Properties

Label 243.2.g.a.208.5
Level $243$
Weight $2$
Character 243.208
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 208.5
Character \(\chi\) \(=\) 243.208
Dual form 243.2.g.a.118.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.643544 + 0.152523i) q^{2} +(-1.39638 - 0.701288i) q^{4} +(1.50096 - 2.01613i) q^{5} +(-3.43556 - 2.25960i) q^{7} +(-1.80495 - 1.51453i) q^{8} +(1.27344 - 1.06854i) q^{10} +(2.94058 - 0.343704i) q^{11} +(0.930150 - 3.10692i) q^{13} +(-1.86629 - 1.97816i) q^{14} +(0.935660 + 1.25681i) q^{16} +(0.572741 + 3.24818i) q^{17} +(-0.571121 + 3.23899i) q^{19} +(-3.50979 + 1.76268i) q^{20} +(1.94481 + 0.227316i) q^{22} +(2.08548 - 1.37164i) q^{23} +(-0.377908 - 1.26230i) q^{25} +(1.07247 - 1.85757i) q^{26} +(3.21271 + 5.56458i) q^{28} +(3.82031 - 4.04929i) q^{29} +(-0.373446 - 6.41181i) q^{31} +(2.27693 + 5.27851i) q^{32} +(-0.126837 + 2.17770i) q^{34} +(-9.71228 + 3.53498i) q^{35} +(-2.56937 - 0.935175i) q^{37} +(-0.861562 + 1.99733i) q^{38} +(-5.76265 + 1.36577i) q^{40} +(8.80462 - 2.08673i) q^{41} +(-3.09638 + 7.17822i) q^{43} +(-4.34719 - 1.58225i) q^{44} +(1.55131 - 0.564629i) q^{46} +(-0.588422 + 10.1028i) q^{47} +(3.92470 + 9.09847i) q^{49} +(-0.0506710 - 0.869987i) q^{50} +(-3.47769 + 3.68613i) q^{52} +(-0.00494432 - 0.00856381i) q^{53} +(3.72072 - 6.44448i) q^{55} +(2.77877 + 9.28173i) q^{56} +(3.07615 - 2.02322i) q^{58} +(-11.2961 - 1.32033i) q^{59} +(8.05332 - 4.04453i) q^{61} +(0.737619 - 4.18325i) q^{62} +(0.116049 + 0.658144i) q^{64} +(-4.86785 - 6.53865i) q^{65} +(-4.01126 - 4.25169i) q^{67} +(1.47814 - 4.93734i) q^{68} +(-6.78945 + 0.793572i) q^{70} +(1.81817 - 1.52563i) q^{71} +(3.61987 + 3.03743i) q^{73} +(-1.51087 - 0.993715i) q^{74} +(3.06897 - 4.12234i) q^{76} +(-10.8792 - 5.46372i) q^{77} +(8.75936 + 2.07601i) q^{79} +3.93828 q^{80} +5.98444 q^{82} +(3.60157 + 0.853588i) q^{83} +(7.40842 + 3.72065i) q^{85} +(-3.08750 + 4.14723i) q^{86} +(-5.82815 - 3.83323i) q^{88} +(9.57258 + 8.03235i) q^{89} +(-10.2160 + 8.57223i) q^{91} +(-3.87404 + 0.452810i) q^{92} +(-1.91958 + 6.41186i) q^{94} +(5.67301 + 6.01304i) q^{95} +(-4.27084 - 5.73673i) q^{97} +(1.13799 + 6.45388i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.643544 + 0.152523i 0.455055 + 0.107850i 0.451750 0.892145i \(-0.350800\pi\)
0.00330473 + 0.999995i \(0.498948\pi\)
\(3\) 0 0
\(4\) −1.39638 0.701288i −0.698189 0.350644i
\(5\) 1.50096 2.01613i 0.671248 0.901642i −0.327823 0.944739i \(-0.606315\pi\)
0.999071 + 0.0430971i \(0.0137225\pi\)
\(6\) 0 0
\(7\) −3.43556 2.25960i −1.29852 0.854049i −0.303412 0.952859i \(-0.598126\pi\)
−0.995106 + 0.0988101i \(0.968496\pi\)
\(8\) −1.80495 1.51453i −0.638146 0.535468i
\(9\) 0 0
\(10\) 1.27344 1.06854i 0.402696 0.337902i
\(11\) 2.94058 0.343704i 0.886617 0.103631i 0.339421 0.940635i \(-0.389769\pi\)
0.547197 + 0.837004i \(0.315695\pi\)
\(12\) 0 0
\(13\) 0.930150 3.10692i 0.257977 0.861704i −0.726646 0.687012i \(-0.758922\pi\)
0.984623 0.174692i \(-0.0558930\pi\)
\(14\) −1.86629 1.97816i −0.498788 0.528684i
\(15\) 0 0
\(16\) 0.935660 + 1.25681i 0.233915 + 0.314202i
\(17\) 0.572741 + 3.24818i 0.138910 + 0.787799i 0.972057 + 0.234746i \(0.0754260\pi\)
−0.833146 + 0.553052i \(0.813463\pi\)
\(18\) 0 0
\(19\) −0.571121 + 3.23899i −0.131024 + 0.743075i 0.846522 + 0.532354i \(0.178692\pi\)
−0.977546 + 0.210722i \(0.932419\pi\)
\(20\) −3.50979 + 1.76268i −0.784813 + 0.394148i
\(21\) 0 0
\(22\) 1.94481 + 0.227316i 0.414636 + 0.0484640i
\(23\) 2.08548 1.37164i 0.434853 0.286007i −0.313149 0.949704i \(-0.601384\pi\)
0.748002 + 0.663697i \(0.231014\pi\)
\(24\) 0 0
\(25\) −0.377908 1.26230i −0.0755816 0.252460i
\(26\) 1.07247 1.85757i 0.210329 0.364300i
\(27\) 0 0
\(28\) 3.21271 + 5.56458i 0.607145 + 1.05161i
\(29\) 3.82031 4.04929i 0.709414 0.751935i −0.267965 0.963429i \(-0.586351\pi\)
0.977379 + 0.211494i \(0.0678327\pi\)
\(30\) 0 0
\(31\) −0.373446 6.41181i −0.0670728 1.15160i −0.849058 0.528299i \(-0.822830\pi\)
0.781986 0.623297i \(-0.214207\pi\)
\(32\) 2.27693 + 5.27851i 0.402508 + 0.933118i
\(33\) 0 0
\(34\) −0.126837 + 2.17770i −0.0217523 + 0.373473i
\(35\) −9.71228 + 3.53498i −1.64167 + 0.597521i
\(36\) 0 0
\(37\) −2.56937 0.935175i −0.422402 0.153742i 0.122069 0.992522i \(-0.461047\pi\)
−0.544471 + 0.838780i \(0.683269\pi\)
\(38\) −0.861562 + 1.99733i −0.139764 + 0.324009i
\(39\) 0 0
\(40\) −5.76265 + 1.36577i −0.911155 + 0.215948i
