Properties

Label 243.2.g.a.208.7
Level $243$
Weight $2$
Character 243.208
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 208.7
Character \(\chi\) \(=\) 243.208
Dual form 243.2.g.a.118.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.96496 + 0.465704i) q^{2} +(1.85693 + 0.932584i) q^{4} +(1.65302 - 2.22039i) q^{5} +(0.510715 + 0.335902i) q^{7} +(0.120591 + 0.101188i) q^{8} +(4.28217 - 3.59317i) q^{10} +(-3.71952 + 0.434749i) q^{11} +(-0.980843 + 3.27624i) q^{13} +(0.847104 + 0.897877i) q^{14} +(-2.29190 - 3.07856i) q^{16} +(1.31516 + 7.45862i) q^{17} +(0.132568 - 0.751830i) q^{19} +(5.14024 - 2.58153i) q^{20} +(-7.51117 - 0.877930i) q^{22} +(1.81630 - 1.19460i) q^{23} +(-0.763650 - 2.55077i) q^{25} +(-3.45308 + 5.98091i) q^{26} +(0.635103 + 1.10003i) q^{28} +(-3.11741 + 3.30426i) q^{29} +(-0.475949 - 8.17173i) q^{31} +(-3.19450 - 7.40569i) q^{32} +(-0.889281 + 15.2684i) q^{34} +(1.59006 - 0.578734i) q^{35} +(3.96908 + 1.44463i) q^{37} +(0.610621 - 1.41558i) q^{38} +(0.424016 - 0.100494i) q^{40} +(-8.79832 + 2.08524i) q^{41} +(0.695014 - 1.61122i) q^{43} +(-7.31231 - 2.66146i) q^{44} +(4.12528 - 1.50148i) q^{46} +(0.684001 - 11.7438i) q^{47} +(-2.62456 - 6.08441i) q^{49} +(-0.312638 - 5.36779i) q^{50} +(-4.87673 + 5.16903i) q^{52} +(2.80062 + 4.85082i) q^{53} +(-5.18313 + 8.97744i) q^{55} +(0.0275984 + 0.0921849i) q^{56} +(-7.66439 + 5.04095i) q^{58} +(1.50297 + 0.175672i) q^{59} +(2.70194 - 1.35697i) q^{61} +(2.87039 - 16.2788i) q^{62} +(-1.49529 - 8.48019i) q^{64} +(5.65319 + 7.59356i) q^{65} +(5.25122 + 5.56597i) q^{67} +(-4.51364 + 15.0766i) q^{68} +(3.39392 - 0.396693i) q^{70} +(5.19850 - 4.36206i) q^{71} +(0.438511 + 0.367955i) q^{73} +(7.12633 + 4.68706i) q^{74} +(0.947314 - 1.27246i) q^{76} +(-2.04565 - 1.02736i) q^{77} +(8.96673 + 2.12515i) q^{79} -10.6242 q^{80} -18.2595 q^{82} +(6.02162 + 1.42715i) q^{83} +(18.7350 + 9.40909i) q^{85} +(2.11603 - 2.84232i) q^{86} +(-0.492531 - 0.323943i) q^{88} +(3.52742 + 2.95986i) q^{89} +(-1.60143 + 1.34376i) q^{91} +(4.48680 - 0.524431i) q^{92} +(6.81319 - 22.7577i) q^{94} +(-1.45022 - 1.53714i) q^{95} +(-6.28024 - 8.43582i) q^{97} +(-2.32362 - 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.96496 + 0.465704i 1.38944 + 0.329303i 0.856192 0.516658i \(-0.172824\pi\)
0.533246 + 0.845961i \(0.320972\pi\)
\(3\) 0 0
\(4\) 1.85693 + 0.932584i 0.928464 + 0.466292i
\(5\) 1.65302 2.22039i 0.739254 0.992990i −0.260369 0.965509i \(-0.583844\pi\)
0.999622 0.0274807i \(-0.00874849\pi\)
\(6\) 0 0
\(7\) 0.510715 + 0.335902i 0.193032 + 0.126959i 0.642346 0.766415i \(-0.277961\pi\)
−0.449314 + 0.893374i \(0.648332\pi\)
\(8\) 0.120591 + 0.101188i 0.0426353 + 0.0357753i
\(9\) 0 0
\(10\) 4.28217 3.59317i 1.35414 1.13626i
\(11\) −3.71952 + 0.434749i −1.12148 + 0.131082i −0.656561 0.754273i \(-0.727989\pi\)
−0.464916 + 0.885355i \(0.653915\pi\)
\(12\) 0 0
\(13\) −0.980843 + 3.27624i −0.272037 + 0.908666i 0.707383 + 0.706831i \(0.249876\pi\)
−0.979419 + 0.201835i \(0.935309\pi\)
\(14\) 0.847104 + 0.897877i 0.226398 + 0.239968i
\(15\) 0 0
\(16\) −2.29190 3.07856i −0.572976 0.769640i
\(17\) 1.31516 + 7.45862i 0.318972 + 1.80898i 0.549030 + 0.835803i \(0.314997\pi\)
−0.230058 + 0.973177i \(0.573891\pi\)
\(18\) 0 0
\(19\) 0.132568 0.751830i 0.0304132 0.172482i −0.965818 0.259222i \(-0.916534\pi\)
0.996231 + 0.0867403i \(0.0276450\pi\)
\(20\) 5.14024 2.58153i 1.14939 0.577247i
\(21\) 0 0
\(22\) −7.51117 0.877930i −1.60139 0.187175i
\(23\) 1.81630 1.19460i 0.378724 0.249091i −0.345847 0.938291i \(-0.612408\pi\)
0.724571 + 0.689200i \(0.242038\pi\)
\(24\) 0 0
\(25\) −0.763650 2.55077i −0.152730 0.510153i
\(26\) −3.45308 + 5.98091i −0.677205 + 1.17295i
\(27\) 0 0
\(28\) 0.635103 + 1.10003i 0.120023 + 0.207886i
\(29\) −3.11741 + 3.30426i −0.578888 + 0.613585i −0.948952 0.315421i \(-0.897854\pi\)
0.370064 + 0.929006i \(0.379336\pi\)
\(30\) 0 0
\(31\) −0.475949 8.17173i −0.0854830 1.46769i −0.719568 0.694422i \(-0.755660\pi\)
0.634085 0.773264i \(-0.281377\pi\)
\(32\) −3.19450 7.40569i −0.564714 1.30915i
\(33\) 0 0
\(34\) −0.889281 + 15.2684i −0.152510 + 2.61850i
\(35\) 1.59006 0.578734i 0.268769 0.0978239i
\(36\) 0 0
\(37\) 3.96908 + 1.44463i 0.652513 + 0.237495i 0.647001 0.762489i \(-0.276023\pi\)
0.00551256 + 0.999985i \(0.498245\pi\)
\(38\) 0.610621 1.41558i 0.0990559 0.229637i
\(39\) 0 0
\(40\) 0.424016 0.100494i 0.0670428 0.0158894i
\(41\) −8.79832 + 2.08524i −1.37407 + 0.325660i −0.850343 0.526229i \(-0.823606\pi\)
−0.523723 + 0.851888i \(0.675457\pi\)
\(42\) 0 0
\(43\) 0.695014 1.61122i 0.105989 0.245709i −0.856966 0.515373i \(-0.827653\pi\)
0.962955 + 0.269664i \(0.0869126\pi\)
\(44\) −7.31231 2.66146i −1.10237 0.401231i
\(45\) 0 0
\(46\) 4.12528 1.50148i 0.608240 0.221381i
\(47\) 0.684001 11.7438i 0.0997718 1.71302i −0.462963 0.886378i \(-0.653214\pi\)
0.562734 0.826638i \(-0.309749\pi\)
\(48\) 0 0
\(49\) −2.62456 6.08441i −0.374937 0.869202i
\(50\) −0.312638 5.36779i −0.0442137 0.759121i
\(51\) 0 0
\(52\) −4.87673 + 5.16903i −0.676280 + 0.716815i
\(53\) 2.80062 + 4.85082i 0.384695 + 0.666312i 0.991727 0.128366i \(-0.0409732\pi\)
−0.607032 + 0.794678i \(0.707640\pi\)
\(54\) 0 0
\(55\) −5.18313 + 8.97744i −0.698893 + 1.21052i
\(56\) 0.0275984 + 0.0921849i 0.00368799 + 0.0123187i
\(57\) 0 0
\(58\) −7.66439 + 5.04095i −1.00638 + 0.661909i
\(59\) 1.50297 + 0.175672i 0.195670 + 0.0228705i 0.213363 0.976973i \(-0.431558\pi\)
−0.0176936 + 0.999843i \(0.505632\pi\)
\(60\) 0 0
\(61\) 2.70194 1.35697i 0.345949 0.173742i −0.267337 0.963603i \(-0.586144\pi\)
0.613286 + 0.789861i \(0.289847\pi\)
\(62\) 2.87039 16.2788i 0.364540 2.06741i
\(63\) 0 0
\(64\) −1.49529 8.48019i −0.186911 1.06002i
\(65\) 5.65319 + 7.59356i 0.701192 + 0.941865i
\(66\) 0 0
\(67\) 5.25122 + 5.56597i 0.641539 + 0.679992i 0.963790 0.266662i \(-0.0859209\pi\)
−0.322251 + 0.946654i \(0.604439\pi\)
\(68\) −4.51364 + 15.0766i −0.547359 + 1.82831i
\(69\) 0 0
\(70\) 3.39392 0.396693i 0.405651 0.0474138i
\(71\) 5.19850 4.36206i 0.616948 0.517681i −0.279895 0.960031i \(-0.590299\pi\)
0.896843 + 0.442350i \(0.145855\pi\)
\(72\) 0 0
\(73\) 0.438511 + 0.367955i 0.0513238 + 0.0430658i 0.668089 0.744082i \(-0.267113\pi\)
−0.616765 + 0.787147i \(0.711557\pi\)
\(74\) 7.12633 + 4.68706i 0.828419 + 0.544859i
\(75\) 0 0
\(76\) 0.947314 1.27246i 0.108664 0.145962i
\(77\) −2.04565 1.02736i −0.233123 0.117079i
