 29.9895i −0.0803980 1.38038i
\(473\) −9.17926 + 6.03729i −0.422063 + 0.277595i
\(474\) 0 0
\(475\) −9.19653 2.17962i −0.421966 0.100008i
\(476\) 1.12413 + 6.37527i 0.0515245 + 0.292210i
\(477\) 0 0
\(478\) −2.44425 + 13.8620i −0.111798 + 0.634035i
\(479\) 5.64829 13.0942i 0.258077 0.598290i −0.739082 0.673616i \(-0.764740\pi\)
0.997159 + 0.0753257i \(0.0239996\pi\)
\(480\) 0 0
\(481\) −12.7529 + 42.5978i −0.581484 + 1.94229i
\(482\) 6.26722 8.41834i 0.285464 0.383445i
\(483\) 0 0
\(484\) 7.32563 3.67907i 0.332983 0.167230i
\(485\) 1.64429 0.0746634
\(486\) 0 0
\(487\) 9.07752 0.411342 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(488\) 29.0238 14.5763i 1.31385 0.659839i
\(489\) 0 0
\(490\) 3.16258 4.24808i 0.142871 0.191909i
\(491\) −7.99691 + 26.7115i −0.360896 + 1.20548i 0.564167 + 0.825661i \(0.309197\pi\)
−0.925063 + 0.379815i \(0.875988\pi\)
\(492\) 0 0
\(493\) 6.20771 14.3911i 0.279581 0.648142i
\(494\) −1.75653 + 9.96180i −0.0790302 + 0.448203i
\(495\) 0 0
\(496\) 0.411853 + 2.33573i 0.0184927 + 0.104878i
\(497\) 9.27760 + 2.19883i 0.416157 + 0.0986310i
\(498\) 0 0
\(499\) 19.8773 13.0735i 0.889828 0.585249i −0.0202000 0.999796i \(-0.506430\pi\)
0.910028 + 0.414547i \(0.136060\pi\)
\(500\) −0.782724 13.4389i −0.0350045 0.601004i
\(501\) 0 0
\(502\) 6.16444 + 20.5907i 0.275133 + 0.919007i
\(503\) −7.57016 2.75531i −0.337537 0.122853i 0.167690 0.985840i \(-0.446369\pi\)
−0.505227 + 0.862986i \(0.668591\pi\)
\(504\) 0 0
\(505\) 2.62367 0.954939i 0.116752 0.0424942i
\(506\) 6.52276 + 8.76159i 0.289972 + 0.389500i
\(507\) 0 0
\(508\) −7.22097 + 1.71140i −0.320379 + 0.0759311i
\(509\) 7.64624 + 17.7260i 0.338914 + 0.785690i 0.999393 + 0.0348457i \(0.0110940\pi\)
−0.660479 + 0.750844i \(0.729647\pi\)
\(510\) 0 0
\(511\) −8.92069 5.86723i −0.394628 0.259551i
\(512\) 1.79397 3.10725i 0.0792832 0.137323i
\(513\) 0 0
\(514\) −6.02780 10.4405i −0.265875 0.460509i
\(515\) −0.319068 + 5.47818i −0.0140598 + 0.241398i
\(516\) 0 0
\(517\) 6.47161 + 0.756422i 0.284621 + 0.0332674i
\(518\) −7.33773 7.77754i −0.322401 0.341725i
\(519\) 0 0
\(520\) −15.0282 + 1.75654i −0.659029 + 0.0770294i
\(521\) −2.04454 1.71557i −0.0895727 0.0751604i 0.596902 0.802314i \(-0.296398\pi\)
−0.686474 + 0.727154i \(0.740843\pi\)
\(522\) 0 0
\(523\) 11.7693 9.87562i 0.514636 0.431831i −0.348121 0.937450i \(-0.613180\pi\)
0.862757 + 0.505619i \(0.168736\pi\)
\(524\) 17.4943 18.5429i 0.764241 0.810048i
\(525\) 0 0
\(526\) −7.78248 3.90851i −0.339332 0.170419i
\(527\) 25.1198 + 12.6156i 1.09423 + 0.549545i
\(528\) 0 0
\(529\) −9.19617 + 9.74738i −0.399834 + 0.423799i
\(530\) 9.58997 8.04694i 0.416562 0.349537i
\(531\) 0 0
\(532\) 3.50727 + 2.94295i 0.152059 + 0.127593i
\(533\) 26.1862 3.06073i 1.13425 0.132575i
\(534\) 0 0
\(535\) −10.1753 10.7852i −0.439917 0.466285i
\(536\) 2.27067 + 0.265403i 0.0980780 + 0.0114637i
\(537\) 0 0
\(538\) 0.0102077 0.175259i 0.000440083 0.00755594i
\(539\) −5.72799 9.92117i −0.246722 0.427335i
\(540\) 0 0
\(541\) 9.39421 16.2713i 0.403889 0.699556i −0.590303 0.807182i \(-0.700992\pi\)
0.994191 + 0.107626i \(0.0343250\pi\)
\(542\) −7.94586 5.22607i −0.341304 0.224479i
\(543\) 0 0