\(41\) 8.80462 2.08673i 1.37505 0.325893i 0.524332 0.851514i \(-0.324315\pi\)
0.850719 + 0.525621i \(0.176167\pi\)
\(42\) 0 0
\(43\) −3.09638 + 7.17822i −0.472194 + 1.09467i 0.501159 + 0.865355i \(0.332907\pi\)
−0.973353 + 0.229313i \(0.926352\pi\)
\(44\) −4.34719 1.58225i −0.655364 0.238533i
\(45\) 0 0
\(46\) 1.55131 0.564629i 0.228728 0.0832500i
\(47\) −0.588422 + 10.1028i −0.0858301 + 1.47365i 0.630666 + 0.776055i \(0.282782\pi\)
−0.716496 + 0.697591i \(0.754255\pi\)
\(48\) 0 0
\(49\) 3.92470 + 9.09847i 0.560671 + 1.29978i
\(50\) −0.0506710 0.869987i −0.00716596 0.123035i
\(51\) 0 0
\(52\) −3.47769 + 3.68613i −0.482268 + 0.511175i
\(53\) −0.00494432 0.00856381i −0.000679154 0.00117633i 0.865686 0.500588i \(-0.166883\pi\)
−0.866365 + 0.499412i \(0.833550\pi\)
\(54\) 0 0
\(55\) 3.72072 6.44448i 0.501702 0.868973i
\(56\) 2.77877 + 9.28173i 0.371329 + 1.24032i
\(57\) 0 0
\(58\) 3.07615 2.02322i 0.403918 0.265661i
\(59\) −11.2961 1.32033i −1.47063 0.171892i −0.657272 0.753654i \(-0.728290\pi\)
−0.813359 + 0.581762i \(0.802364\pi\)
\(60\) 0 0
\(61\) 8.05332 4.04453i 1.03112 0.517849i 0.148984 0.988840i \(-0.452400\pi\)
0.882138 + 0.470990i \(0.156103\pi\)
\(62\) 0.737619 4.18325i 0.0936777 0.531273i
\(63\) 0 0
\(64\) 0.116049 + 0.658144i 0.0145061 + 0.0822680i
\(65\) −4.86785 6.53865i −0.603782 0.811020i
\(66\) 0 0
\(67\) −4.01126 4.25169i −0.490054 0.519427i 0.434400 0.900720i \(-0.356960\pi\)
−0.924454 + 0.381293i \(0.875479\pi\)
\(68\) 1.47814 4.93734i 0.179251 0.598741i
\(69\) 0 0
\(70\) −6.78945 + 0.793572i −0.811494 + 0.0948500i
\(71\) 1.81817 1.52563i 0.215777 0.181058i −0.528492 0.848938i \(-0.677242\pi\)
0.744269 + 0.667880i \(0.232798\pi\)
\(72\) 0 0
\(73\) 3.61987 + 3.03743i 0.423674 + 0.355505i 0.829559 0.558420i \(-0.188592\pi\)
−0.405885 + 0.913924i \(0.633037\pi\)
\(74\) −1.51087 0.993715i −0.175635 0.115517i
\(75\) 0 0
\(76\) 3.06897 4.12234i 0.352035 0.472865i
\(77\) −10.8792 5.46372i −1.23979 0.622648i
\(78\) 0 0
\(79\) 8.75936 + 2.07601i 0.985505 + 0.233569i 0.691612 0.722269i \(-0.256901\pi\)
0.293893 + 0.955838i \(0.405049\pi\)
\(80\) 3.93828 0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) 3.60157 + 0.853588i 0.395324 + 0.0936935i 0.423469 0.905910i \(-0.360812\pi\)
−0.0281457 + 0.999604i \(0.508960\pi\)
\(84\) 0 0
\(85\) 7.40842 + 3.72065i 0.803555 + 0.403561i
\(86\) −3.08750 + 4.14723i −0.332934 + 0.447208i
\(87\) 0 0
\(88\) −5.82815 3.83323i −0.621282 0.408624i
\(89\) 9.57258 + 8.03235i 1.01469 + 0.851427i 0.988951 0.148242i \(-0.0473614\pi\)
0.0257399 + 0.999669i \(0.491806\pi\)
\(90\) 0 0
\(91\) −10.2160 + 8.57223i −1.07093 + 0.898614i
\(92\) −3.87404 + 0.452810i −0.403896 + 0.0472087i
\(93\) 0 0
\(94\) −1.91958 + 6.41186i −0.197990 + 0.661333i
\(95\) 5.67301 + 6.01304i 0.582038 + 0.616924i
\(96\) 0 0
\(97\) −4.27084 5.73673i −0.433638 0.582477i 0.530565 0.847645i \(-0.321980\pi\)
−0.964202 + 0.265168i \(0.914573\pi\)
\(98\) 1.13799 + 6.45388i 0.114955 + 0.651940i
\(99\) 0 0
\(100\) −0.357534 + 2.02767i −0.0357534 + 0.202767i
\(101\) 1.88208 0.945217i 0.187274 0.0940526i −0.352692 0.935740i \(-0.614733\pi\)
0.539966 + 0.841687i \(0.318437\pi\)
\(102\) 0 0
\(103\) 2.05137 + 0.239771i 0.202128 + 0.0236254i 0.216554 0.976271i \(-0.430518\pi\)
−0.0144264 + 0.999896i \(0.504592\pi\)
\(104\) −6.38441 + 4.19909i −0.626042 + 0.411755i
\(105\) 0 0
\(106\) −0.00187571 0.00626531i −0.000182185 0.000608541i
\(107\) 7.13179 12.3526i 0.689456 1.19417i −0.282558 0.959250i \(-0.591183\pi\)
0.972014 0.234923i \(-0.0754838\pi\)
\(108\) 0 0
\(109\) −6.70237 11.6088i −0.641970 1.11193i −0.984992 0.172598i \(-0.944784\pi\)
0.343022 0.939327i \(-0.388549\pi\)
\(110\) 3.37738 3.57981i 0.322020 0.341322i
\(111\) 0 0
\(112\) −0.374625 6.43206i −0.0353987 0.607773i
\(113\) 1.17253 + 2.71823i 0.110302 + 0.255709i 0.964422 0.264367i \(-0.0851629\pi\)
−0.854120 + 0.520076i \(0.825904\pi\)
\(114\) 0 0
\(115\) 0.364800 6.26337i 0.0340178 0.584063i
\(116\) −8.17432 + 2.97521i −0.758967 + 0.276241i
\(117\) 0 0
\(118\) −7.06818 2.57261i −0.650679 0.236828i
\(119\) 5.37190 12.4535i 0.492441 1.14161i
\(120\) 0 0
\(121\) −2.17464 + 0.515398i −0.197694 + 0.0468544i
\(122\) 5.79956 1.37452i 0.525067 0.124443i
\(123\) 0 0
\(124\) −3.97506 + 9.21521i −0.356971 + 0.827551i
\(125\) 8.69737 + 3.16558i 0.777917 + 0.283139i
\(126\) 0 0
\(127\) −11.3063 + 4.11514i −1.00327 + 0.365160i −0.790844 0.612017i \(-0.790358\pi\)