\(78\) 0 0
\(79\) 8.96673 + 2.12515i 1.00884 + 0.239098i 0.701628 0.712544i \(-0.252457\pi\)
0.307208 + 0.951642i \(0.400605\pi\)
\(80\) −10.6242 −1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) 6.02162 + 1.42715i 0.660959 + 0.156650i 0.547387 0.836880i \(-0.315623\pi\)
0.113572 + 0.993530i \(0.463771\pi\)
\(84\) 0 0
\(85\) 18.7350 + 9.40909i 2.03210 + 1.02056i
\(86\) 2.11603 2.84232i 0.228177 0.306495i
\(87\) 0 0
\(88\) −0.492531 0.323943i −0.0525040 0.0345324i
\(89\) 3.52742 + 2.95986i 0.373906 + 0.313744i 0.810304 0.586009i \(-0.199302\pi\)
−0.436399 + 0.899753i \(0.643746\pi\)
\(90\) 0 0
\(91\) −1.60143 + 1.34376i −0.167875 + 0.140864i
\(92\) 4.48680 0.524431i 0.467781 0.0546757i
\(93\) 0 0
\(94\) 6.81319 22.7577i 0.702727 2.34727i
\(95\) −1.45022 1.53714i −0.148789 0.157708i
\(96\) 0 0
\(97\) −6.28024 8.43582i −0.637661 0.856528i 0.359396 0.933185i \(-0.382983\pi\)
−0.997058 + 0.0766573i \(0.975575\pi\)
\(98\) −2.32362 13.1779i −0.234721 1.33117i
\(99\) 0 0
\(100\) 0.960763 5.44876i 0.0960763 0.544876i
\(101\) −2.18810 + 1.09890i −0.217724 + 0.109345i −0.554318 0.832305i \(-0.687021\pi\)
0.336595 + 0.941650i \(0.390725\pi\)
\(102\) 0 0
\(103\) −16.9425 1.98030i −1.66940 0.195125i −0.771777 0.635893i \(-0.780632\pi\)
−0.897621 + 0.440768i \(0.854706\pi\)
\(104\) −0.449797 + 0.295836i −0.0441062 + 0.0290091i
\(105\) 0 0
\(106\) 3.24407 + 10.8359i 0.315092 + 1.05248i
\(107\) −0.402056 + 0.696381i −0.0388682 + 0.0673217i −0.884805 0.465961i \(-0.845709\pi\)
0.845937 + 0.533283i \(0.179042\pi\)
\(108\) 0 0
\(109\) 2.11135 + 3.65696i 0.202230 + 0.350273i 0.949247 0.314532i \(-0.101848\pi\)
−0.747016 + 0.664806i \(0.768514\pi\)
\(110\) −14.3655 + 15.2265i −1.36969 + 1.45179i
\(111\) 0 0
\(112\) −0.136413 2.34212i −0.0128898 0.221310i
\(113\) 4.88889 + 11.3337i 0.459908 + 1.06619i 0.977572 + 0.210602i \(0.0675425\pi\)
−0.517664 + 0.855584i \(0.673198\pi\)
\(114\) 0 0
\(115\) 0.349902 6.00759i 0.0326286 0.560211i
\(116\) −8.87030 + 3.22852i −0.823586 + 0.299761i
\(117\) 0 0
\(118\) 2.87146 + 1.04513i 0.264339 + 0.0962116i
\(119\) −1.83370 + 4.25099i −0.168095 + 0.389688i
\(120\) 0 0
\(121\) 2.94230 0.697338i 0.267482 0.0633944i
\(122\) 5.94116 1.40808i 0.537888 0.127482i
\(123\) 0 0
\(124\) 6.73702 15.6182i 0.605002 1.40255i
\(125\) 6.07999 + 2.21294i 0.543811 + 0.197931i
\(126\) 0 0
\(127\) −9.37360 + 3.41171i −0.831772 + 0.302740i −0.722586 0.691281i \(-0.757047\pi\)
−0.109186 + 0.994021i \(0.534824\pi\)
\(128\) 0.0731698 1.25628i 0.00646736 0.111040i
\(129\) 0 0
\(130\) 7.57195 + 17.5538i 0.664104 + 1.53957i
\(131\) 0.319398 + 5.48385i 0.0279059 + 0.479127i 0.983091 + 0.183117i \(0.0586189\pi\)
−0.955185 + 0.296009i \(0.904344\pi\)
\(132\) 0 0
\(133\) 0.320246 0.339441i 0.0277688 0.0294333i
\(134\) 7.72636 + 13.3824i 0.667456 + 1.15607i
\(135\) 0 0
\(136\) −0.596125 + 1.03252i −0.0511173 + 0.0885378i
\(137\) −4.36818 14.5907i −0.373199 1.24657i −0.914102 0.405485i \(-0.867103\pi\)
0.540903 0.841085i \(-0.318083\pi\)
\(138\) 0 0
\(139\) −13.3814 + 8.80109i −1.13500 + 0.746498i −0.970791 0.239928i \(-0.922876\pi\)
−0.164205 + 0.986426i \(0.552506\pi\)
\(140\) 3.49234 + 0.408196i 0.295157 + 0.0344989i
\(141\) 0 0
\(142\) 12.2463 6.15031i 1.02768 0.516123i
\(143\) 2.22392 12.6125i 0.185973 1.05471i
\(144\) 0 0
\(145\) 2.18361 + 12.3839i 0.181339 + 1.02842i
\(146\) 0.690299 + 0.927233i 0.0571296 + 0.0767384i
\(147\) 0 0
\(148\) 6.02306 + 6.38407i 0.495093 + 0.524768i
\(149\) 2.53544 8.46898i 0.207712 0.693806i −0.789118 0.614242i \(-0.789462\pi\)
0.996830 0.0795639i \(-0.0253528\pi\)
\(150\) 0 0
\(151\) −0.981167 + 0.114682i −0.0798462 + 0.00933268i −0.155922 0.987769i \(-0.549835\pi\)
0.0760760 + 0.997102i \(0.475761\pi\)
\(152\) 0.0920625 0.0772496i 0.00746726 0.00626577i
\(153\) 0 0
\(154\) −3.54117 2.97139i −0.285355 0.239442i
\(155\) −18.9312 12.4512i −1.52059 1.00011i
\(156\) 0 0
\(157\) 10.8674 14.5975i 0.867314 1.16500i −0.117789 0.993039i \(-0.537581\pi\)
0.985103 0.171966i \(-0.0550119\pi\)
\(158\) 16.6296 + 8.35169i 1.32298 + 0.664425i
\(159\) 0 0
\(160\) −21.7241 5.14872i −1.71744 0.407042i
\(161\) 1.32888 0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) −18.2825 4.33303i −1.42762 0.338353i
\(165\) 0 0
\(166\) 11.1676 + 5.60859i 0.866776 + 0.435311i
\(167\) −3.52393 + 4.73346i −0.272690 + 0.366286i −0.917280 0.398242i \(-0.869620\pi\)
0.644591 + 0.764528i \(0.277028\pi\)
\(168\) 0 0
\(169\) 1.08962 + 0.716658i 0.0838173 + 0.0551275i
\(170\) 32.4318 + 27.2135i 2.48740 + 2.08718i
\(171\) 0 0
\(172\) 2.79319 2.34377i 0.212979 0.178711i
\(173\) 8.93192 1.04399i 0.679081 0.0793732i 0.230442 0.973086i \(-0.425983\pi\)
0.448639 + 0.893713i \(0.351909\pi\)
\(174\) 0 0
\(175\) 0.466802 1.55923i 0.0352869 0.117866i
\(176\) 9.86317 + 10.4544i 0.743465 + 0.788027i
\(177\) 0 0
\(178\) 5.55283 + 7.45874i 0.416202 + 0.559056i
\(179\) −0.223820 1.26935i −0.0167291 0.0948754i 0.975300 0.220884i \(-0.0708943\pi\)
−0.992029 + 0.126009i \(0.959783\pi\)
\(180\) 0 0
\(181\) 0.645386 3.66017i 0.0479712 0.272058i −0.951382 0.308013i \(-0.900336\pi\)
0.999353 + 0.0359546i \(0.0114472\pi\)
\(182\) −3.77254 + 1.89464i −0.279639 + 0.140440i
\(183\) 0 0
\(184\) 0.339908 + 0.0397295i 0.0250583 + 0.00292890i
\(185\) 9.76862 6.42492i 0.718203 0.472370i
\(186\) 0 0
\(187\) −8.13437 27.1707i −0.594844 1.98692i
\(188\) 12.2223 21.1696i 0.891400 1.54395i
\(189\) 0 0
\(190\) −2.13377 3.69580i −0.154800 0.268122i
\(191\) 5.00273 5.30258i 0.361985 0.383681i −0.520627 0.853784i \(-0.674302\pi\)
0.882612 + 0.470103i \(0.155783\pi\)
\(192\) 0 0
\(193\) 0.559769 + 9.61086i 0.0402931 + 0.691805i 0.956614 + 0.291360i \(0.0941076\pi\)
−0.916321 + 0.400446i \(0.868855\pi\)
\(194\) −8.41182 19.5008i −0.603934 1.40008i
\(195\) 0 0
\(196\) 0.800610 13.7459i 0.0571864 0.981853i
\(197\) −4.63898 + 1.68845i −0.330513 + 0.120297i −0.501946 0.864899i \(-0.667383\pi\)
0.171433 + 0.985196i \(0.445160\pi\)
\(198\) 0 0
\(199\) −2.36550 0.860973i −0.167686 0.0610327i 0.256813 0.966461i \(-0.417328\pi\)
−0.424499 + 0.905428i \(0.639550\pi\)
\(200\) 0.166017 0.384872i 0.0117392 0.0272145i
\(201\) 0 0
\(202\) −4.81129 + 1.14030i −0.338521 + 0.0802309i
\(203\) −2.70201 + 0.640389i −0.189644 + 0.0449465i
\(204\) 0 0
\(205\) −9.91376 + 22.9827i −0.692407 + 1.60518i
\(206\) −32.3692 11.7814i −2.25527 0.820851i