\(544\) −8.61917 19.9815i −0.369544 0.856699i
\(545\) −10.4531 + 2.47743i −0.447761 + 0.106121i
\(546\) 0 0
\(547\) −6.84395 9.19302i −0.292626 0.393065i 0.631361 0.775489i \(-0.282497\pi\)
−0.923987 + 0.382424i \(0.875089\pi\)
\(548\) −19.4583 + 7.08223i −0.831216 + 0.302538i
\(549\) 0 0
\(550\) 6.03132 + 2.19522i 0.257176 + 0.0936045i
\(551\) −3.17908 10.6189i −0.135433 0.452378i
\(552\) 0 0
\(553\) −0.879191 15.0951i −0.0373870 0.641910i
\(554\) −7.75969 + 5.10363i −0.329678 + 0.216832i
\(555\) 0 0
\(556\) 13.2671 + 3.14435i 0.562649 + 0.133350i
\(557\) −4.33665 24.5943i −0.183750 1.04210i −0.927551 0.373695i \(-0.878091\pi\)
0.743802 0.668400i \(-0.233021\pi\)
\(558\) 0 0
\(559\) −3.99840 + 22.6761i −0.169114 + 0.959095i
\(560\) −0.199791 + 0.463167i −0.00844269 + 0.0195724i
\(561\) 0 0
\(562\) 5.18511 17.3195i 0.218721 0.730579i
\(563\) 10.4988 14.1023i 0.442471 0.594341i −0.523809 0.851836i \(-0.675489\pi\)
0.966280 + 0.257494i \(0.0828969\pi\)
\(564\) 0 0
\(565\) 18.7447 9.41396i 0.788597 0.396048i
\(566\) 0.247007 0.0103825
\(567\) 0 0
\(568\) −19.9700 −0.837922
\(569\) −14.2884 + 7.17589i −0.599000 + 0.300829i −0.722343 0.691535i \(-0.756935\pi\)
0.123343 + 0.992364i \(0.460638\pi\)
\(570\) 0 0
\(571\) 6.16873 8.28604i 0.258153 0.346760i −0.654084 0.756422i \(-0.726946\pi\)
0.912238 + 0.409662i \(0.134353\pi\)
\(572\) −3.70831 + 12.3866i −0.155052 + 0.517911i
\(573\) 0 0
\(574\) −2.51108 + 5.82133i −0.104810 + 0.242978i
\(575\) −3.71420 + 21.0643i −0.154893 + 0.878441i
\(576\) 0 0
\(577\) 6.79785 + 38.5525i 0.282998 + 1.60496i 0.712349 + 0.701825i \(0.247631\pi\)
−0.429351 + 0.903138i \(0.641258\pi\)
\(578\) 2.26219 + 0.536148i 0.0940946 + 0.0223008i
\(579\) 0 0
\(580\) 5.47245 3.59929i 0.227231 0.149452i
\(581\) 0.365057 + 6.26778i 0.0151451 + 0.260031i
\(582\) 0 0
\(583\) −7.76656 25.9421i −0.321658 1.07441i
\(584\) 21.0145 + 7.64866i 0.869587 + 0.316504i
\(585\) 0 0
\(586\) 11.3554 4.13304i 0.469088 0.170734i
\(587\) 10.6305 + 14.2792i 0.438766 + 0.589365i 0.965415 0.260718i \(-0.0839592\pi\)
−0.526649 + 0.850083i \(0.676552\pi\)
\(588\) 0 0
\(589\) 19.3445 4.58473i 0.797076 0.188910i
\(590\) −4.34086 10.0632i −0.178710 0.414297i
\(591\) 0 0
\(592\) −2.59407 1.70614i −0.106615 0.0701221i
\(593\) −6.92687 + 11.9977i −0.284452 + 0.492686i −0.972476 0.233002i \(-0.925145\pi\)
0.688024 + 0.725688i \(0.258478\pi\)
\(594\) 0 0
\(595\) 2.98914 + 5.17735i 0.122543 + 0.212251i
\(596\) 0.221381 3.80096i 0.00906811 0.155693i
\(597\) 0 0
\(598\) 22.7376 + 2.65764i 0.929809 + 0.108679i
\(599\) 2.48356 + 2.63242i 0.101475 + 0.107558i 0.776121 0.630585i \(-0.217185\pi\)
−0.674645 + 0.738142i \(0.735703\pi\)
\(600\) 0 0
\(601\) 10.3128 1.20539i 0.420667 0.0491689i 0.0968736 0.995297i \(-0.469116\pi\)
0.323794 + 0.946128i \(0.395042\pi\)
\(602\) −4.24159 3.55912i −0.172874 0.145059i
\(603\) 0 0
\(604\) 12.7665 10.7124i 0.519462 0.435880i
\(605\) 5.19508 5.50647i 0.211210 0.223870i
\(606\) 0 0
\(607\) 12.0040 + 6.02866i 0.487229 + 0.244696i 0.675415 0.737438i \(-0.263964\pi\)
−0.188186 + 0.982133i \(0.560261\pi\)
\(608\) −13.7534 6.90721i −0.557773 0.280124i
\(609\) 0 0
\(610\) 8.13131 8.61869i 0.329227 0.348960i