−0.212425 + 0.977177i \(0.568136\pi\)
\(128\) 0.642810 11.0366i 0.0568170 0.975509i
\(129\) 0 0
\(130\) −2.13538 4.95037i −0.187285 0.434176i
\(131\) −0.298647 5.12757i −0.0260929 0.447998i −0.985900 0.167337i \(-0.946483\pi\)
0.959807 0.280661i \(-0.0905537\pi\)
\(132\) 0 0
\(133\) 9.28095 9.83723i 0.804760 0.852996i
\(134\) −1.93295 3.34796i −0.166981 0.289220i
\(135\) 0 0
\(136\) 3.88570 6.73023i 0.333196 0.577113i
\(137\) 0.545226 + 1.82118i 0.0465818 + 0.155594i 0.978116 0.208059i \(-0.0667146\pi\)
−0.931534 + 0.363653i \(0.881529\pi\)
\(138\) 0 0
\(139\) −7.81835 + 5.14221i −0.663144 + 0.436156i −0.835955 0.548799i \(-0.815085\pi\)
0.172811 + 0.984955i \(0.444715\pi\)
\(140\) 16.0411 + 1.87493i 1.35572 + 0.158461i
\(141\) 0 0
\(142\) 1.40277 0.704496i 0.117718 0.0591200i
\(143\) 1.66732 9.45583i 0.139428 0.790736i
\(144\) 0 0
\(145\) −2.42980 13.7801i −0.201784 1.14437i
\(146\) 1.86627 + 2.50684i 0.154454 + 0.207467i
\(147\) 0 0
\(148\) 2.93199 + 3.10773i 0.241008 + 0.255454i
\(149\) −0.254865 + 0.851310i −0.0208794 + 0.0697420i −0.967794 0.251742i \(-0.918997\pi\)
0.946915 + 0.321484i \(0.104182\pi\)
\(150\) 0 0
\(151\) 8.00406 0.935541i 0.651362 0.0761332i 0.216006 0.976392i \(-0.430697\pi\)
0.435355 + 0.900259i \(0.356623\pi\)
\(152\) 5.93640 4.98123i 0.481506 0.404031i
\(153\) 0 0
\(154\) −6.16788 5.17546i −0.497022 0.417051i
\(155\) −13.4876 8.87093i −1.08335 0.712530i
\(156\) 0 0
\(157\) −8.64121 + 11.6072i −0.689643 + 0.926352i −0.999703 0.0243652i \(-0.992244\pi\)
0.310060 + 0.950717i \(0.399651\pi\)
\(158\) 5.32040 + 2.67201i 0.423268 + 0.212573i
\(159\) 0 0
\(160\) 14.0598 + 3.33222i 1.11152 + 0.263435i
\(161\) −10.2641 −0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) −13.7580 3.26070i −1.07432 0.254618i
\(165\) 0 0
\(166\) 2.18758 + 1.09864i 0.169789 + 0.0852713i
\(167\) −10.0814 + 13.5417i −0.780126 + 1.04789i 0.217295 + 0.976106i \(0.430277\pi\)
−0.997420 + 0.0717845i \(0.977131\pi\)
\(168\) 0 0
\(169\) 2.07358 + 1.36381i 0.159506 + 0.104909i
\(170\) 4.20016 + 3.52435i 0.322138 + 0.270306i
\(171\) 0 0
\(172\) 9.35772 7.85206i 0.713520 0.598714i
\(173\) 6.67771 0.780512i 0.507697 0.0593412i 0.141611 0.989922i \(-0.454772\pi\)
0.366086 + 0.930581i \(0.380698\pi\)
\(174\) 0 0
\(175\) −1.55397 + 5.19063i −0.117469 + 0.392375i
\(176\) 3.18335 + 3.37415i 0.239954 + 0.254336i
\(177\) 0 0
\(178\) 4.93526 + 6.62921i 0.369914 + 0.496880i
\(179\) 2.64043 + 14.9746i 0.197355 + 1.11926i 0.909024 + 0.416743i \(0.136828\pi\)
−0.711669 + 0.702515i \(0.752060\pi\)
\(180\) 0 0
\(181\) −0.973297 + 5.51984i −0.0723446 + 0.410287i 0.927032 + 0.374982i \(0.122351\pi\)
−0.999377 + 0.0353044i \(0.988760\pi\)
\(182\) −7.88190 + 3.95844i −0.584245 + 0.293419i
\(183\) 0 0
\(184\) −5.84158 0.682783i −0.430647 0.0503354i
\(185\) −5.74195 + 3.77654i −0.422157 + 0.277657i
\(186\) 0 0
\(187\) 2.80060 + 9.35466i 0.204800 + 0.684081i
\(188\) 7.90664 13.6947i 0.576651 0.998788i
\(189\) 0 0
\(190\) 2.73371 + 4.73492i 0.198324 + 0.343507i
\(191\) −2.94787 + 3.12456i −0.213300 + 0.226085i −0.825186 0.564861i \(-0.808930\pi\)
0.611886 + 0.790946i \(0.290411\pi\)
\(192\) 0 0
\(193\) −0.164764 2.82888i −0.0118600 0.203628i −0.999033 0.0439721i \(-0.985999\pi\)
0.987173 0.159655i \(-0.0510383\pi\)
\(194\) −1.87349 4.34324i −0.134509 0.311826i
\(195\) 0 0
\(196\) 0.900283 15.4573i 0.0643059 1.10409i
\(197\) −19.9667 + 7.26729i −1.42257 + 0.517773i −0.934792 0.355195i \(-0.884414\pi\)
−0.487777 + 0.872968i \(0.662192\pi\)
\(198\) 0 0
\(199\) −9.14529 3.32862i −0.648293 0.235959i −0.00311899 0.999995i \(-0.500993\pi\)
−0.645174 + 0.764036i \(0.723215\pi\)
\(200\) −1.22969 + 2.85075i −0.0869523 + 0.201578i
\(201\) 0 0
\(202\) 1.35537 0.321229i 0.0953636 0.0226016i
\(203\) −22.2747 + 5.27920i −1.56338 + 0.370527i
\(204\) 0 0
\(205\) 9.00821 20.8834i 0.629161 1.45856i
\(206\) 1.28358 + 0.467185i 0.0894313 + 0.0325503i
\(207\) 0 0
\(208\) 4.77511 1.73800i 0.331094 0.120508i
\(209\) −0.566172 + 9.72080i −0.0391629 + 0.672402i
\(210\) 0 0
\(211\) 7.75452 + 17.9770i 0.533843 + 1.23759i 0.945313 + 0.326164i \(0.105756\pi\)
−0.411470 + 0.911423i \(0.634984\pi\)
\(212\) 0.000898445 0.0154257i 6.17055e−5 0.00105944i
\(213\) 0 0
\(214\) 6.47368 6.86170i 0.442532 0.469056i
\(215\) 9.82471 + 17.0169i 0.670040 + 1.16054i
\(216\) 0 0
\(217\) −13.2052 + 22.8720i −0.896424 + 1.55265i
\(218\) −2.54266 8.49307i −0.172211 0.575223i
\(219\) 0 0