\(207\) 0 0
\(208\) 12.3341 4.48925i 0.855217 0.311273i
\(209\) −0.166231 + 2.85408i −0.0114984 + 0.197421i
\(210\) 0 0
\(211\) 2.76773 + 6.41632i 0.190538 + 0.441718i 0.986528 0.163593i \(-0.0523083\pi\)
−0.795990 + 0.605310i \(0.793049\pi\)
\(212\) 0.676756 + 11.6194i 0.0464798 + 0.798027i
\(213\) 0 0
\(214\) −1.11433 + 1.18112i −0.0761741 + 0.0807399i
\(215\) −2.42868 4.20659i −0.165634 0.286887i
\(216\) 0 0
\(217\) 2.50183 4.33330i 0.169835 0.294163i
\(218\) 2.44565 + 8.16905i 0.165641 + 0.553278i
\(219\) 0 0
\(220\) −17.9969 + 11.8368i −1.21335 + 0.798034i
\(221\) −25.7262 3.00696i −1.73053 0.202270i
\(222\) 0 0
\(223\) −16.0838 + 8.07758i −1.07705 + 0.540915i −0.896678 0.442684i \(-0.854026\pi\)
−0.180372 + 0.983598i \(0.557730\pi\)
\(224\) 0.856110 4.85524i 0.0572012 0.324404i
\(225\) 0 0
\(226\) 4.32831 + 24.5471i 0.287915 + 1.63285i
\(227\) 0.366363 + 0.492111i 0.0243164 + 0.0326626i 0.814115 0.580704i \(-0.197222\pi\)
−0.789799 + 0.613366i \(0.789815\pi\)
\(228\) 0 0
\(229\) 3.42793 + 3.63340i 0.226524 + 0.240102i 0.830660 0.556779i \(-0.187963\pi\)
−0.604136 + 0.796881i \(0.706482\pi\)
\(230\) 3.48531 11.6417i 0.229814 0.767633i
\(231\) 0 0
\(232\) −0.710282 + 0.0830200i −0.0466323 + 0.00545053i
\(233\) −10.0792 + 8.45747i −0.660311 + 0.554067i −0.910180 0.414213i \(-0.864057\pi\)
0.249869 + 0.968280i \(0.419613\pi\)
\(234\) 0 0
\(235\) −24.9453 20.9316i −1.62725 1.36543i
\(236\) 2.62707 + 1.72785i 0.171008 + 0.112474i
\(237\) 0 0
\(238\) −5.58285 + 7.49907i −0.361882 + 0.486092i
\(239\) 8.13043 + 4.08325i 0.525914 + 0.264124i 0.691886 0.722007i \(-0.256780\pi\)
−0.165972 + 0.986130i \(0.553076\pi\)
\(240\) 0 0
\(241\) −13.8660 3.28630i −0.893188 0.211689i −0.241702 0.970350i \(-0.577706\pi\)
−0.651486 + 0.758661i \(0.725854\pi\)
\(242\) 6.10626 0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) −17.8482 4.23011i −1.14028 0.270252i
\(246\) 0 0
\(247\) 2.33315 + 1.17175i 0.148455 + 0.0745568i
\(248\) 0.769484 1.03360i 0.0488623 0.0656335i
\(249\) 0 0
\(250\) 10.9164 + 7.17981i 0.690412 + 0.454091i
\(251\) −6.58379 5.52445i −0.415565 0.348700i 0.410908 0.911677i \(-0.365212\pi\)
−0.826473 + 0.562976i \(0.809656\pi\)
\(252\) 0 0
\(253\) −6.23640 + 5.23296i −0.392079 + 0.328993i
\(254\) −20.0076 + 2.33855i −1.25539 + 0.146734i
\(255\) 0 0
\(256\) −4.21050 + 14.0640i −0.263156 + 0.879003i
\(257\) −15.2323 16.1453i −0.950164 1.00711i −0.999965 0.00835579i \(-0.997340\pi\)
0.0498011 0.998759i \(-0.484141\pi\)
\(258\) 0 0
\(259\) 1.54182 + 2.07102i 0.0958038 + 0.128687i
\(260\) 3.41594 + 19.3728i 0.211848 + 1.20145i
\(261\) 0 0
\(262\) −1.92625 + 10.9243i −0.119004 + 0.674906i
\(263\) −4.70276 + 2.36182i −0.289985 + 0.145636i −0.587845 0.808974i \(-0.700023\pi\)
0.297860 + 0.954610i \(0.403727\pi\)
\(264\) 0 0
\(265\) 15.4002 + 1.80003i 0.946029 + 0.110575i
\(266\) 0.787350 0.517848i 0.0482755 0.0317513i
\(267\) 0 0
\(268\) 4.56041 + 15.2328i 0.278571 + 0.930493i
\(269\) 3.11423 5.39401i 0.189878 0.328878i −0.755331 0.655343i \(-0.772524\pi\)
0.945209 + 0.326465i \(0.105857\pi\)
\(270\) 0 0
\(271\) −3.65935 6.33818i −0.222290 0.385017i 0.733213 0.679999i \(-0.238020\pi\)
−0.955503 + 0.294982i \(0.904686\pi\)
\(272\) 19.9476 21.1432i 1.20950 1.28200i
\(273\) 0 0
\(274\) −1.78833 30.7045i −0.108037 1.85493i
\(275\) 3.94935 + 9.15562i 0.238155 + 0.552105i
\(276\) 0 0
\(277\) 1.08332 18.5999i 0.0650903 1.11756i −0.794731 0.606962i \(-0.792388\pi\)
0.859821 0.510595i \(-0.170575\pi\)
\(278\) −30.3926 + 11.0620i −1.82283 + 0.663456i
\(279\) 0 0
\(280\) 0.250307 + 0.0911045i 0.0149587 + 0.00544453i
\(281\) 0.404770 0.938363i 0.0241466 0.0559780i −0.905716 0.423885i \(-0.860666\pi\)
0.929863 + 0.367907i \(0.119925\pi\)
\(282\) 0 0
\(283\) −10.6678 + 2.52831i −0.634134 + 0.150293i −0.535096 0.844791i \(-0.679725\pi\)
−0.0990378 + 0.995084i \(0.531576\pi\)
\(284\) 13.7212 3.25199i 0.814204 0.192970i
\(285\) 0 0
\(286\) 10.2436 23.7473i 0.605716 1.40421i
\(287\) −5.19387 1.89041i −0.306584 0.111588i
\(288\) 0 0
\(289\) −37.9265 + 13.8041i −2.23097 + 0.812008i
\(290\) −1.47651 + 25.3508i −0.0867039 + 1.48865i
\(291\) 0 0
\(292\) 0.471135 + 1.09221i 0.0275711 + 0.0639170i
\(293\) 1.41173 + 24.2385i 0.0824741 + 1.41603i 0.745039 + 0.667021i \(0.232431\pi\)
−0.662565 + 0.749005i \(0.730532\pi\)
\(294\) 0 0
\(295\) 2.87450 3.04679i 0.167360 0.177391i
\(296\) 0.332457 + 0.575832i 0.0193237 + 0.0334696i
\(297\) 0 0
\(298\) 8.92609 15.4604i 0.517075 0.895599i
\(299\) 2.13229 + 7.12235i 0.123314 + 0.411896i
\(300\) 0 0
\(301\) 0.896168 0.589419i 0.0516543 0.0339735i
\(302\) −1.98136 0.231588i −0.114015 0.0133264i
\(303\) 0 0
\(304\) −2.61839 + 1.31500i −0.150175 + 0.0754206i
\(305\) 1.45337 8.24247i 0.0832198 0.471963i
\(306\) 0 0
\(307\) −4.31169 24.4528i −0.246081 1.39560i −0.817968 0.575264i \(-0.804899\pi\)
0.571887 0.820333i \(-0.306212\pi\)
\(308\) −2.84051 3.81547i −0.161853 0.217407i
\(309\) 0 0
\(310\) −31.4005 33.2826i −1.78343 1.89032i
\(311\) 0.530789 1.77296i 0.0300983 0.100535i −0.941621 0.336676i \(-0.890697\pi\)
0.971719 + 0.236140i \(0.0758826\pi\)
\(312\) 0 0
\(313\) 6.90453 0.807024i 0.390267 0.0456157i 0.0813032 0.996689i \(-0.474092\pi\)
0.308964 + 0.951074i \(0.400018\pi\)
\(314\) 28.1521 23.6225i 1.58872 1.33309i
\(315\) 0 0
\(316\) 14.6687 + 12.3085i 0.825178 + 0.692406i
\(317\) 21.7538 + 14.3077i 1.22182 + 0.803602i 0.985763 0.168138i \(-0.0537754\pi\)
0.236054 + 0.971740i \(0.424146\pi\)
\(318\) 0 0
\(319\) 10.1587 13.6455i 0.568779 0.764003i
\(320\) −21.3011 10.6978i −1.19077 0.598026i
\(321\) 0 0
\(322\) 2.61120 + 0.618865i 0.145516 + 0.0344880i
\(323\) 5.78196 0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) 33.6930 + 7.98538i 1.86608 + 0.442269i
\(327\) 0 0
\(328\) −1.27200 0.638822i −0.0702344 0.0352730i
\(329\) 4.29411 5.76800i 0.236742 0.318000i
\(330\) 0 0
\(331\) 21.7523 + 14.3067i 1.19562 + 0.786369i 0.981691 0.190481i \(-0.0610049\pi\)
0.213925 + 0.976850i \(0.431375\pi\)
\(332\) 9.85078 + 8.26579i 0.540632 + 0.453644i
\(333\) 0 0
\(334\) −9.12878 + 7.65996i −0.499505 + 0.419134i
\(335\) 21.0390 2.45911i 1.14949 0.134356i
\(336\) 0 0
\(337\) 4.31097 14.3996i 0.234834 0.784399i −0.756610 0.653866i \(-0.773146\pi\)
0.991444 0.130533i \(-0.0416688\pi\)
\(338\) 1.80732 + 1.91565i 0.0983053 + 0.104197i
\(339\) 0 0
\(340\) 26.0148 + 34.9440i 1.41085 + 1.89510i