\(611\) 10.4607 8.77758i 0.423195 0.355103i
\(612\) 0 0
\(613\) 22.2652 + 18.6827i 0.899281 + 0.754587i 0.970050 0.242906i \(-0.0781007\pi\)
−0.0707686 + 0.997493i \(0.522545\pi\)
\(614\) 3.13496 0.366425i 0.126517 0.0147877i
\(615\) 0 0
\(616\) −5.40094 5.72466i −0.217610 0.230653i
\(617\) 12.3463 + 1.44308i 0.497044 + 0.0580961i 0.360922 0.932596i \(-0.382462\pi\)
0.136122 + 0.990692i \(0.456536\pi\)
\(618\) 0 0
\(619\) −2.00980 + 34.5070i −0.0807807 + 1.38695i 0.677739 + 0.735302i \(0.262960\pi\)
−0.758520 + 0.651650i \(0.774077\pi\)
\(620\) 5.87380 + 10.1737i 0.235898 + 0.408586i
\(621\) 0 0
\(622\) −5.13533 + 8.89464i −0.205908 + 0.356643i
\(623\) −3.66069 2.40767i −0.146662 0.0964614i
\(624\) 0 0
\(625\) 2.09699 + 4.86137i 0.0838796 + 0.194455i
\(626\) −5.51652 + 1.30744i −0.220484 + 0.0522558i
\(627\) 0 0
\(628\) 0.991023 + 1.33118i 0.0395461 + 0.0531197i
\(629\) −34.5789 + 12.5857i −1.37875 + 0.501825i
\(630\) 0 0
\(631\) 12.4258 + 4.52262i 0.494663 + 0.180042i 0.577292 0.816538i \(-0.304109\pi\)
−0.0826292 + 0.996580i \(0.526332\pi\)
\(632\) 9.08304 + 30.3395i 0.361304 + 1.20684i
\(633\) 0 0
\(634\) 0.723456 + 12.4213i 0.0287321 + 0.493311i
\(635\) −5.72575 + 3.76588i −0.227219 + 0.149445i
\(636\) 0 0
\(637\) −23.3622 5.53695i −0.925645 0.219382i
\(638\) 1.30714 + 7.41317i 0.0517502 + 0.293490i
\(639\) 0 0
\(640\) 1.69021 9.58567i 0.0668115 0.378907i
\(641\) 2.08848 4.84165i 0.0824901 0.191234i −0.871979 0.489543i \(-0.837164\pi\)
0.954469 + 0.298310i \(0.0964228\pi\)
\(642\) 0 0
\(643\) −1.25523 + 4.19275i −0.0495013 + 0.165346i −0.979166 0.203060i \(-0.934911\pi\)
0.929665 + 0.368406i \(0.120096\pi\)
\(644\) 6.18741 8.31114i 0.243818 0.327505i
\(645\) 0 0
\(646\) −7.48075 + 3.75697i −0.294326 + 0.147816i
\(647\) −5.42624 −0.213327 −0.106664 0.994295i \(-0.534017\pi\)
−0.106664 + 0.994295i \(0.534017\pi\)
\(648\) 0 0
\(649\) −23.7069 −0.930576
\(650\) 12.0208 6.03709i 0.471496 0.236794i
\(651\) 0 0
\(652\) −9.64289 + 12.9527i −0.377645 + 0.507265i
\(653\) 3.18380 10.6346i 0.124592 0.416166i −0.872822 0.488039i \(-0.837712\pi\)
0.997414 + 0.0718731i \(0.0228977\pi\)
\(654\) 0 0
\(655\) 9.32462 21.6169i 0.364343 0.844642i
\(656\) −0.319672 + 1.81295i −0.0124811 + 0.0707837i
\(657\) 0 0
\(658\) 0.570212 + 3.23383i 0.0222292 + 0.126068i
\(659\) 7.23488 + 1.71470i 0.281831 + 0.0667951i 0.369100 0.929390i \(-0.379666\pi\)
−0.0872694 + 0.996185i \(0.527814\pi\)
\(660\) 0 0
\(661\) 3.20127 2.10551i 0.124515 0.0818948i −0.485724 0.874112i \(-0.661444\pi\)
0.610239 + 0.792218i \(0.291074\pi\)
\(662\) −0.178911 3.07178i −0.00695358 0.119388i
\(663\) 0 0
\(664\) −3.77145 12.5975i −0.146361 0.488879i
\(665\) 3.97311 + 1.44609i 0.154071 + 0.0560771i
\(666\) 0 0
\(667\) −23.5726 + 8.57971i −0.912733 + 0.332208i
\(668\) 2.97435 + 3.99524i 0.115081 + 0.154581i
\(669\) 0 0
\(670\) 0.811561 0.192344i 0.0313533 0.00743088i
\(671\) −10.1519 23.5347i −0.391910 0.908549i
\(672\) 0 0
\(673\) −35.1668 23.1295i −1.35558 0.891578i −0.356492 0.934298i \(-0.616027\pi\)
−0.999087 + 0.0427202i \(0.986398\pi\)
\(674\) 7.68230 13.3061i 0.295911 0.512533i
\(675\) 0 0
\(676\) 5.05953 + 8.76336i 0.194597 + 0.337052i