\(220\) −9.71497 + 6.38964i −0.654983 + 0.430789i
\(221\) 10.6246 + 1.24183i 0.714685 + 0.0835347i
\(222\) 0 0
\(223\) −14.4467 + 7.25542i −0.967424 + 0.485859i −0.861079 0.508471i \(-0.830211\pi\)
−0.106345 + 0.994329i \(0.533915\pi\)
\(224\) 4.10482 23.2796i 0.274265 1.55543i
\(225\) 0 0
\(226\) 0.339982 + 1.92814i 0.0226153 + 0.128258i
\(227\) −12.6779 17.0294i −0.841463 1.13028i −0.989957 0.141368i \(-0.954850\pi\)
0.148494 0.988913i \(-0.452557\pi\)
\(228\) 0 0
\(229\) 5.92191 + 6.27686i 0.391331 + 0.414787i 0.892846 0.450362i \(-0.148705\pi\)
−0.501515 + 0.865149i \(0.667224\pi\)
\(230\) 1.19007 3.97512i 0.0784711 0.262112i
\(231\) 0 0
\(232\) −13.0283 + 1.52279i −0.855347 + 0.0999758i
\(233\) 11.4634 9.61890i 0.750989 0.630155i −0.184775 0.982781i \(-0.559156\pi\)
0.935764 + 0.352626i \(0.114711\pi\)
\(234\) 0 0
\(235\) 19.4854 + 16.3502i 1.27109 + 1.06657i
\(236\) 14.8477 + 9.76552i 0.966506 + 0.635681i
\(237\) 0 0
\(238\) 5.35650 7.19502i 0.347210 0.466384i
\(239\) 3.22647 + 1.62040i 0.208703 + 0.104815i 0.550080 0.835112i \(-0.314597\pi\)
−0.341377 + 0.939926i \(0.610893\pi\)
\(240\) 0 0
\(241\) −22.2744 5.27912i −1.43482 0.340058i −0.561609 0.827403i \(-0.689817\pi\)
−0.873210 + 0.487345i \(0.837966\pi\)
\(242\) −1.47808 −0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) 24.2345 + 5.74369i 1.54829 + 0.366951i
\(246\) 0 0
\(247\) 9.53205 + 4.78718i 0.606510 + 0.304601i
\(248\) −9.03685 + 12.1386i −0.573841 + 0.770802i
\(249\) 0 0
\(250\) 5.11432 + 3.36374i 0.323458 + 0.212742i
\(251\) 16.2193 + 13.6096i 1.02375 + 0.859031i 0.990095 0.140402i \(-0.0448396\pi\)
0.0336587 + 0.999433i \(0.489284\pi\)
\(252\) 0 0
\(253\) 5.66107 4.75020i 0.355909 0.298643i
\(254\) −7.90374 + 0.923815i −0.495925 + 0.0579653i
\(255\) 0 0
\(256\) 2.48035 8.28496i 0.155022 0.517810i
\(257\) −5.34379 5.66408i −0.333336 0.353316i 0.538927 0.842353i \(-0.318830\pi\)
−0.872263 + 0.489037i \(0.837348\pi\)
\(258\) 0 0
\(259\) 6.71410 + 9.01861i 0.417194 + 0.560389i
\(260\) 2.21188 + 12.5442i 0.137175 + 0.777958i
\(261\) 0 0
\(262\) 0.589879 3.34537i 0.0364428 0.206678i
\(263\) −1.36411 + 0.685083i −0.0841148 + 0.0422440i −0.490359 0.871520i \(-0.663134\pi\)
0.406244 + 0.913764i \(0.366838\pi\)
\(264\) 0 0
\(265\) −0.0246870 0.00288549i −0.00151651 0.000177254i
\(266\) 7.47311 4.91514i 0.458206 0.301367i
\(267\) 0 0
\(268\) 2.61959 + 8.75002i 0.160017 + 0.534493i
\(269\) −14.7193 + 25.4946i −0.897454 + 1.55444i −0.0667154 + 0.997772i \(0.521252\pi\)
−0.830738 + 0.556663i \(0.812081\pi\)
\(270\) 0 0
\(271\) −7.28643 12.6205i −0.442619 0.766639i 0.555264 0.831674i \(-0.312617\pi\)
−0.997883 + 0.0650354i \(0.979284\pi\)
\(272\) −3.54645 + 3.75902i −0.215035 + 0.227924i
\(273\) 0 0
\(274\) 0.0731054 + 1.25517i 0.00441646 + 0.0758277i
\(275\) −1.54513 3.58201i −0.0931746 0.216003i
\(276\) 0 0
\(277\) −0.594623 + 10.2093i −0.0357274 + 0.613416i 0.932162 + 0.362041i \(0.117920\pi\)
−0.967890 + 0.251375i \(0.919117\pi\)
\(278\) −5.81576 + 2.11676i −0.348806 + 0.126955i
\(279\) 0 0
\(280\) 22.8840 + 8.32910i 1.36758 + 0.497759i
\(281\) −2.78193 + 6.44925i −0.165956 + 0.384730i −0.980818 0.194925i \(-0.937554\pi\)
0.814862 + 0.579655i \(0.196813\pi\)
\(282\) 0 0
\(283\) −21.0395 + 4.98645i −1.25067 + 0.296414i −0.802021 0.597295i \(-0.796242\pi\)
−0.448647 + 0.893709i \(0.648094\pi\)
\(284\) −3.60876 + 0.855291i −0.214140 + 0.0507522i
\(285\) 0 0
\(286\) 2.51522 5.83094i 0.148728 0.344791i
\(287\) −34.9640 12.7258i −2.06386 0.751183i
\(288\) 0 0
\(289\) 5.75215 2.09361i 0.338362 0.123154i
\(290\) 0.538092 9.23868i 0.0315979 0.542514i
\(291\) 0 0
\(292\) −2.92460 6.77998i −0.171149 0.396768i
\(293\) −0.635343 10.9084i −0.0371171 0.637276i −0.964650 0.263535i \(-0.915112\pi\)
0.927533 0.373742i \(-0.121925\pi\)
\(294\) 0 0
\(295\) −19.6169 + 20.7927i −1.14214 + 1.21060i
\(296\) 3.22124 + 5.57934i 0.187230 + 0.324293i
\(297\) 0 0
\(298\) −0.293862 + 0.508983i −0.0170229 + 0.0294846i
\(299\) −2.32177 7.75525i −0.134271 0.448498i
\(300\) 0 0
\(301\) 26.8577 17.6646i 1.54805 1.01817i
\(302\) 5.29366 + 0.618740i 0.304616 + 0.0356045i
\(303\) 0 0
\(304\) −4.60517 + 2.31280i −0.264125 + 0.132648i
\(305\) 3.93337 22.3072i 0.225224 1.27731i
\(306\) 0 0
\(307\) 0.798574 + 4.52894i 0.0455770 + 0.258480i 0.999079 0.0429063i \(-0.0136617\pi\)
−0.953502 + 0.301386i \(0.902551\pi\)
\(308\) 11.3598 + 15.2588i 0.647284 + 0.869453i
\(309\) 0 0