\(341\) 5.32295 + 30.1880i 0.288254 + 1.63477i
\(342\) 0 0
\(343\) 1.44640 8.20293i 0.0780981 0.442917i
\(344\) 0.246849 0.123972i 0.0133092 0.00668413i
\(345\) 0 0
\(346\) 18.0371 + 2.10823i 0.969679 + 0.113339i
\(347\) −21.2399 + 13.9697i −1.14022 + 0.749931i −0.971805 0.235786i \(-0.924234\pi\)
−0.168410 + 0.985717i \(0.553863\pi\)
\(348\) 0 0
\(349\) 8.39345 + 28.0361i 0.449291 + 1.50074i 0.820205 + 0.572070i \(0.193859\pi\)
−0.370913 + 0.928667i \(0.620955\pi\)
\(350\) 1.64339 2.84643i 0.0878427 0.152148i
\(351\) 0 0
\(352\) 15.1016 + 26.1568i 0.804920 + 1.39416i
\(353\) 19.6894 20.8696i 1.04796 1.11077i 0.0542820 0.998526i \(-0.482713\pi\)
0.993680 0.112249i \(-0.0358055\pi\)
\(354\) 0 0
\(355\) −1.09225 18.7533i −0.0579708 0.995321i
\(356\) 3.78985 + 8.78586i 0.200862 + 0.465650i
\(357\) 0 0
\(358\) 0.151342 2.59845i 0.00799870 0.137332i
\(359\) −19.5984 + 7.13322i −1.03436 + 0.376477i −0.802740 0.596329i \(-0.796625\pi\)
−0.231622 + 0.972806i \(0.574403\pi\)
\(360\) 0 0
\(361\) 17.3065 + 6.29905i 0.910868 + 0.331529i
\(362\) 2.97272 6.89153i 0.156242 0.362211i
\(363\) 0 0
\(364\) −4.22691 + 1.00180i −0.221550 + 0.0525083i
\(365\) 1.54187 0.365430i 0.0807053 0.0191275i
\(366\) 0 0
\(367\) −13.6912 + 31.7398i −0.714675 + 1.65680i 0.0387337 + 0.999250i \(0.487668\pi\)
−0.753408 + 0.657553i \(0.771592\pi\)
\(368\) −7.84042 2.85368i −0.408710 0.148758i
\(369\) 0 0
\(370\) 22.1871 8.07544i 1.15345 0.419822i
\(371\) −0.199083 + 3.41812i −0.0103359 + 0.177460i
\(372\) 0 0
\(373\) −3.71104 8.60317i −0.192151 0.445455i 0.794718 0.606978i \(-0.207619\pi\)
−0.986869 + 0.161523i \(0.948359\pi\)
\(374\) −3.33021 57.1775i −0.172201 2.95658i
\(375\) 0 0
\(376\) 1.27082 1.34699i 0.0655374 0.0694656i
\(377\) −7.76787 13.4543i −0.400065 0.692934i
\(378\) 0 0
\(379\) 0.963771 1.66930i 0.0495056 0.0857462i −0.840211 0.542260i \(-0.817569\pi\)
0.889716 + 0.456514i \(0.150902\pi\)
\(380\) −1.25944 4.20682i −0.0646078 0.215805i
\(381\) 0 0
\(382\) 12.2996 8.08957i 0.629302 0.413899i
\(383\) 19.3602 + 2.26289i 0.989263 + 0.115628i 0.595304 0.803500i \(-0.297031\pi\)
0.393958 + 0.919128i \(0.371106\pi\)
\(384\) 0 0
\(385\) −5.66264 + 2.84389i −0.288595 + 0.144938i
\(386\) −3.37590 + 19.1457i −0.171829 + 0.974489i
\(387\) 0 0
\(388\) −3.79483 21.5216i −0.192653 1.09259i
\(389\) 5.45798 + 7.33134i 0.276730 + 0.371714i 0.918659 0.395051i \(-0.129273\pi\)
−0.641929 + 0.766764i \(0.721866\pi\)
\(390\) 0 0
\(391\) 11.2988 + 11.9760i 0.571403 + 0.605652i
\(392\) 0.299170 0.999299i 0.0151104 0.0504722i
\(393\) 0 0
\(394\) −9.90173 + 1.15735i −0.498842 + 0.0583062i
\(395\) 19.5409 16.3967i 0.983208 0.825009i
\(396\) 0 0
\(397\) 25.5466 + 21.4361i 1.28215 + 1.07585i 0.992944 + 0.118581i \(0.0378344\pi\)
0.289202 + 0.957268i \(0.406610\pi\)
\(398\) −4.24716 2.79340i −0.212891 0.140021i
\(399\) 0 0
\(400\) −6.10248 + 8.19705i −0.305124 + 0.409853i
\(401\) 3.17125 + 1.59266i 0.158365 + 0.0795337i 0.526216 0.850351i \(-0.323610\pi\)
−0.367852 + 0.929885i \(0.619907\pi\)
\(402\) 0 0
\(403\) 27.2394 + 6.45586i 1.35689 + 0.321589i
\(404\) −5.08795 −0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) −15.3911 3.64776i −0.762910 0.180813i
\(408\) 0 0
\(409\) −28.6274 14.3772i −1.41553 0.710908i −0.433772 0.901023i \(-0.642818\pi\)
−0.981762 + 0.190115i \(0.939114\pi\)
\(410\) −30.1833 + 40.5432i −1.49065 + 2.00228i
\(411\) 0 0
\(412\) −29.6143 19.4776i −1.45899 0.959593i
\(413\) 0.708579 + 0.594568i 0.0348669 + 0.0292568i
\(414\) 0 0
\(415\) 13.1227 11.0113i 0.644168 0.540522i
\(416\) 27.3962 3.20215i 1.34321 0.156998i
\(417\) 0 0
\(418\) −1.65579 + 5.53074i −0.0809875 + 0.270517i
\(419\) −10.1803 10.7904i −0.497338 0.527147i 0.429270 0.903176i \(-0.358771\pi\)
−0.926608 + 0.376029i \(0.877289\pi\)
\(420\) 0 0
\(421\) −9.30357 12.4969i −0.453428 0.609060i 0.515353 0.856978i \(-0.327661\pi\)
−0.968781 + 0.247918i \(0.920254\pi\)
\(422\) 2.45037 + 13.8968i 0.119282 + 0.676484i
\(423\) 0 0
\(424\) −0.153114 + 0.868355i −0.00743589 + 0.0421710i
\(425\) 18.0209 9.05042i 0.874141 0.439010i
\(426\) 0 0
\(427\) 1.83573 + 0.214566i 0.0888373 + 0.0103836i
\(428\) −1.39602 + 0.918178i −0.0674793 + 0.0443818i
\(429\) 0 0
\(430\) −2.81323 9.39684i −0.135666 0.453156i
\(431\) 0.648713 1.12360i 0.0312474 0.0541221i −0.849979 0.526817i \(-0.823385\pi\)
0.881226 + 0.472695i \(0.156719\pi\)
\(432\) 0 0
\(433\) −8.76506 15.1815i −0.421222 0.729577i 0.574838 0.818268i \(-0.305065\pi\)
−0.996059 + 0.0886901i \(0.971732\pi\)
\(434\) 6.93403 7.34965i 0.332844 0.352794i
\(435\) 0 0
\(436\) 0.510196 + 8.75972i 0.0244339 + 0.419515i
\(437\) −0.657352 1.52391i −0.0314454 0.0728986i
\(438\) 0 0
\(439\) −1.26280 + 21.6815i −0.0602702 + 1.03480i 0.823631 + 0.567126i \(0.191945\pi\)
−0.883901 + 0.467674i \(0.845092\pi\)
\(440\) −1.53345 + 0.558129i −0.0731042 + 0.0266077i
\(441\) 0 0
\(442\) −49.1506 17.8894i −2.33786 0.850910i
\(443\) −3.62162 + 8.39585i −0.172068 + 0.398899i −0.982327 0.187174i \(-0.940067\pi\)
0.810259 + 0.586072i \(0.199327\pi\)
\(444\) 0 0
\(445\) 12.4030 2.93955i 0.587956 0.139348i
\(446\) −35.3658 + 8.38185i −1.67462 + 0.396892i
\(447\) 0 0
\(448\) 2.08485 4.83323i 0.0984999 0.228348i
\(449\) 11.6732 + 4.24870i 0.550893 + 0.200509i 0.602443 0.798162i \(-0.294194\pi\)
−0.0515501 + 0.998670i \(0.516416\pi\)
\(450\) 0 0
\(451\) 31.8189 11.5811i 1.49829 0.545335i
\(452\) −1.49133 + 25.6052i −0.0701464 + 1.20437i
\(453\) 0 0
\(454\) 0.490711 + 1.13760i 0.0230302 + 0.0533901i
\(455\) 0.336476 + 5.77706i 0.0157742 + 0.270833i
\(456\) 0 0
\(457\) 12.8292 13.5982i 0.600125 0.636096i −0.354092 0.935211i \(-0.615210\pi\)
0.954217 + 0.299115i \(0.0966914\pi\)
\(458\) 5.04367 + 8.73589i 0.235675 + 0.408201i
\(459\) 0 0
\(460\) 6.25233 10.8293i 0.291516 0.504921i
\(461\) 11.7824 + 39.3560i 0.548762 + 1.83299i 0.553268 + 0.833003i \(0.313381\pi\)
−0.00450593 + 0.999990i \(0.501434\pi\)
\(462\) 0 0
\(463\) 3.45041 2.26937i 0.160354 0.105466i −0.466796 0.884365i \(-0.654592\pi\)
0.627150 + 0.778899i \(0.284221\pi\)
\(464\) 17.3172 + 2.02408i 0.803929 + 0.0939658i
\(465\) 0 0
\(466\) −23.7440 + 11.9247i −1.09992 + 0.552399i
\(467\) 4.38922 24.8925i 0.203109 1.15189i −0.697279 0.716799i \(-0.745606\pi\)
0.900388 0.435087i \(-0.143283\pi\)
\(468\) 0 0
\(469\) 0.812254 + 4.60652i 0.0375064 + 0.212710i