\(677\) −0.144919 + 2.48817i −0.00556970 + 0.0956281i −0.999947 0.0102640i \(-0.996733\pi\)
0.994378 + 0.105892i \(0.0337698\pi\)
\(678\) 0 0
\(679\) 1.78041 + 0.208100i 0.0683260 + 0.00798616i
\(680\) −8.59269 9.10772i −0.329515 0.349265i
\(681\) 0 0
\(682\) −13.4095 + 1.56735i −0.513477 + 0.0600169i
\(683\) 11.7411 + 9.85194i 0.449260 + 0.376974i 0.839161 0.543883i \(-0.183046\pi\)
−0.389901 + 0.920857i \(0.627491\pi\)
\(684\) 0 0
\(685\) −14.6488 + 12.2918i −0.559701 + 0.469645i
\(686\) 9.22362 9.77646i 0.352159 0.373267i
\(687\) 0 0
\(688\) −1.43678 0.721578i −0.0547767 0.0275099i
\(689\) −50.7168 25.4710i −1.93216 0.970366i
\(690\) 0 0
\(691\) −25.4658 + 26.9922i −0.968765 + 1.02683i 0.0308620 + 0.999524i \(0.490175\pi\)
−0.999627 + 0.0273073i \(0.991307\pi\)
\(692\) −24.0827 + 20.2078i −0.915488 + 0.768186i
\(693\) 0 0
\(694\) −21.4384 17.9890i −0.813792 0.682853i
\(695\) 12.5062 1.46176i 0.474387 0.0554478i
\(696\) 0 0
\(697\) 14.9725 + 15.8700i 0.567125 + 0.601118i
\(698\) −27.2519 3.18529i −1.03150 0.120565i
\(699\) 0 0
\(700\) 0.354010 6.07811i 0.0133803 0.229731i
\(701\) 3.35489 + 5.81083i 0.126712 + 0.219472i 0.922401 0.386234i \(-0.126224\pi\)
−0.795689 + 0.605706i \(0.792891\pi\)
\(702\) 0 0
\(703\) −13.0126 + 22.5385i −0.490779 + 0.850054i
\(704\) 7.57719 + 4.98360i 0.285576 + 0.187826i
\(705\) 0 0
\(706\) 4.40186 + 10.2046i 0.165666 + 0.384057i
\(707\) 2.96173 0.701942i 0.111387 0.0263993i
\(708\) 0 0
\(709\) −14.2011 19.0753i −0.533332 0.716389i 0.451037 0.892505i \(-0.351054\pi\)
−0.984369 + 0.176116i \(0.943647\pi\)
\(710\) −6.84623 + 2.49182i −0.256934 + 0.0935165i
\(711\) 0 0
\(712\) 8.62351 + 3.13870i 0.323180 + 0.117628i
\(713\) −12.9037 43.1012i −0.483246 1.61415i
\(714\) 0 0
\(715\) 0.694277 + 11.9203i 0.0259645 + 0.445793i
\(716\) 6.91748 4.54970i 0.258519 0.170030i
\(717\) 0 0
\(718\) 7.31634 + 1.73400i 0.273043 + 0.0647125i
\(719\) 7.41202 + 42.0356i 0.276422 + 1.56766i 0.734410 + 0.678706i \(0.237459\pi\)
−0.457988 + 0.888958i \(0.651430\pi\)
\(720\) 0 0
\(721\) −1.03880 + 5.89131i −0.0386868 + 0.219404i
\(722\) 3.92388 9.09658i 0.146032 0.338540i
\(723\) 0 0
\(724\) 2.32009 7.74965i 0.0862255 0.288013i
\(725\) −8.80228 + 11.8235i −0.326909 + 0.439114i
\(726\) 0 0
\(727\) 17.0289 8.55222i 0.631565 0.317184i −0.104062 0.994571i \(-0.533184\pi\)
0.735627 + 0.677387i \(0.236888\pi\)
\(728\) −16.4946 −0.611329
\(729\) 0 0
\(730\) 8.15871 0.301967
\(731\) −17.0284 + 8.55200i −0.629819 + 0.316307i
\(732\) 0 0
\(733\) −10.7269 + 14.4087i −0.396207 + 0.532199i −0.954802 0.297242i \(-0.903933\pi\)
0.558595 + 0.829441i \(0.311341\pi\)
\(734\) 6.11705 20.4324i 0.225784 0.754173i
\(735\) 0 0
\(736\) −13.7955 + 31.9816i −0.508509 + 1.17886i
\(737\) 0.313285 1.77673i 0.0115400 0.0654466i
\(738\) 0 0
\(739\) 2.16602 + 12.2841i 0.0796782 + 0.451878i 0.998379 + 0.0569224i \(0.0181288\pi\)
−0.918700 + 0.394955i \(0.870760\pi\)
\(740\) −14.9641 3.54656i −0.550092 0.130374i
\(741\) 0 0
\(742\) 11.4023 7.49940i 0.418591 0.275312i
\(743\) −1.50694 25.8731i −0.0552842 0.949193i −0.905923 0.423443i \(-0.860821\pi\)
0.850639 0.525751i \(-0.176216\pi\)
\(744\) 0 0