\(310\) −7.32685 7.76600i −0.416137 0.441079i
\(311\) −5.00159 + 16.7065i −0.283614 + 0.947336i 0.690889 + 0.722961i \(0.257219\pi\)
−0.974503 + 0.224375i \(0.927966\pi\)
\(312\) 0 0
\(313\) 15.7201 1.83741i 0.888550 0.103857i 0.340443 0.940265i \(-0.389423\pi\)
0.548107 + 0.836408i \(0.315349\pi\)
\(314\) −7.33136 + 6.15174i −0.413732 + 0.347163i
\(315\) 0 0
\(316\) −10.7755 9.04173i −0.606170 0.508637i
\(317\) 16.3777 + 10.7718i 0.919864 + 0.605004i 0.918683 0.394995i \(-0.129254\pi\)
0.00118078 + 0.999999i \(0.499624\pi\)
\(318\) 0 0
\(319\) 9.84216 13.2203i 0.551055 0.740196i
\(320\) 1.50109 + 0.753875i 0.0839134 + 0.0421429i
\(321\) 0 0
\(322\) −6.60544 1.56552i −0.368107 0.0872429i
\(323\) −10.8479 −0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) 5.18372 + 1.22856i 0.287099 + 0.0680438i
\(327\) 0 0
\(328\) −19.0523 9.56844i −1.05199 0.528329i
\(329\) 24.8499 33.3792i 1.37002 1.84025i
\(330\) 0 0
\(331\) 18.2792 + 12.0224i 1.00472 + 0.660813i 0.941439 0.337183i \(-0.109474\pi\)
0.0632779 + 0.997996i \(0.479845\pi\)
\(332\) −4.43055 3.71767i −0.243158 0.204034i
\(333\) 0 0
\(334\) −8.55328 + 7.17706i −0.468015 + 0.392711i
\(335\) −14.5927 + 1.70564i −0.797284 + 0.0931892i
\(336\) 0 0
\(337\) 2.57060 8.58639i 0.140029 0.467730i −0.858991 0.511991i \(-0.828908\pi\)
0.999020 + 0.0442608i \(0.0140932\pi\)
\(338\) 1.12643 + 1.19394i 0.0612696 + 0.0649419i
\(339\) 0 0
\(340\) −7.73571 10.3909i −0.419528 0.563524i
\(341\) −3.30191 18.7261i −0.178809 1.01407i
\(342\) 0 0
\(343\) 2.07706 11.7796i 0.112151 0.636040i
\(344\) 16.4605 8.26676i 0.887489 0.445714i
\(345\) 0 0
\(346\) 4.41645 + 0.516209i 0.237430 + 0.0277516i
\(347\) 16.0680 10.5681i 0.862574 0.567324i −0.0393465 0.999226i \(-0.512528\pi\)
0.901921 + 0.431902i \(0.142157\pi\)
\(348\) 0 0
\(349\) −6.12442 20.4570i −0.327833 1.09504i −0.950025 0.312173i \(-0.898943\pi\)
0.622192 0.782864i \(-0.286242\pi\)
\(350\) −1.79174 + 3.10339i −0.0957726 + 0.165883i
\(351\) 0 0
\(352\) 8.50973 + 14.7393i 0.453570 + 0.785607i
\(353\) −10.0961 + 10.7013i −0.537364 + 0.569572i −0.937987 0.346671i \(-0.887312\pi\)
0.400623 + 0.916243i \(0.368794\pi\)
\(354\) 0 0
\(355\) −0.346872 5.95557i −0.0184101 0.316089i
\(356\) −7.73396 17.9293i −0.409899 0.950253i
\(357\) 0 0
\(358\) −0.584739 + 10.0396i −0.0309044 + 0.530608i
\(359\) 10.0637 3.66289i 0.531142 0.193320i −0.0625063 0.998045i \(-0.519909\pi\)
0.593648 + 0.804725i \(0.297687\pi\)
\(360\) 0 0
\(361\) 7.68928 + 2.79867i 0.404699 + 0.147298i
\(362\) −1.46826 + 3.40381i −0.0771701 + 0.178901i
\(363\) 0 0
\(364\) 20.2770 4.80573i 1.06280 0.251889i
\(365\) 11.5571 2.73909i 0.604928 0.143371i
\(366\) 0 0
\(367\) −1.57072 + 3.64134i −0.0819909 + 0.190076i −0.954280 0.298914i \(-0.903376\pi\)
0.872289 + 0.488991i \(0.162635\pi\)
\(368\) 3.67519 + 1.33766i 0.191583 + 0.0697304i
\(369\) 0 0
\(370\) −4.27121 + 1.55459i −0.222050 + 0.0808194i
\(371\) −0.00236431 + 0.0405936i −0.000122749 + 0.00210752i
\(372\) 0 0
\(373\) −9.39616 21.7827i −0.486515 1.12787i −0.967895 0.251356i \(-0.919124\pi\)
0.481380 0.876512i \(-0.340136\pi\)
\(374\) 0.375512 + 6.44730i 0.0194173 + 0.333382i
\(375\) 0 0
\(376\) 16.3631 17.3439i 0.843863 0.894442i
\(377\) −9.02736 15.6359i −0.464933 0.805287i
\(378\) 0 0
\(379\) 13.0094 22.5330i 0.668249 1.15744i −0.310145 0.950689i \(-0.600377\pi\)
0.978393 0.206752i \(-0.0662892\pi\)
\(380\) −3.70480 12.3749i −0.190052 0.634818i
\(381\) 0 0
\(382\) −2.37365 + 1.56118i −0.121447 + 0.0798767i
\(383\) −29.2263 3.41606i −1.49339 0.174553i −0.670144 0.742231i \(-0.733768\pi\)
−0.823250 + 0.567678i \(0.807842\pi\)
\(384\) 0 0
\(385\) −27.3447 + 13.7330i −1.39362 + 0.699900i
\(386\) 0.325437 1.84564i 0.0165643 0.0939407i
\(387\) 0 0
\(388\) 1.94061 + 11.0057i 0.0985194 + 0.558731i
\(389\) 15.8270 + 21.2594i 0.802462 + 1.07789i 0.995317 + 0.0966658i \(0.0308178\pi\)
−0.192855 + 0.981227i \(0.561775\pi\)
\(390\) 0 0
\(391\) 5.64977 + 5.98841i 0.285721 + 0.302847i
\(392\) 6.69605 22.3664i 0.338202 1.12967i
\(393\) 0 0
\(394\) −13.9579 + 1.63144i −0.703189 + 0.0821910i
\(395\) 17.3329 14.5440i 0.872114 0.731790i
\(396\) 0 0
\(397\) −21.8020 18.2941i −1.09421 0.918154i −0.0971903 0.995266i \(-0.530986\pi\)
−0.997022 + 0.0771123i \(0.975430\pi\)
\(398\) −5.37771 3.53698i −0.269560 0.177293i
\(399\) 0 0
\(400\) 1.23288 1.65604i 0.0616439 0.0828022i
\(401\) 12.7098 + 6.38308i 0.634695 + 0.318756i 0.736894 0.676008i \(-0.236292\pi\)