\(470\) −39.2686 52.7469i −1.81132 2.43303i
\(471\) 0 0
\(472\) 0.163468 + 0.173266i 0.00752424 + 0.00797523i
\(473\) −1.88464 + 6.29513i −0.0866558 + 0.289450i
\(474\) 0 0
\(475\) −2.01898 + 0.235985i −0.0926371 + 0.0108277i
\(476\) −7.36945 + 6.18370i −0.337778 + 0.283430i
\(477\) 0 0
\(478\) 14.0744 + 11.8098i 0.643748 + 0.540168i
\(479\) −17.3799 11.4309i −0.794107 0.522293i 0.0864365 0.996257i \(-0.472452\pi\)
−0.880544 + 0.473965i \(0.842822\pi\)
\(480\) 0 0
\(481\) −8.62600 + 11.5867i −0.393312 + 0.528309i
\(482\) −25.7157 12.9149i −1.17132 0.588258i
\(483\) 0 0
\(484\) 6.11397 + 1.44904i 0.277908 + 0.0658653i
\(485\) −29.1122 −1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) 0.463139 + 0.109766i 0.0209653 + 0.00496887i
\(489\) 0 0
\(490\) −33.1011 16.6240i −1.49536 0.750996i
\(491\) 21.8233 29.3138i 0.984873 1.32291i 0.0387011 0.999251i \(-0.487678\pi\)
0.946172 0.323664i \(-0.104915\pi\)
\(492\) 0 0
\(493\) −28.7451 18.9059i −1.29461 0.851480i
\(494\) 4.03886 + 3.38900i 0.181717 + 0.152479i
\(495\) 0 0
\(496\) −24.0663 + 20.1941i −1.08061 + 0.906740i
\(497\) 4.12017 0.481579i 0.184815 0.0216018i
\(498\) 0 0
\(499\) −10.4379 + 34.8650i −0.467264 + 1.56077i 0.322014 + 0.946735i \(0.395640\pi\)
−0.789278 + 0.614036i \(0.789545\pi\)
\(500\) 9.22635 + 9.77936i 0.412615 + 0.437346i
\(501\) 0 0
\(502\) −10.3641 13.9214i −0.462574 0.621344i
\(503\) −1.38230 7.83939i −0.0616335 0.349541i −0.999992 0.00387871i \(-0.998765\pi\)
0.938359 0.345662i \(-0.112346\pi\)
\(504\) 0 0
\(505\) −1.17697 + 6.67494i −0.0523746 + 0.297031i
\(506\) −14.6913 + 7.37825i −0.653108 + 0.328003i
\(507\) 0 0
\(508\) −20.5878 2.40637i −0.913436 0.106765i
\(509\) −1.39427 + 0.917026i −0.0617999 + 0.0406464i −0.580033 0.814593i \(-0.696960\pi\)
0.518233 + 0.855239i \(0.326590\pi\)
\(510\) 0 0
\(511\) 0.100357 + 0.335217i 0.00443955 + 0.0148291i
\(512\) −16.0816 + 27.8541i −0.710711 + 1.23099i
\(513\) 0 0
\(514\) −22.4119 38.8186i −0.988548 1.71221i
\(515\) −32.4034 + 34.3456i −1.42787 + 1.51345i
\(516\) 0 0
\(517\) 2.56147 + 43.9788i 0.112653 + 1.93418i
\(518\) 2.06513 + 4.78750i 0.0907364 + 0.210351i
\(519\) 0 0
\(520\) −0.0866515 + 1.48775i −0.00379992 + 0.0652421i
\(521\) −32.9725 + 12.0010i −1.44455 + 0.525773i −0.941063 0.338230i \(-0.890172\pi\)
−0.503486 + 0.864003i \(0.667950\pi\)
\(522\) 0 0
\(523\) 11.3086 + 4.11600i 0.494491 + 0.179980i 0.577214 0.816593i \(-0.304140\pi\)
−0.0827236 + 0.996573i \(0.526362\pi\)
\(524\) −4.52106 + 10.4810i −0.197503 + 0.457864i
\(525\) 0 0
\(526\) −10.3407 + 2.45078i −0.450874 + 0.106859i
\(527\) 60.3238 14.2970i 2.62775 0.622788i
\(528\) 0 0
\(529\) −7.23796 + 16.7795i −0.314694 + 0.729543i
\(530\) 29.4226 + 10.7089i 1.27803 + 0.465167i
\(531\) 0 0
\(532\) 0.911231 0.331661i 0.0395069 0.0143793i
\(533\) 1.79801 30.8707i 0.0778807 1.33716i
\(534\) 0 0
\(535\) 0.881633 + 2.04385i 0.0381163 + 0.0883635i
\(536\) 0.0700415 + 1.20257i 0.00302533 + 0.0519429i
\(537\) 0 0
\(538\) 8.63136 9.14870i 0.372124 0.394429i
\(539\) 12.4073 + 21.4900i 0.534420 + 0.925642i
\(540\) 0 0
\(541\) −9.81306 + 16.9967i −0.421896 + 0.730746i −0.996125 0.0879490i \(-0.971969\pi\)
0.574229 + 0.818695i \(0.305302\pi\)
\(542\) −4.23876 14.1585i −0.182071 0.608158i
\(543\) 0 0
\(544\) 51.0350 33.5662i 2.18811 1.43914i
\(545\) 11.6100 + 1.35701i 0.497318 + 0.0581281i
\(546\) 0 0
\(547\) 7.79596 3.91528i 0.333331 0.167405i −0.274259 0.961656i \(-0.588433\pi\)
0.607590 + 0.794251i \(0.292136\pi\)
\(548\) 5.49569 31.1676i 0.234764 1.33141i
\(549\) 0 0
\(550\) 3.49651 + 19.8297i 0.149092 + 0.845540i
\(551\) 2.07097 + 2.78180i 0.0882264 + 0.118509i
\(552\) 0 0
\(553\) 3.86560 + 4.09729i 0.164382 + 0.174235i
\(554\) 10.7907 36.0435i 0.458453 1.53134i
\(555\) 0 0
\(556\) −33.0560 + 3.86370i −1.40189 + 0.163857i
\(557\) −15.1698 + 12.7290i −0.642765 + 0.539344i −0.904866 0.425696i \(-0.860029\pi\)
0.262101 + 0.965041i \(0.415585\pi\)
\(558\) 0 0
\(559\) 4.59706 + 3.85739i 0.194435 + 0.163150i
\(560\) −5.42593 3.56869i −0.229287 0.150805i
\(561\) 0 0
\(562\) 1.23236 1.65534i 0.0519839 0.0698264i
\(563\) −30.3446 15.2396i −1.27887 0.642274i −0.325922 0.945397i \(-0.605675\pi\)
−0.952952 + 0.303122i \(0.901971\pi\)
\(564\) 0 0
\(565\) 33.2467 + 7.87962i 1.39870 + 0.331498i
\(566\) −22.1392 −0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) 18.7206 + 4.43686i 0.784807 + 0.186003i 0.603435 0.797412i \(-0.293798\pi\)
0.181372 + 0.983415i \(0.441946\pi\)
\(570\) 0 0
\(571\) −2.22239 1.11613i −0.0930042 0.0467085i 0.401689 0.915776i \(-0.368423\pi\)
−0.494693 + 0.869068i \(0.664720\pi\)
\(572\) 15.8918 21.3464i 0.664471 0.892539i
\(573\) 0 0
\(574\) −9.32538 6.13340i −0.389234 0.256003i
\(575\) −4.43416 3.72070i −0.184917 0.155164i
\(576\) 0 0
\(577\) 19.5278 16.3857i 0.812951 0.682147i −0.138359 0.990382i \(-0.544183\pi\)
0.951310 + 0.308235i \(0.0997383\pi\)
\(578\) −80.9528 + 9.46203i −3.36719 + 0.393568i
\(579\) 0 0
\(580\) −7.49420 + 25.0324i −0.311180 + 1.03941i
\(581\) 2.59595 + 2.75155i 0.107698 + 0.114153i
\(582\) 0 0
\(583\) −12.5259 16.8252i −0.518768 0.696827i
\(584\) 0.0156480 + 0.0887440i 0.000647517 + 0.00367225i
\(585\) 0 0
\(586\) −8.51396 + 48.2851i −0.351709 + 1.99464i
\(587\) −0.800141 + 0.401846i −0.0330254 + 0.0165860i −0.465235 0.885187i \(-0.654030\pi\)
0.432210 + 0.901773i \(0.357734\pi\)
\(588\) 0 0
\(589\) −6.20685 0.725476i −0.255749 0.0298927i
\(590\) 7.06717 4.64815i 0.290951 0.191361i
\(591\) 0 0
\(592\) −4.64938 15.5300i −0.191088 0.638280i
\(593\) 16.2145 28.0843i 0.665848 1.15328i −0.313207 0.949685i \(-0.601403\pi\)
0.979055 0.203597i \(-0.0652634\pi\)
\(594\) 0 0
\(595\) 6.40773 + 11.0985i 0.262691 + 0.454994i
\(596\) 12.6062 13.3618i 0.516369 0.547319i
\(597\) 0 0
\(598\) 0.872961 + 14.9882i 0.0356980 + 0.612911i
\(599\) 16.6725 + 38.6512i 0.681221 + 1.57925i 0.809242 + 0.587476i \(0.199878\pi\)
−0.128021 + 0.991771i \(0.540863\pi\)
\(600\) 0 0
\(601\) 1.79898 30.8872i 0.0733818 1.25992i −0.737758 0.675065i \(-0.764116\pi\)
0.811140 0.584852i \(-0.198847\pi\)
\(602\) 2.03543 0.740836i 0.0829580 0.0301942i
\(603\) 0 0
\(604\) −1.92891 0.702064i −0.0784861 0.0285666i
\(605\) 3.31532 7.68578i 0.134787 0.312472i
\(606\) 0 0
\(607\) −14.5707 + 3.45331i −0.591406 + 0.140166i −0.515412 0.856943i \(-0.672361\pi\)
−0.0759938 + 0.997108i \(0.524213\pi\)
\(608\) −5.99131 + 1.41997i −0.242980 + 0.0575873i