\(745\) −1.00842 3.36836i −0.0369457 0.123407i
\(746\) −17.1175 6.23026i −0.626716 0.228106i
\(747\) 0 0
\(748\) −10.0549 + 3.65968i −0.367643 + 0.133811i
\(749\) −9.65270 12.9658i −0.352702 0.473761i
\(750\) 0 0
\(751\) 10.2130 2.42053i 0.372679 0.0883265i −0.0400083 0.999199i \(-0.512738\pi\)
0.412687 + 0.910873i \(0.364590\pi\)
\(752\) 0.377663 + 0.875522i 0.0137720 + 0.0319270i
\(753\) 0 0
\(754\) 13.1808 + 8.66914i 0.480016 + 0.315711i
\(755\) 7.69516 13.3284i 0.280056 0.485070i
\(756\) 0 0
\(757\) −0.0864170 0.149679i −0.00314088 0.00544016i 0.864451 0.502718i \(-0.167666\pi\)
−0.867592 + 0.497277i \(0.834333\pi\)
\(758\) 0.510234 8.76039i 0.0185326 0.318192i
\(759\) 0 0
\(760\) −8.79576 1.02808i −0.319056 0.0372923i
\(761\) 1.28543 + 1.36248i 0.0465968 + 0.0493897i 0.750253 0.661151i \(-0.229932\pi\)
−0.703656 + 0.710541i \(0.748450\pi\)
\(762\) 0 0
\(763\) −11.6320 + 1.35958i −0.421106 + 0.0492203i
\(764\) 6.75618 + 5.66911i 0.244430 + 0.205101i
\(765\) 0 0
\(766\) 13.9549 11.7095i 0.504211 0.423083i
\(767\) −34.0957 + 36.1394i −1.23113 + 1.30492i
\(768\) 0 0
\(769\) −24.9413 12.5260i −0.899405 0.451698i −0.0618716 0.998084i \(-0.519707\pi\)
−0.837534 + 0.546386i \(0.816003\pi\)
\(770\) −2.56590 1.28864i −0.0924685 0.0464394i
\(771\) 0 0
\(772\) −14.2614 + 15.1162i −0.513280 + 0.544045i
\(773\) −0.0418155 + 0.0350873i −0.00150400 + 0.00126200i −0.643539 0.765413i \(-0.722535\pi\)
0.642035 + 0.766675i \(0.278090\pi\)
\(774\) 0 0
\(775\) −20.2520 16.9934i −0.727472 0.610422i
\(776\) −3.72903 + 0.435861i −0.133864 + 0.0156465i
\(777\) 0 0
\(778\) −13.9429 14.7786i −0.499875 0.529837i
\(779\) 15.3264 + 1.79140i 0.549125 + 0.0641835i
\(780\) 0 0
\(781\) −0.916342 + 15.7330i −0.0327893 + 0.562971i
\(782\) 9.47240 + 16.4067i 0.338732 + 0.586702i
\(783\) 0 0
\(784\) 0.838235 1.45187i 0.0299370 0.0518524i
\(785\) 1.28045 + 0.842167i 0.0457013 + 0.0300582i
\(786\) 0 0
\(787\) −13.4349 31.1455i −0.478901 1.11022i −0.970871 0.239604i \(-0.922982\pi\)
0.491970 0.870612i \(-0.336277\pi\)
\(788\) −14.7325 + 3.49167i −0.524824 + 0.124385i
\(789\) 0 0
\(790\) 6.89962 + 9.26779i 0.245477 + 0.329733i
\(791\) 21.4879 7.82097i 0.764023 0.278082i
\(792\) 0 0
\(793\) −50.4776 18.3724i −1.79251 0.652422i
\(794\) 5.73347 + 19.1511i 0.203473 + 0.679648i
\(795\) 0 0
\(796\) 0.326538 + 5.60645i 0.0115738 + 0.198715i
\(797\) 12.1670 8.00239i 0.430979 0.283459i −0.315428 0.948950i \(-0.602148\pi\)
0.746406 + 0.665491i \(0.231778\pi\)
\(798\) 0 0
\(799\) 10.9961 + 2.60613i 0.389015 + 0.0921982i
\(800\) 3.55394 + 20.1554i 0.125651 + 0.712600i
\(801\) 0 0
\(802\) −5.33961 + 30.2825i −0.188548 + 1.06931i
\(803\) 6.99013 16.2049i 0.246676 0.571860i
\(804\) 0 0
\(805\) 2.74431 9.16663i 0.0967242 0.323081i
\(806\) −16.8966 + 22.6960i −0.595156 + 0.799433i
\(807\) 0 0
\(808\) −5.69700 + 2.86114i −0.200420 + 0.100655i
\(809\) −28.0189 −0.985092 −0.492546 0.870286i \(-0.663934\pi\)
−0.492546 + 0.870286i \(0.663934\pi\)
\(810\) 0 0
\(811\) 29.1924 1.02508 0.512542 0.858662i \(-0.328704\pi\)
0.512542 + 0.858662i \(0.328704\pi\)
\(812\) 6.38100 3.20466i 0.223929 0.112462i
\(813\) 0 0
\(814\) 10.5540 14.1765i 0.369919 0.496887i