−0.102199 + 0.994764i \(0.532588\pi\)
\(402\) 0 0
\(403\) −20.2683 4.80369i −1.00964 0.239289i
\(404\) −3.29097 −0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) −7.87686 1.86685i −0.390441 0.0925363i
\(408\) 0 0
\(409\) 2.78276 + 1.39755i 0.137598 + 0.0691045i 0.516266 0.856428i \(-0.327321\pi\)
−0.378668 + 0.925533i \(0.623618\pi\)
\(410\) 8.98238 12.0654i 0.443608 0.595869i
\(411\) 0 0
\(412\) −2.69635 1.77342i −0.132840 0.0873699i
\(413\) 35.8251 + 30.0608i 1.76284 + 1.47920i
\(414\) 0 0
\(415\) 7.12674 5.98005i 0.349838 0.293549i
\(416\) 18.5178 2.16442i 0.907910 0.106119i
\(417\) 0 0
\(418\) −1.84700 + 6.16941i −0.0903397 + 0.301756i
\(419\) −4.70149 4.98329i −0.229683 0.243450i 0.602275 0.798289i \(-0.294261\pi\)
−0.831958 + 0.554839i \(0.812780\pi\)
\(420\) 0 0
\(421\) −8.91706 11.9777i −0.434591 0.583757i 0.529838 0.848099i \(-0.322253\pi\)
−0.964429 + 0.264342i \(0.914845\pi\)
\(422\) 2.24848 + 12.7517i 0.109454 + 0.620745i
\(423\) 0 0
\(424\) −0.00404592 + 0.0229456i −0.000196487 + 0.00111434i
\(425\) 3.88374 1.95049i 0.188389 0.0946124i
\(426\) 0 0
\(427\) −36.8067 4.30209i −1.78120 0.208193i
\(428\) −18.6214 + 12.2475i −0.900101 + 0.592006i
\(429\) 0 0
\(430\) 3.72717 + 12.4496i 0.179740 + 0.600374i
\(431\) 15.4334 26.7314i 0.743399 1.28760i −0.207540 0.978227i \(-0.566546\pi\)
0.950939 0.309378i \(-0.100121\pi\)
\(432\) 0 0
\(433\) 14.3849 + 24.9154i 0.691295 + 1.19736i 0.971414 + 0.237393i \(0.0762928\pi\)
−0.280119 + 0.959965i \(0.590374\pi\)
\(434\) −11.9866 + 12.7051i −0.575375 + 0.609862i
\(435\) 0 0
\(436\) 1.21791 + 20.9106i 0.0583271 + 1.00144i
\(437\) 3.25167 + 7.53822i 0.155549 + 0.360602i
\(438\) 0 0
\(439\) 0.257222 4.41633i 0.0122765 0.210780i −0.986591 0.163210i \(-0.947815\pi\)
0.998868 0.0475701i \(-0.0151478\pi\)
\(440\) −16.4761 + 5.99681i −0.785467 + 0.285886i
\(441\) 0 0
\(442\) 6.64797 + 2.41966i 0.316212 + 0.115092i
\(443\) 1.05658 2.44942i 0.0501994 0.116375i −0.891271 0.453471i \(-0.850185\pi\)
0.941470 + 0.337096i \(0.109445\pi\)
\(444\) 0 0
\(445\) 30.5623 7.24339i 1.44879 0.343370i
\(446\) −10.4037 + 2.46573i −0.492631 + 0.116756i
\(447\) 0 0
\(448\) 1.08845 2.52331i 0.0514245 0.119215i
\(449\) −39.1256 14.2405i −1.84645 0.672053i −0.986975 0.160874i \(-0.948569\pi\)
−0.859474 0.511179i \(-0.829209\pi\)
\(450\) 0 0
\(451\) 25.1735 9.16239i 1.18537 0.431440i
\(452\) 0.268965 4.61795i 0.0126511 0.217210i
\(453\) 0 0
\(454\) −5.56143 12.8928i −0.261011 0.605091i
\(455\) 1.94902 + 33.4633i 0.0913713 + 1.56878i
\(456\) 0 0
\(457\) −5.25995 + 5.57522i −0.246050 + 0.260798i −0.838615 0.544725i \(-0.816634\pi\)
0.592565 + 0.805523i \(0.298116\pi\)
\(458\) 2.85365 + 4.94267i 0.133342 + 0.230956i
\(459\) 0 0
\(460\) −4.90183 + 8.49022i −0.228549 + 0.395858i
\(461\) 6.32202 + 21.1170i 0.294446 + 0.983517i 0.969365 + 0.245625i \(0.0789933\pi\)
−0.674919 + 0.737892i \(0.735821\pi\)
\(462\) 0 0
\(463\) −31.0464 + 20.4195i −1.44285 + 0.948975i −0.444256 + 0.895900i \(0.646532\pi\)
−0.998591 + 0.0530751i \(0.983098\pi\)
\(464\) 8.66370 + 1.01264i 0.402202 + 0.0470107i
\(465\) 0 0
\(466\) 8.84428 4.44177i 0.409703 0.205761i
\(467\) −1.44385 + 8.18848i −0.0668134 + 0.378918i 0.933005 + 0.359863i \(0.117177\pi\)
−0.999818 + 0.0190543i \(0.993934\pi\)
\(468\) 0 0
\(469\) 4.17380 + 23.6708i 0.192728 + 1.09302i
\(470\) 10.0459 + 13.4941i 0.463385 + 0.622434i
\(471\) 0 0
\(472\) 18.3893 + 19.4915i 0.846435 + 0.897168i
\(473\) −6.63796 + 22.1723i −0.305214 + 1.01949i
\(474\) 0 0
\(475\) 4.30441 0.503114i 0.197500 0.0230844i
\(476\) −16.2347 + 13.6225i −0.744115 + 0.624387i
\(477\) 0 0
\(478\) 1.82923 + 1.53491i 0.0836671 + 0.0702050i
\(479\) 2.13297 + 1.40288i 0.0974580 + 0.0640991i 0.597303 0.802016i \(-0.296239\pi\)
−0.499845 + 0.866115i \(0.666610\pi\)
\(480\) 0 0
\(481\) −5.29542 + 7.11298i −0.241450 + 0.324324i
\(482\) −13.5294 6.79470i −0.616246 0.309490i
\(483\) 0 0
\(484\) 3.39806 + 0.805354i 0.154457 + 0.0366070i
\(485\) −17.9763 −0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) −20.6614 4.89685i −0.935299 0.221670i
\(489\) 0 0
\(490\) 14.7200 + 7.39264i 0.664980 + 0.333965i
\(491\) 21.7872 29.2653i 0.983242 1.32072i 0.0362928 0.999341i \(-0.488445\pi\)
0.946950 0.321382i \(-0.104147\pi\)
\(492\) 0 0
\(493\) 15.3409 + 10.0899i 0.690918 + 0.454424i
\(494\) 5.40415 + 4.53462i 0.243144 + 0.204022i
\(495\) 0 0
\(496\) 7.70901 6.46863i 0.346145 0.290450i