\(609\) 0 0
\(610\) 6.69437 15.5193i 0.271047 0.628358i
\(611\) 37.8048 + 13.7598i 1.52942 + 0.556663i
\(612\) 0 0
\(613\) 17.2467 6.27730i 0.696589 0.253538i 0.0306353 0.999531i \(-0.490247\pi\)
0.665954 + 0.745993i \(0.268025\pi\)
\(614\) 2.91548 50.0568i 0.117659 2.02013i
\(615\) 0 0
\(616\) −0.142730 0.330885i −0.00575075 0.0133317i
\(617\) −1.90572 32.7199i −0.0767212 1.31725i −0.788581 0.614931i \(-0.789184\pi\)
0.711860 0.702322i \(-0.247853\pi\)
\(618\) 0 0
\(619\) 4.11905 4.36594i 0.165559 0.175482i −0.639283 0.768972i \(-0.720769\pi\)
0.804842 + 0.593490i \(0.202250\pi\)
\(620\) −23.5420 40.7760i −0.945471 1.63760i
\(621\) 0 0
\(622\) 1.86865 3.23661i 0.0749262 0.129776i
\(623\) 0.807283 + 2.69651i 0.0323431 + 0.108033i
\(624\) 0 0
\(625\) 26.0869 17.1576i 1.04348 0.686305i
\(626\) 13.9430 + 1.62970i 0.557273 + 0.0651359i
\(627\) 0 0
\(628\) 33.7934 16.9717i 1.34850 0.677243i
\(629\) −5.55497 + 31.5038i −0.221491 + 1.25614i
\(630\) 0 0
\(631\) −4.24361 24.0667i −0.168935 0.958080i −0.944914 0.327320i \(-0.893854\pi\)
0.775978 0.630760i \(-0.217257\pi\)
\(632\) 0.866267 + 1.16360i 0.0344582 + 0.0462854i
\(633\) 0 0
\(634\) 36.0823 + 38.2450i 1.43301 + 1.51890i
\(635\) −7.91942 + 26.4527i −0.314273 + 1.04974i
\(636\) 0 0
\(637\) 22.5083 2.63084i 0.891811 0.104238i
\(638\) 26.3163 22.0820i 1.04187 0.874234i
\(639\) 0 0
\(640\) −2.66848 2.23912i −0.105481 0.0885089i
\(641\) 8.61817 + 5.66826i 0.340397 + 0.223883i 0.708185 0.706027i \(-0.249514\pi\)
−0.367788 + 0.929910i \(0.619885\pi\)
\(642\) 0 0
\(643\) −25.8610 + 34.7374i −1.01986 + 1.36991i −0.0925089 + 0.995712i \(0.529489\pi\)
−0.927350 + 0.374196i \(0.877919\pi\)
\(644\) 2.46763 + 1.23929i 0.0972383 + 0.0488349i
\(645\) 0 0
\(646\) 11.3613 + 2.69268i 0.447005 + 0.105942i
\(647\) −6.50021 −0.255550 −0.127775 0.991803i \(-0.540783\pi\)
−0.127775 + 0.991803i \(0.540783\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) 17.8928 + 4.24068i 0.701815 + 0.166333i
\(651\) 0 0
\(652\) 31.8405 + 15.9909i 1.24697 + 0.626252i
\(653\) −1.77780 + 2.38800i −0.0695706 + 0.0934496i −0.835546 0.549420i \(-0.814849\pi\)
0.765976 + 0.642869i \(0.222256\pi\)
\(654\) 0 0
\(655\) 12.7043 + 8.35574i 0.496397 + 0.326486i
\(656\) 26.5844 + 22.3070i 1.03795 + 0.870941i
\(657\) 0 0
\(658\) 11.1240 9.33410i 0.433657 0.363881i
\(659\) −27.9198 + 3.26336i −1.08760 + 0.127123i −0.640948 0.767584i \(-0.721459\pi\)
−0.446654 + 0.894707i \(0.647385\pi\)
\(660\) 0 0
\(661\) 0.932296 3.11408i 0.0362621 0.121124i −0.937942 0.346791i \(-0.887271\pi\)
0.974204 + 0.225668i \(0.0724563\pi\)
\(662\) 36.0798 + 38.2423i 1.40228 + 1.48633i
\(663\) 0 0
\(664\) 0.581743 + 0.781417i 0.0225760 + 0.0303248i
\(665\) −0.224319 1.27217i −0.00869871 0.0493328i
\(666\) 0 0
\(667\) −1.71488 + 9.72556i −0.0664004 + 0.376575i
\(668\) −10.9580 + 5.50333i −0.423979 + 0.212930i
\(669\) 0 0
\(670\) 42.4861 + 4.96591i 1.64138 + 0.191850i
\(671\) −9.45999 + 6.22193i −0.365199 + 0.240195i
\(672\) 0 0
\(673\) −3.98495 13.3107i −0.153609 0.513088i 0.846196 0.532872i \(-0.178887\pi\)
−0.999804 + 0.0197840i \(0.993702\pi\)
\(674\) 15.1769 26.2871i 0.584591 1.01254i
\(675\) 0 0
\(676\) 1.35501 + 2.34695i 0.0521158 + 0.0902672i
\(677\) −7.45030 + 7.89686i −0.286338 + 0.303501i −0.854537 0.519390i \(-0.826159\pi\)
0.568199 + 0.822891i \(0.307641\pi\)
\(678\) 0 0
\(679\) −0.373797 6.41784i −0.0143450 0.246294i
\(680\) 1.30719 + 3.03041i 0.0501285 + 0.116211i
\(681\) 0 0
\(682\) −3.59927 + 61.7971i −0.137823 + 2.36633i
\(683\) 31.5858 11.4963i 1.20860 0.439893i 0.342380 0.939562i \(-0.388767\pi\)
0.866217 + 0.499668i \(0.166545\pi\)
\(684\) 0 0
\(685\) −39.6178 14.4197i −1.51372 0.550949i
\(686\) 6.66226 15.4448i 0.254366 0.589687i
\(687\) 0 0
\(688\) −6.55316 + 1.55313i −0.249837 + 0.0592124i
\(689\) −18.6395 + 4.41763i −0.710107 + 0.168298i
\(690\) 0 0
\(691\) −0.177311 + 0.411052i −0.00674522 + 0.0156372i −0.921555 0.388247i \(-0.873081\pi\)
0.914810 + 0.403884i \(0.132340\pi\)
\(692\) 17.5595 + 6.39115i 0.667513 + 0.242955i
\(693\) 0 0
\(694\) −48.2412 + 17.5584i −1.83121 + 0.666507i
\(695\) −2.57787 + 44.2604i −0.0977843 + 1.67889i
\(696\) 0 0
\(697\) −27.1242 62.8808i −1.02740 2.38178i
\(698\) 3.43628 + 58.9987i 0.130065 + 2.23313i
\(699\) 0 0
\(700\) 2.32093 2.46004i 0.0877228 0.0929807i
\(701\) −1.94332 3.36593i −0.0733982 0.127129i 0.826990 0.562216i \(-0.190051\pi\)
−0.900389 + 0.435087i \(0.856718\pi\)
\(702\) 0 0
\(703\) 1.61229 2.79256i 0.0608086 0.105324i
\(704\) 9.24849 + 30.8921i 0.348566 + 1.16429i
\(705\) 0 0
\(706\) 48.4080 31.8384i 1.82186 1.19826i
\(707\) −1.48662 0.173761i −0.0559100 0.00653494i
\(708\) 0 0
\(709\) −13.1721 + 6.61529i −0.494690 + 0.248442i −0.678610 0.734499i \(-0.737417\pi\)
0.183921 + 0.982941i \(0.441121\pi\)
\(710\) 6.58725 37.3581i 0.247215 1.40203i
\(711\) 0 0
\(712\) 0.125874 + 0.713864i 0.00471731 + 0.0267532i
\(713\) −10.6264 14.2737i −0.397962 0.534555i
\(714\) 0 0
\(715\) −24.3284 25.7866i −0.909832 0.964366i
\(716\) 0.768154 2.56581i 0.0287073 0.0958890i
\(717\) 0 0
\(718\) −41.8320 + 4.88946i −1.56116 + 0.182473i
\(719\) −24.7821 + 20.7947i −0.924218 + 0.775511i −0.974770 0.223210i \(-0.928346\pi\)
0.0505523 + 0.998721i \(0.483902\pi\)
\(720\) 0 0
\(721\) −7.98762 6.70241i −0.297474 0.249611i
\(722\) 31.0731 + 20.4371i 1.15642 + 0.760590i
\(723\) 0 0
\(724\) 4.61185 6.19479i 0.171398 0.230228i
\(725\) 10.8090 + 5.42848i 0.401436 + 0.201609i
\(726\) 0 0
\(727\) −8.98140 2.12863i −0.333102 0.0789465i 0.0606617 0.998158i \(-0.480679\pi\)
−0.393763 + 0.919212i \(0.628827\pi\)
\(728\) −0.329090 −0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) 12.9315 + 3.06483i 0.478291 + 0.113357i
\(732\) 0 0
\(733\) −47.3569 23.7835i −1.74917 0.878464i −0.966756 0.255699i \(-0.917694\pi\)
−0.782409 0.622765i \(-0.786009\pi\)
\(734\) −41.6840 + 55.9914i −1.53859 + 2.06668i
\(735\) 0 0
\(736\) −14.6490 9.63480i −0.539969 0.355143i
\(737\) −21.9518 18.4198i −0.808606 0.678501i
\(738\) 0 0
\(739\) 2.18316 1.83188i 0.0803087 0.0673870i −0.601750 0.798685i \(-0.705529\pi\)
0.682058 + 0.731298i \(0.261085\pi\)
\(740\) 24.1314 2.82056i 0.887088 0.103686i
\(741\) 0 0
\(742\) −1.98303 + 6.62377i −0.0727992 + 0.243166i
\(743\) −20.1842 21.3940i −0.740485 0.784868i 0.242185 0.970230i \(-0.422136\pi\)
−0.982670 + 0.185362i \(0.940654\pi\)