\(815\) −4.27692 + 14.2859i −0.149814 + 0.500413i
\(816\) 0 0
\(817\) −5.33785 + 12.3745i −0.186748 + 0.432930i
\(818\) 0.413009 2.34229i 0.0144405 0.0818964i
\(819\) 0 0
\(820\) 1.58337 + 8.97971i 0.0552935 + 0.313585i
\(821\) 29.0511 + 6.88525i 1.01389 + 0.240297i 0.703791 0.710407i \(-0.251489\pi\)
0.310101 + 0.950704i \(0.399637\pi\)
\(822\) 0 0
\(823\) 33.5799 22.0858i 1.17052 0.769864i 0.193103 0.981178i \(-0.438145\pi\)
0.977418 + 0.211315i \(0.0677745\pi\)
\(824\) −0.728528 12.5084i −0.0253795 0.435749i
\(825\) 0 0
\(826\) −3.42662 11.4457i −0.119227 0.398247i
\(827\) −39.9498 14.5405i −1.38919 0.505623i −0.464238 0.885710i \(-0.653672\pi\)
−0.924951 + 0.380087i \(0.875894\pi\)
\(828\) 0 0
\(829\) 5.90599 2.14960i 0.205124 0.0746589i −0.237415 0.971408i \(-0.576300\pi\)
0.442539 + 0.896749i \(0.354078\pi\)
\(830\) −2.86485 3.84816i −0.0994404 0.133572i
\(831\) 0 0
\(832\) 18.4948 4.38335i 0.641192 0.151965i
\(833\) −7.86979 18.2442i −0.272672 0.632125i
\(834\) 0 0
\(835\) 3.84301 + 2.52759i 0.132993 + 0.0874708i
\(836\) −3.78381 + 6.55375i −0.130866 + 0.226666i
\(837\) 0 0
\(838\) −14.3173 24.7983i −0.494584 0.856644i
\(839\) 0.963006 16.5342i 0.0332466 0.570823i −0.940016 0.341129i \(-0.889191\pi\)
0.973263 0.229694i \(-0.0737724\pi\)
\(840\) 0 0
\(841\) 11.6333 + 1.35974i 0.401149 + 0.0468876i
\(842\) 3.57373 + 3.78793i 0.123159 + 0.130541i
\(843\) 0 0
\(844\) 18.5265 2.16543i 0.637707 0.0745373i
\(845\) 7.15852 + 6.00671i 0.246261 + 0.206637i
\(846\) 0 0
\(847\) 6.32205 5.30483i 0.217228 0.182276i
\(848\) 2.71947 2.88247i 0.0933871 0.0989846i
\(849\) 0 0
\(850\) 9.94795 + 4.99605i 0.341212 + 0.171363i
\(851\) 52.6328 + 26.4332i 1.80423 + 0.906118i
\(852\) 0 0
\(853\) 35.7674 37.9112i 1.22465 1.29806i 0.283943 0.958841i \(-0.408357\pi\)
0.940709 0.339214i \(-0.110161\pi\)
\(854\) 9.89523 8.30308i 0.338608 0.284126i
\(855\) 0 0
\(856\) 25.9351 + 21.7622i 0.886445 + 0.743815i
\(857\) −38.6194 + 4.51396i −1.31921 + 0.154194i −0.746404 0.665493i \(-0.768221\pi\)
−0.572811 + 0.819687i \(0.694147\pi\)
\(858\) 0 0
\(859\) 14.8940 + 15.7867i 0.508177 + 0.538637i 0.929766 0.368151i \(-0.120009\pi\)
−0.421589 + 0.906787i \(0.638527\pi\)
\(860\) −7.90973 0.924515i −0.269720 0.0315257i
\(861\) 0 0
\(862\) −0.146142 + 2.50915i −0.00497760 + 0.0854621i
\(863\) 21.9404 + 38.0020i 0.746861 + 1.29360i 0.949320 + 0.314311i \(0.101773\pi\)
−0.202459 + 0.979291i \(0.564893\pi\)
\(864\) 0 0
\(865\) −14.5161 + 25.1427i −0.493564 + 0.854877i
\(866\) 21.3885 + 14.0674i 0.726811 + 0.478031i
\(867\) 0 0
\(868\) 5.07248 + 11.7593i 0.172171 + 0.399138i
\(869\) 24.3192 5.76375i 0.824972 0.195522i
\(870\) 0 0
\(871\) −2.25792 3.03291i −0.0765066 0.102766i
\(872\) 23.0495 8.38933i 0.780554 0.284099i
\(873\) 0 0
\(874\) 12.5905 + 4.58258i 0.425881 + 0.155008i
\(875\) −3.88687 12.9830i −0.131400 0.438907i
\(876\) 0 0
\(877\) 1.46065 + 25.0784i 0.0493226 + 0.846837i 0.928728 + 0.370763i \(0.120904\pi\)
−0.879405 + 0.476074i \(0.842059\pi\)
\(878\) 0.318498 0.209479i 0.0107488 0.00706958i
\(879\) 0 0
\(880\) −0.811277 0.192276i −0.0273481 0.00648163i
\(881\) −0.463850 2.63063i −0.0156275 0.0886281i 0.975996 0.217786i \(-0.0698836\pi\)