\(497\) −9.69374 + 1.13304i −0.434823 + 0.0508236i
\(498\) 0 0
\(499\) 9.10246 30.4043i 0.407482 1.36108i −0.470504 0.882398i \(-0.655928\pi\)
0.877986 0.478687i \(-0.158887\pi\)
\(500\) −9.92484 10.5197i −0.443852 0.470456i
\(501\) 0 0
\(502\) 8.36207 + 11.2322i 0.373217 + 0.501318i
\(503\) −1.04817 5.94449i −0.0467358 0.265052i 0.952482 0.304595i \(-0.0985210\pi\)
−0.999218 + 0.0395428i \(0.987410\pi\)
\(504\) 0 0
\(505\) 0.919238 5.21326i 0.0409055 0.231987i
\(506\) 4.36767 2.19352i 0.194166 0.0975141i
\(507\) 0 0
\(508\) 18.6737 + 2.18265i 0.828513 + 0.0968393i
\(509\) 21.9762 14.4540i 0.974079 0.640662i 0.0405551 0.999177i \(-0.487087\pi\)
0.933524 + 0.358516i \(0.116717\pi\)
\(510\) 0 0
\(511\) −5.57289 18.6147i −0.246530 0.823468i
\(512\) −8.19547 + 14.1950i −0.362192 + 0.627335i
\(513\) 0 0
\(514\) −2.57506 4.46014i −0.113581 0.196728i
\(515\) 3.56243 3.77596i 0.156980 0.166389i
\(516\) 0 0
\(517\) 1.74208 + 29.9103i 0.0766165 + 1.31545i
\(518\) 2.94528 + 6.82793i 0.129408 + 0.300002i
\(519\) 0 0
\(520\) −1.11678 + 19.1745i −0.0489742 + 0.840855i
\(521\) −23.7819 + 8.65589i −1.04190 + 0.379221i −0.805601 0.592459i \(-0.798157\pi\)
−0.236301 + 0.971680i \(0.575935\pi\)
\(522\) 0 0
\(523\) 2.76727 + 1.00720i 0.121004 + 0.0440420i 0.401813 0.915722i \(-0.368380\pi\)
−0.280808 + 0.959764i \(0.590603\pi\)
\(524\) −3.17888 + 7.36947i −0.138870 + 0.321937i
\(525\) 0 0
\(526\) −0.982358 + 0.232823i −0.0428328 + 0.0101516i
\(527\) 20.6128 4.88533i 0.897909 0.212808i
\(528\) 0 0
\(529\) −6.64201 + 15.3979i −0.288783 + 0.669474i
\(530\) −0.0154471 0.00562227i −0.000670977 0.000244216i
\(531\) 0 0
\(532\) −19.8585 + 7.22789i −0.860973 + 0.313369i
\(533\) 1.70631 29.2962i 0.0739085 1.26896i
\(534\) 0 0
\(535\) −14.2000 32.9194i −0.613921 1.42323i
\(536\) 0.800805 + 13.7493i 0.0345895 + 0.593879i
\(537\) 0 0
\(538\) −13.3611 + 14.1619i −0.576036 + 0.610563i
\(539\) 14.6681 + 25.4058i 0.631798 + 1.09431i
\(540\) 0 0
\(541\) −8.84669 + 15.3229i −0.380349 + 0.658784i −0.991112 0.133030i \(-0.957529\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(542\) −2.76423 9.23318i −0.118734 0.396599i
\(543\) 0 0
\(544\) −15.8415 + 10.4191i −0.679197 + 0.446715i
\(545\) −33.4649 3.91149i −1.43348 0.167550i
\(546\) 0 0
\(547\) 36.4161 18.2889i 1.55704 0.781975i 0.558182 0.829719i \(-0.311499\pi\)
0.998860 + 0.0477434i \(0.0152030\pi\)
\(548\) 0.515831 2.92542i 0.0220352 0.124968i
\(549\) 0 0
\(550\) −0.448020 2.54085i −0.0191036 0.108342i
\(551\) 10.9338 + 14.6866i 0.465794 + 0.625670i
\(552\) 0 0
\(553\) −25.4023 26.9249i −1.08022 1.14496i
\(554\) −1.93981 + 6.47943i −0.0824148 + 0.275285i
\(555\) 0 0
\(556\) 14.5235 1.69756i 0.615935 0.0719925i
\(557\) 23.1644 19.4372i 0.981505 0.823581i −0.00281036 0.999996i \(-0.500895\pi\)
0.984316 + 0.176415i \(0.0564501\pi\)
\(558\) 0 0
\(559\) 19.4220 + 16.2970i 0.821465 + 0.689291i
\(560\) −13.5302 8.89894i −0.571755 0.376049i
\(561\) 0 0
\(562\) −2.77396 + 3.72607i −0.117012 + 0.157175i
\(563\) 16.5135 + 8.29337i 0.695959 + 0.349524i 0.761355 0.648336i \(-0.224535\pi\)
−0.0653954 + 0.997859i \(0.520831\pi\)
\(564\) 0 0
\(565\) 7.24021 + 1.71596i 0.304598 + 0.0721911i
\(566\) −14.3004 −0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) −8.75519 2.07502i −0.367037 0.0869893i 0.0429589 0.999077i \(-0.486322\pi\)
−0.409995 + 0.912088i \(0.634470\pi\)
\(570\) 0 0
\(571\) −15.0828 7.57485i −0.631194 0.316998i 0.104282 0.994548i \(-0.466745\pi\)
−0.735477 + 0.677550i \(0.763042\pi\)
\(572\) −8.95947 + 12.0347i −0.374614 + 0.503194i
\(573\) 0 0
\(574\) −20.5599 13.5225i −0.858153 0.564416i
\(575\) −2.51954 2.11415i −0.105072 0.0881661i
\(576\) 0 0
\(577\) −24.0567 + 20.1860i −1.00149 + 0.840352i −0.987191 0.159545i \(-0.948997\pi\)
−0.0143022 + 0.999898i \(0.504553\pi\)
\(578\) 4.02109 0.469998i 0.167255 0.0195493i
\(579\) 0 0
\(580\) −6.27087 + 20.9462i −0.260384 + 0.869743i
\(581\) −10.4446 11.0707i −0.433317 0.459289i
\(582\) 0 0
\(583\) −0.0174826 0.0234832i −0.000724054 0.000972573i
\(584\) −1.93340 10.9648i −0.0800045 0.453728i
\(585\) 0 0
\(586\) 1.25491 7.11695i 0.0518399 0.293999i
\(587\) 1.23033 0.617896i 0.0507812 0.0255033i −0.423227 0.906024i \(-0.639103\pi\)
0.474009 + 0.880520i \(0.342807\pi\)
\(588\) 0 0
\(589\) 20.9811 + 2.45234i 0.864511 + 0.101047i
\(590\) −15.7957 + 10.3890i −0.650300 + 0.427709i
\(591\) 0 0
\(592\) −1.22872 4.10422i −0.0505002 0.168682i