\(744\) 0 0
\(745\) −14.6133 19.6291i −0.535390 0.719154i
\(746\) −3.28553 18.6331i −0.120292 0.682208i
\(747\) 0 0
\(748\) 10.2340 58.0400i 0.374193 2.12215i
\(749\) −0.439252 + 0.220601i −0.0160499 + 0.00806057i
\(750\) 0 0
\(751\) 27.2443 + 3.18440i 0.994159 + 0.116200i 0.597588 0.801804i \(-0.296126\pi\)
0.396571 + 0.918004i \(0.370200\pi\)
\(752\) −37.7218 + 24.8100i −1.37557 + 0.904728i
\(753\) 0 0
\(754\) −8.99781 30.0548i −0.327681 1.09453i
\(755\) −1.36725 + 2.36815i −0.0497593 + 0.0861857i
\(756\) 0 0
\(757\) 14.2323 + 24.6511i 0.517282 + 0.895959i 0.999799 + 0.0200719i \(0.00638952\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(758\) 2.67117 2.83128i 0.0970213 0.102837i
\(759\) 0 0
\(760\) −0.0193432 0.332110i −0.000701652 0.0120469i
\(761\) −11.0792 25.6846i −0.401622 0.931064i −0.992266 0.124132i \(-0.960385\pi\)
0.590644 0.806932i \(-0.298874\pi\)
\(762\) 0 0
\(763\) −0.150086 + 2.57687i −0.00543347 + 0.0932890i
\(764\) 14.2348 5.18104i 0.514997 0.187444i
\(765\) 0 0
\(766\) 36.9883 + 13.4626i 1.33644 + 0.486425i
\(767\) −2.04972 + 4.75178i −0.0740110 + 0.171577i
\(768\) 0 0
\(769\) 45.6978 10.8306i 1.64790 0.390561i 0.701277 0.712889i \(-0.252614\pi\)
0.946628 + 0.322328i \(0.104466\pi\)
\(770\) −12.4513 + 2.95101i −0.448713 + 0.106347i
\(771\) 0 0
\(772\) −7.92349 + 18.3687i −0.285173 + 0.661104i
\(773\) −41.5507 15.1232i −1.49447 0.543944i −0.539851 0.841761i \(-0.681519\pi\)
−0.954623 + 0.297816i \(0.903742\pi\)
\(774\) 0 0
\(775\) −20.4807 + 7.45437i −0.735689 + 0.267769i
\(776\) 0.0962627 1.65277i 0.00345563 0.0593309i
\(777\) 0 0
\(778\) 7.31048 + 16.9476i 0.262093 + 0.607601i
\(779\) 0.401371 + 6.89127i 0.0143806 + 0.246906i
\(780\) 0 0
\(781\) −17.4395 + 18.4848i −0.624034 + 0.661438i
\(782\) 16.6244 + 28.7942i 0.594486 + 1.02968i
\(783\) 0 0
\(784\) −12.7160 + 22.0247i −0.454143 + 0.786598i
\(785\) −14.4481 48.2599i −0.515673 1.72247i
\(786\) 0 0
\(787\) −30.4809 + 20.0476i −1.08653 + 0.714619i −0.960743 0.277439i \(-0.910514\pi\)
−0.125782 + 0.992058i \(0.540144\pi\)
\(788\) −10.1889 1.19091i −0.362963 0.0424243i
\(789\) 0 0
\(790\) 46.0331 23.1187i 1.63778 0.822526i
\(791\) −1.31019 + 7.43049i −0.0465852 + 0.264198i
\(792\) 0 0
\(793\) 1.79557 + 10.1832i 0.0637627 + 0.361616i
\(794\) 40.2152 + 54.0183i 1.42718 + 1.91704i
\(795\) 0 0
\(796\) −3.58964 3.80479i −0.127231 0.134857i
\(797\) −4.33567 + 14.4822i −0.153577 + 0.512984i −0.999803 0.0198402i \(-0.993684\pi\)
0.846226 + 0.532825i \(0.178869\pi\)
\(798\) 0 0
\(799\) 88.4924 10.3433i 3.13063 0.365919i
\(800\) −16.4507 + 13.8038i −0.581621 + 0.488038i
\(801\) 0 0
\(802\) 5.48967 + 4.60638i 0.193847 + 0.162657i
\(803\) −1.79102 1.17797i −0.0632036 0.0415697i
\(804\) 0 0
\(805\) 2.19666 2.95063i 0.0774223 0.103996i
\(806\) 50.5179 + 25.3710i 1.77942 + 0.893656i
\(807\) 0 0
\(808\) −0.375060 0.0888909i −0.0131946 0.00312717i
\(809\) 49.6978 1.74728 0.873641 0.486571i \(-0.161753\pi\)
0.873641 + 0.486571i \(0.161753\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) −5.61466 1.33070i −0.197036 0.0466984i
\(813\) 0 0
\(814\) −28.5442 14.3354i −1.00047 0.502456i
\(815\) 28.3442 38.0728i 0.992853 1.33363i
\(816\) 0 0
\(817\) −1.11923 0.736129i −0.0391569 0.0257539i
\(818\) −49.5562 41.5826i −1.73269 1.45390i
\(819\) 0 0
\(820\) −39.8424 + 33.4317i −1.39136 + 1.16749i
\(821\) −35.2243 + 4.11713i −1.22934 + 0.143689i −0.705860 0.708351i \(-0.749439\pi\)
−0.523476 + 0.852040i \(0.675365\pi\)
\(822\) 0 0
\(823\) 0.538945 1.80020i 0.0187864 0.0627511i −0.948082 0.318025i \(-0.896980\pi\)
0.966869 + 0.255274i \(0.0821656\pi\)
\(824\) −1.84273 1.95318i −0.0641947 0.0680424i
\(825\) 0 0
\(826\) 1.11544 + 1.49829i 0.0388110 + 0.0521322i
\(827\) −1.66995 9.47075i −0.0580698 0.329330i 0.941909 0.335869i \(-0.109030\pi\)
−0.999979 + 0.00653851i \(0.997919\pi\)
\(828\) 0 0
\(829\) −1.31856 + 7.47791i −0.0457954 + 0.259719i −0.999106 0.0422726i \(-0.986540\pi\)
0.953311 + 0.301991i \(0.0976513\pi\)
\(830\) 30.9136 15.5254i 1.07303 0.538894i
\(831\) 0 0
\(832\) 29.2498 + 3.41881i 1.01405 + 0.118526i
\(833\) 41.9296 27.5775i 1.45277 0.955505i
\(834\) 0 0
\(835\) 4.68501 + 15.6490i 0.162131 + 0.541557i
\(836\) −2.97035 + 5.14479i −0.102732 + 0.177936i
\(837\) 0 0
\(838\) −14.9786 25.9438i −0.517429 0.896213i
\(839\) −27.1907 + 28.8204i −0.938727 + 0.994992i −0.999995 0.00312917i \(-0.999004\pi\)
0.0612684 + 0.998121i \(0.480485\pi\)
\(840\) 0 0
\(841\) 0.486303 + 8.34951i 0.0167691 + 0.287914i
\(842\) −12.4613 28.8886i −0.429445 0.995566i
\(843\) 0 0
\(844\) −0.844283 + 14.4958i −0.0290614 + 0.498965i
\(845\) 3.39243 1.23475i 0.116703 0.0424765i
\(846\) 0 0
\(847\) 1.73692 + 0.632185i 0.0596811 + 0.0217221i
\(848\) 8.51479 19.7395i 0.292399 0.677858i
\(849\) 0 0
\(850\) 39.6251 9.39133i 1.35913 0.322120i
\(851\) 8.93479 2.11758i 0.306281 0.0725898i
\(852\) 0 0
\(853\) 1.36398 3.16206i 0.0467018 0.108267i −0.893268 0.449524i \(-0.851594\pi\)
0.939970 + 0.341257i \(0.110853\pi\)
\(854\) 3.50722 + 1.27652i 0.120015 + 0.0436817i
\(855\) 0 0
\(856\) −0.118950 + 0.0432941i −0.00406561 + 0.00147976i
\(857\) −1.28770 + 22.1090i −0.0439870 + 0.755228i 0.902142 + 0.431439i \(0.141994\pi\)
−0.946129 + 0.323789i \(0.895043\pi\)
\(858\) 0 0
\(859\) 14.1094 + 32.7093i 0.481407 + 1.11603i 0.969910 + 0.243464i \(0.0782838\pi\)
−0.488503 + 0.872562i \(0.662457\pi\)
\(860\) −0.586877 10.0763i −0.0200123 0.343598i
\(861\) 0 0
\(862\) 1.79796 1.90573i 0.0612389 0.0649094i
\(863\) −10.4873 18.1645i −0.356992 0.618328i 0.630465 0.776218i \(-0.282864\pi\)
−0.987457 + 0.157890i \(0.949531\pi\)
\(864\) 0 0
\(865\) 12.4466 21.5581i 0.423196 0.732998i
\(866\) −10.1529 33.9130i −0.345009 1.15241i
\(867\) 0 0
\(868\) 8.68688 5.71345i 0.294852 0.193927i
\(869\) −34.2758 4.00627i −1.16273 0.135903i
\(870\) 0 0
\(871\) −23.3861 + 11.7449i −0.792408 + 0.397962i
\(872\) −0.115431 + 0.654639i −0.00390897 + 0.0221689i
\(873\) 0 0
\(874\) −0.581978 3.30056i −0.0196857 0.111643i
\(875\) 2.36181 + 3.17246i 0.0798438 + 0.107249i
\(876\) 0 0
\(877\) −28.9686 30.7050i −0.978202 1.03683i −0.999313 0.0370560i \(-0.988202\pi\)
0.0211115 0.999777i \(-0.493279\pi\)
\(878\) −12.5785 + 42.0152i −0.424504 + 1.41794i
\(879\) 0 0
\(880\) 39.5168 4.61885i 1.33211 0.155702i
\(881\) 29.2913 24.5783i 0.986848 0.828064i 0.00173943 0.999998i \(-0.499446\pi\)