−0.991624 + 0.129158i \(0.958772\pi\)
\(882\) 0 0
\(883\) 6.82642 38.7145i 0.229727 1.30285i −0.623711 0.781655i \(-0.714376\pi\)
0.853439 0.521193i \(-0.174513\pi\)
\(884\) −8.88225 + 20.5914i −0.298742 + 0.692563i
\(885\) 0 0
\(886\) 8.34003 27.8576i 0.280189 0.935895i
\(887\) −19.9569 + 26.8067i −0.670086 + 0.900081i −0.999020 0.0442716i \(-0.985903\pi\)
0.328934 + 0.944353i \(0.393311\pi\)
\(888\) 0 0
\(889\) −6.67635 + 3.35299i −0.223918 + 0.112456i
\(890\) 3.34800 0.112225
\(891\) 0 0
\(892\) 26.3703 0.882942
\(893\) 7.14223 3.58696i 0.239006 0.120033i
\(894\) 0 0
\(895\) 4.56591 6.13308i 0.152621 0.205006i
\(896\) 3.04329 10.1653i 0.101669 0.339599i
\(897\) 0 0
\(898\) −2.36111 + 5.47367i −0.0787912 + 0.182659i
\(899\) 5.38405 30.5345i 0.179568 1.01838i
\(900\) 0 0
\(901\) −8.15573 46.2534i −0.271707 1.54093i
\(902\) −10.1966 2.41663i −0.339509 0.0804651i
\(903\) 0 0
\(904\) −40.0151 + 26.3184i −1.33088 + 0.875336i
\(905\) −0.434372 7.45788i −0.0144390 0.247908i
\(906\) 0 0
\(907\) 3.52864 + 11.7865i 0.117167 + 0.391364i 0.996375 0.0850742i \(-0.0271127\pi\)
−0.879208 + 0.476438i \(0.841928\pi\)
\(908\) −3.34254 1.21658i −0.110926 0.0403738i
\(909\) 0 0
\(910\) −5.65477 + 2.05817i −0.187454 + 0.0682276i
\(911\) 13.0498 + 17.5289i 0.432359 + 0.580759i 0.963897 0.266276i \(-0.0857931\pi\)
−0.531538 + 0.847034i \(0.678386\pi\)
\(912\) 0 0
\(913\) −10.0978 + 2.39322i −0.334188 + 0.0792040i
\(914\) 4.18443 + 9.70059i 0.138409 + 0.320867i
\(915\) 0 0
\(916\) 1.66581 + 1.09562i 0.0550400 + 0.0362004i
\(917\) 12.8324 22.2263i 0.423762 0.733977i
\(918\) 0 0
\(919\) 27.9349 + 48.3846i 0.921487 + 1.59606i 0.797116 + 0.603826i \(0.206358\pi\)
0.124370 + 0.992236i \(0.460309\pi\)
\(920\) −1.16529 + 20.0073i −0.0384186 + 0.659622i
\(921\) 0 0
\(922\) −0.382097 0.0446607i −0.0125837 0.00147082i
\(923\) 22.6659 + 24.0244i 0.746056 + 0.790774i
\(924\) 0 0
\(925\) 34.3744 4.01780i 1.13022 0.132104i
\(926\) −23.6750 19.8657i −0.778009 0.652827i
\(927\) 0 0
\(928\) −18.3873 + 15.4288i −0.603594 + 0.506476i
\(929\) 29.4428 31.2075i 0.965986 1.02389i −0.0337151 0.999431i \(-0.510734\pi\)
0.999701 0.0244537i \(-0.00778463\pi\)
\(930\) 0 0
\(931\) −12.5576 6.30668i −0.411560 0.206693i
\(932\) −7.61857 3.82619i −0.249554 0.125331i
\(933\) 0 0
\(934\) −15.7243 + 16.6668i −0.514514 + 0.545353i
\(935\) −7.56964 + 6.35168i −0.247554 + 0.207722i
\(936\) 0 0
\(937\) −10.4519 8.77015i −0.341447 0.286508i 0.455898 0.890032i \(-0.349318\pi\)
−0.797345 + 0.603524i \(0.793763\pi\)
\(938\) 0.903088 0.105556i 0.0294869 0.00344652i
\(939\) 0 0
\(940\) 3.24098 + 3.43524i 0.105709 + 0.112045i
\(941\) 44.1544 + 5.16091i 1.43939 + 0.168241i 0.799704 0.600395i \(-0.204990\pi\)
0.639687 + 0.768635i \(0.279064\pi\)
\(942\) 0 0
\(943\) 2.03049 34.8622i 0.0661219 1.13527i
\(944\) −1.73463 3.00447i −0.0564575 0.0977873i
\(945\) 0 0
\(946\) 4.57603 7.92592i 0.148780 0.257694i
\(947\) −3.62204 2.38225i −0.117700 0.0774128i 0.489294 0.872119i \(-0.337255\pi\)
−0.606994 + 0.794706i \(0.707625\pi\)
\(948\) 0 0
\(949\) −14.6499 33.9622i −0.475555 1.10246i
\(950\) 7.66082 1.81565i 0.248550 0.0589074i
\(951\) 0 0
\(952\) −8.15136 10.9492i −0.264187 0.354865i
\(953\) 34.6339 12.6057i 1.12190 0.408339i 0.286556 0.958063i \(-0.407489\pi\)
0.835346 + 0.549724i \(0.185267\pi\)
\(954\) 0 0
\(955\) 7.65355 + 2.78566i 0.247663 + 0.0901419i
\(956\) 6.32968 + 21.1426i 0.204716 + 0.683801i
\(957\) 0 0
\(958\) 0.690712 + 11.8591i 0.0223159 + 0.383149i
\(959\) −17.4171 + 11.4554i −0.562428 + 0.369915i
\(960\) 0 0
\(961\) 23.9459 + 5.67527i 0.772447 + 0.183073i
\(962\) −6.43203 36.4778i −0.207377 1.17609i
\(963\) 0 0
\(964\) 2.85744 16.2054i 0.0920320 0.521939i
\(965\) −7.60147 + 17.6222i −0.244700 + 0.567279i
\(966\) 0 0
\(967\) 2.93507 9.80383i 0.0943856 0.315270i −0.897738 0.440529i \(-0.854791\pi\)
0.992124 + 0.125259i \(0.0399761\pi\)
\(968\) −10.3221 + 13.8650i −0.331765 + 0.445638i
\(969\) 0 0
\(970\) −1.22402 + 0.614727i −0.0393010 + 0.0197377i
\(971\) 43.9486 1.41038 0.705188 0.709020i \(-0.250862\pi\)
0.705188 + 0.709020i \(0.250862\pi\)
\(972\) 0 0
\(973\) 13.7265 0.440051
\(974\) −6.75737 + 3.39368i −0.216520 + 0.108740i
\(975\) 0 0
\(976\) 2.23984 3.00863i 0.0716957 0.0963040i
\(977\) 16.9236 56.5287i 0.541433 1.80851i −0.0456115 0.998959i \(-0.514524\pi\)
0.587045 0.809554i \(-0.300291\pi\)
\(978\) 0 0
\(979\) 2.86847 6.64985i 0.0916766 0.212530i
\(980\) 1.44193 8.17758i 0.0460607 0.261223i
\(981\) 0 0
\(982\) −4.03329 22.8740i −0.128708 0.729937i
\(983\) 26.0666 + 6.17791i 0.831397 + 0.197045i 0.624210 0.781257i \(-0.285421\pi\)
0.207187 + 0.978301i \(0.433569\pi\)
\(984\) 0 0
\(985\) −11.6819 + 7.68330i −0.372216 + 0.244810i
\(986\) 0.759122 + 13.0336i 0.0241754 + 0.415075i
\(987\) 0 0
\(988\) 4.54875 + 15.1939i 0.144715 + 0.483382i
\(989\) 28.6598 + 10.4313i 0.911329 + 0.331697i
\(990\) 0 0
\(991\) 8.60252 3.13106i 0.273268 0.0994614i −0.201751 0.979437i \(-0.564663\pi\)
0.475019 + 0.879975i \(0.342441\pi\)
\(992\) −25.7076 34.5314i −0.816219 1.09637i
\(993\) 0 0
\(994\) −7.72835 + 1.83165i −0.245128 + 0.0580965i
\(995\) 2.05416 + 4.76209i 0.0651214 + 0.150968i
\(996\) 0 0
\(997\) −35.3642 23.2594i −1.12000 0.736633i −0.152195 0.988350i \(-0.548634\pi\)
−0.967801 + 0.251718i \(0.919005\pi\)
\(998\) −9.90918 + 17.1632i −0.313670 + 0.543292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.73.3 144
3.2 odd 2 81.2.g.a.25.6 yes 144
9.2 odd 6 729.2.g.c.703.3 144
9.4 even 3 729.2.g.a.217.6 144
9.5 odd 6 729.2.g.d.217.3 144
9.7 even 3 729.2.g.b.703.6 144
81.13 even 27 inner 243.2.g.a.10.3 144
81.14 odd 54 729.2.g.d.514.3 144
81.16 even 27 6561.2.a.d.1.24 72
81.40 even 27 729.2.g.b.28.6 144
81.41 odd 54 729.2.g.c.28.3 144
81.65 odd 54 6561.2.a.c.1.49 72
81.67 even 27 729.2.g.a.514.6 144
81.68 odd 54 81.2.g.a.13.6 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.6 144 81.68 odd 54
81.2.g.a.25.6 yes 144 3.2 odd 2
243.2.g.a.10.3 144 81.13 even 27 inner
243.2.g.a.73.3 144 1.1 even 1 trivial
729.2.g.a.217.6 144 9.4 even 3
729.2.g.a.514.6 144 81.67 even 27
729.2.g.b.28.6 144 81.40 even 27
729.2.g.b.703.6 144 9.7 even 3
729.2.g.c.28.3 144 81.41 odd 54
729.2.g.c.703.3 144 9.2 odd 6
729.2.g.d.217.3 144 9.5 odd 6
729.2.g.d.514.3 144 81.14 odd 54
6561.2.a.c.1.49 72 81.65 odd 54
6561.2.a.d.1.24 72 81.16 even 27