0.985108 + 0.171935i \(0.0550019\pi\)
\(882\) 0 0
\(883\) −22.0694 18.5184i −0.742693 0.623194i 0.190866 0.981616i \(-0.438870\pi\)
−0.933560 + 0.358422i \(0.883315\pi\)
\(884\) −44.9674 29.5756i −1.51242 0.994733i
\(885\) 0 0
\(886\) −11.0263 + 14.8109i −0.370437 + 0.497583i
\(887\) 12.2591 + 6.15675i 0.411620 + 0.206724i 0.642545 0.766248i \(-0.277879\pi\)
−0.230924 + 0.972972i \(0.574175\pi\)
\(888\) 0 0
\(889\) −5.93324 1.40620i −0.198994 0.0471625i
\(890\) 25.7403 0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) −8.73870 2.07111i −0.292429 0.0693070i
\(894\) 0 0
\(895\) −3.18843 1.60129i −0.106577 0.0535251i
\(896\) 0.459355 0.617021i 0.0153460 0.0206132i
\(897\) 0 0
\(898\) 20.9588 + 13.7848i 0.699404 + 0.460005i
\(899\) 28.4852 + 23.9019i 0.950035 + 0.797174i
\(900\) 0 0
\(901\) −32.4972 + 27.2684i −1.08264 + 0.908441i
\(902\) 67.9164 7.93828i 2.26137 0.264316i
\(903\) 0 0
\(904\) −0.557278 + 1.86144i −0.0185348 + 0.0619106i
\(905\) −7.06018 7.48335i −0.234688 0.248755i
\(906\) 0 0
\(907\) 33.8810 + 45.5101i 1.12500 + 1.51114i 0.831789 + 0.555092i \(0.187317\pi\)
0.293212 + 0.956047i \(0.405276\pi\)
\(908\) 0.221375 + 1.25548i 0.00734659 + 0.0416646i
\(909\) 0 0
\(910\) −2.02924 + 11.5084i −0.0672687 + 0.381500i
\(911\) 0.637799 0.320315i 0.0211312 0.0106125i −0.438202 0.898876i \(-0.644385\pi\)
0.459333 + 0.888264i \(0.348088\pi\)
\(912\) 0 0
\(913\) −23.0180 2.69042i −0.761784 0.0890398i
\(914\) 31.5416 20.7453i 1.04330 0.686192i
\(915\) 0 0
\(916\) 2.97698 + 9.94380i 0.0983621 + 0.328552i
\(917\) −1.67892 + 2.90797i −0.0554428 + 0.0960297i
\(918\) 0 0
\(919\) 28.6606 + 49.6416i 0.945425 + 1.63752i 0.754898 + 0.655842i \(0.227686\pi\)
0.190527 + 0.981682i \(0.438980\pi\)
\(920\) 0.650090 0.689055i 0.0214328 0.0227175i
\(921\) 0 0
\(922\) 4.82373 + 82.8202i 0.158861 + 2.72754i
\(923\) 9.19225 + 21.3100i 0.302567 + 0.701428i
\(924\) 0 0
\(925\) 0.653921 11.2274i 0.0215008 0.369155i
\(926\) 7.83677 2.85235i 0.257532 0.0937341i
\(927\) 0 0
\(928\) 34.4289 + 12.5311i 1.13018 + 0.411353i
\(929\) −5.92659 + 13.7394i −0.194445 + 0.450775i −0.987347 0.158575i \(-0.949310\pi\)
0.792902 + 0.609349i \(0.208569\pi\)
\(930\) 0 0
\(931\) −4.92238 + 1.16662i −0.161324 + 0.0382346i
\(932\) −26.6037 + 6.30519i −0.871432 + 0.206533i
\(933\) 0 0
\(934\) 20.2172 46.8687i 0.661526 1.53359i
\(935\) −73.7759 26.8522i −2.41273 0.878162i
\(936\) 0 0
\(937\) 23.1819 8.43751i 0.757319 0.275641i 0.0656366 0.997844i \(-0.479092\pi\)
0.691682 + 0.722202i \(0.256870\pi\)
\(938\) −0.549230 + 9.42991i −0.0179330 + 0.307898i
\(939\) 0 0
\(940\) −26.8011 62.1320i −0.874156 2.02652i
\(941\) −1.35247 23.2210i −0.0440893 0.756984i −0.945821 0.324688i \(-0.894741\pi\)
0.901732 0.432296i \(-0.142296\pi\)
\(942\) 0 0
\(943\) −13.4893 + 14.2979i −0.439273 + 0.465603i
\(944\) −2.90384 5.02959i −0.0945119 0.163699i
\(945\) 0 0
\(946\) −6.63491 + 11.4920i −0.215720 + 0.373637i
\(947\) −5.50014 18.3718i −0.178731 0.597002i −0.999663 0.0259757i \(-0.991731\pi\)
0.820932 0.571026i \(-0.193454\pi\)
\(948\) 0 0
\(949\) −1.63562 + 1.07576i −0.0530944 + 0.0349208i
\(950\) −4.07711 0.476546i −0.132279 0.0154612i
\(951\) 0 0
\(952\) −0.651276 + 0.327083i −0.0211080 + 0.0106008i
\(953\) −5.37991 + 30.5110i −0.174272 + 0.988348i 0.764708 + 0.644377i \(0.222883\pi\)
−0.938980 + 0.343971i \(0.888228\pi\)
\(954\) 0 0
\(955\) −3.50420 19.8733i −0.113393 0.643085i
\(956\) 11.2896 + 15.1646i 0.365133 + 0.490459i
\(957\) 0 0
\(958\) −28.8274 30.5552i −0.931370 0.987195i
\(959\) 2.67017 8.91898i 0.0862242 0.288009i
\(960\) 0 0
\(961\) −35.7602 + 4.17977i −1.15356 + 0.134831i
\(962\) −22.3457 + 18.7503i −0.720456 + 0.604534i
\(963\) 0 0
\(964\) −22.6834 19.0336i −0.730583 0.613032i
\(965\) 22.2652 + 14.6441i 0.716742 + 0.471409i
\(966\) 0 0
\(967\) 11.8582 15.9284i 0.381335 0.512221i −0.569470 0.822012i \(-0.692852\pi\)
0.950805 + 0.309791i \(0.100259\pi\)
\(968\) 0.425377 + 0.213632i 0.0136721 + 0.00686641i
\(969\) 0 0
\(970\) −57.2044 13.5577i −1.83672 0.435311i
\(971\) 3.39436 0.108930 0.0544651 0.998516i \(-0.482655\pi\)
0.0544651 + 0.998516i \(0.482655\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) −12.9699 3.07393i −0.415583 0.0984950i
\(975\) 0 0
\(976\) −10.3701 5.20806i −0.331939 0.166706i
\(977\) 31.9883 42.9678i 1.02340 1.37466i 0.0982031 0.995166i \(-0.468691\pi\)
0.925194 0.379495i \(-0.123902\pi\)
\(978\) 0 0
\(979\) −14.4071 9.47570i −0.460453 0.302845i
\(980\) −29.1980 24.5000i −0.932694 0.782624i
\(981\) 0 0
\(982\) 56.5336 47.4373i 1.80406 1.51379i
\(983\) 27.6347 3.23004i 0.881411 0.103022i 0.336666 0.941624i \(-0.390701\pi\)
0.544745 + 0.838602i \(0.316626\pi\)
\(984\) 0 0
\(985\) −3.91931 + 13.0914i −0.124879 + 0.417126i
\(986\) −47.6784 50.5361i −1.51839 1.60940i
\(987\) 0 0
\(988\) 3.23973 + 4.35172i 0.103070 + 0.138447i
\(989\) −0.662412 3.75672i −0.0210635 0.119457i
\(990\) 0 0
\(991\) 2.53438 14.3732i 0.0805071 0.456579i −0.917729 0.397207i \(-0.869979\pi\)
0.998236 0.0593711i \(-0.0189095\pi\)
\(992\) −58.9969 + 29.6294i −1.87315 + 0.940733i
\(993\) 0 0
\(994\) 8.32026 + 0.972499i 0.263903 + 0.0308458i
\(995\) −5.82193 + 3.82914i −0.184567 + 0.121392i
\(996\) 0 0
\(997\) 0.698934 + 2.33460i 0.0221355 + 0.0739376i 0.968344 0.249621i \(-0.0803060\pi\)
−0.946208 + 0.323558i \(0.895121\pi\)
\(998\) −36.7468 + 63.6474i −1.16320 + 2.01472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.208.7 144
3.2 odd 2 81.2.g.a.16.2 144
9.2 odd 6 729.2.g.c.379.7 144
9.4 even 3 729.2.g.a.622.2 144
9.5 odd 6 729.2.g.d.622.7 144
9.7 even 3 729.2.g.b.379.2 144
81.5 odd 54 81.2.g.a.76.2 yes 144
81.20 odd 54 6561.2.a.c.1.14 72
81.22 even 27 729.2.g.b.352.2 144
81.32 odd 54 729.2.g.d.109.7 144
81.49 even 27 729.2.g.a.109.2 144
81.59 odd 54 729.2.g.c.352.7 144
81.61 even 27 6561.2.a.d.1.59 72
81.76 even 27 inner 243.2.g.a.118.7 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 3.2 odd 2
81.2.g.a.76.2 yes 144 81.5 odd 54
243.2.g.a.118.7 144 81.76 even 27 inner
243.2.g.a.208.7 144 1.1 even 1 trivial
729.2.g.a.109.2 144 81.49 even 27
729.2.g.a.622.2 144 9.4 even 3
729.2.g.b.352.2 144 81.22 even 27
729.2.g.b.379.2 144 9.7 even 3
729.2.g.c.352.7 144 81.59 odd 54
729.2.g.c.379.7 144 9.2 odd 6
729.2.g.d.109.7 144 81.32 odd 54
729.2.g.d.622.7 144 9.5 odd 6
6561.2.a.c.1.14 72 81.20 odd 54
6561.2.a.d.1.59 72 81.61 even 27