\(593\) −15.4929 + 26.8346i −0.636219 + 1.10196i 0.350037 + 0.936736i \(0.386169\pi\)
−0.986256 + 0.165227i \(0.947164\pi\)
\(594\) 0 0
\(595\) −17.0449 29.5226i −0.698771 1.21031i
\(596\) 0.952902 1.01002i 0.0390324 0.0413719i
\(597\) 0 0
\(598\) −0.311309 5.34497i −0.0127304 0.218572i
\(599\) 9.60548 + 22.2680i 0.392469 + 0.909846i 0.993835 + 0.110872i \(0.0353644\pi\)
−0.601365 + 0.798974i \(0.705376\pi\)
\(600\) 0 0
\(601\) −0.441108 + 7.57353i −0.0179932 + 0.308931i 0.977289 + 0.211910i \(0.0679684\pi\)
−0.995282 + 0.0970208i \(0.969069\pi\)
\(602\) 19.9784 7.27154i 0.814258 0.296366i
\(603\) 0 0
\(604\) −11.8328 4.30678i −0.481469 0.175241i
\(605\) −2.22492 + 5.15794i −0.0904558 + 0.209700i
\(606\) 0 0
\(607\) 29.1570 6.91033i 1.18345 0.280482i 0.408649 0.912692i \(-0.366000\pi\)
0.774797 + 0.632210i \(0.217852\pi\)
\(608\) −18.3975 + 4.36028i −0.746116 + 0.176833i
\(609\) 0 0
\(610\) 5.93366 13.7558i 0.240247 0.556955i
\(611\) 30.8413 + 11.2253i 1.24770 + 0.454127i
\(612\) 0 0
\(613\) 11.4606 4.17132i 0.462890 0.168478i −0.100039 0.994984i \(-0.531897\pi\)
0.562929 + 0.826505i \(0.309675\pi\)
\(614\) −0.176849 + 3.03637i −0.00713703 + 0.122538i
\(615\) 0 0
\(616\) 11.3614 + 26.3386i 0.457762 + 1.06121i
\(617\) −0.923932 15.8633i −0.0371961 0.638632i −0.964461 0.264226i \(-0.914884\pi\)
0.927265 0.374406i \(-0.122153\pi\)
\(618\) 0 0
\(619\) −15.9608 + 16.9174i −0.641518 + 0.679970i −0.963785 0.266679i \(-0.914074\pi\)
0.322267 + 0.946649i \(0.395555\pi\)
\(620\) 12.6127 + 21.8459i 0.506539 + 0.877351i
\(621\) 0 0
\(622\) −5.76686 + 9.98849i −0.231230 + 0.400502i
\(623\) −14.7372 49.2258i −0.590435 1.97219i
\(624\) 0 0
\(625\) 24.9410 16.4040i 0.997641 0.656159i
\(626\) 10.3968 + 1.21521i 0.415540 + 0.0485696i
\(627\) 0 0
\(628\) 20.2064 10.1480i 0.806321 0.404950i
\(629\) 1.56603 8.88139i 0.0624417 0.354124i
\(630\) 0 0
\(631\) 2.13182 + 12.0902i 0.0848665 + 0.481302i 0.997385 + 0.0722670i \(0.0230234\pi\)
−0.912519 + 0.409035i \(0.865866\pi\)
\(632\) −12.6660 17.0134i −0.503828 0.676758i
\(633\) 0 0
\(634\) 8.89684 + 9.43010i 0.353339 + 0.374517i
\(635\) −8.67352 + 28.9716i −0.344198 + 1.14970i
\(636\) 0 0
\(637\) 31.9188 3.73077i 1.26467 0.147818i
\(638\) 8.35027 7.00671i 0.330590 0.277398i
\(639\) 0 0
\(640\) −21.2865 17.8615i −0.841422 0.706037i
\(641\) −7.82391 5.14587i −0.309026 0.203249i 0.385517 0.922701i \(-0.374023\pi\)
−0.694543 + 0.719451i \(0.744393\pi\)
\(642\) 0 0
\(643\) −11.7429 + 15.7734i −0.463094 + 0.622043i −0.970916 0.239419i \(-0.923043\pi\)
0.507823 + 0.861462i \(0.330451\pi\)
\(644\) 14.3326 + 7.19812i 0.564785 + 0.283646i
\(645\) 0 0
\(646\) −6.98112 1.65456i −0.274668 0.0650976i
\(647\) 14.2593 0.560591 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) −2.75011 0.651788i −0.107868 0.0255652i
\(651\) 0 0
\(652\) −11.2478 5.64884i −0.440496 0.221225i
\(653\) −24.3576 + 32.7179i −0.953185 + 1.28035i 0.00670674 + 0.999978i \(0.497865\pi\)
−0.959891 + 0.280372i \(0.909542\pi\)
\(654\) 0 0
\(655\) −10.7861 7.09414i −0.421448 0.277191i
\(656\) 10.8608 + 9.11326i 0.424042 + 0.355813i
\(657\) 0 0
\(658\) 21.0831 17.6908i 0.821905 0.689660i
\(659\) 2.57161 0.300578i 0.100176 0.0117089i −0.0658573 0.997829i \(-0.520978\pi\)
0.166033 + 0.986120i \(0.446904\pi\)
\(660\) 0 0
\(661\) −8.61351 + 28.7711i −0.335027 + 1.11907i 0.610089 + 0.792333i \(0.291134\pi\)
−0.945116 + 0.326735i \(0.894052\pi\)
\(662\) 9.92980 + 10.5250i 0.385933 + 0.409065i
\(663\) 0 0
\(664\) −5.20787 6.99538i −0.202105 0.271473i
\(665\) −5.90288 33.4769i −0.228904 1.29818i
\(666\) 0 0
\(667\) 2.41300 13.6848i 0.0934318 0.529878i
\(668\) 23.5742 11.8394i 0.912112 0.458080i
\(669\) 0 0
\(670\) −9.65120 1.12806i −0.372858 0.0435809i
\(671\) 22.2913 14.6612i 0.860546 0.565990i
\(672\) 0 0
\(673\) −3.97739 13.2854i −0.153317 0.512115i 0.846477 0.532426i \(-0.178720\pi\)
−0.999794 + 0.0203111i \(0.993534\pi\)
\(674\) 2.96391 5.13365i 0.114166 0.197741i
\(675\) 0 0
\(676\) −1.93907 3.35858i −0.0745798 0.129176i
\(677\) 13.7507 14.5749i 0.528482 0.560158i −0.407048 0.913407i \(-0.633442\pi\)
0.935529 + 0.353249i \(0.114923\pi\)
\(678\) 0 0
\(679\) 1.70998 + 29.3593i 0.0656231 + 1.12670i
\(680\) −7.73678 17.9359i −0.296692 0.687809i
\(681\) 0 0
\(682\) 0.731227 12.5547i 0.0280001 0.480743i
\(683\) 29.9877 10.9146i 1.14745 0.417636i 0.302849 0.953039i \(-0.402062\pi\)
0.844597 + 0.535402i \(0.179840\pi\)
\(684\) 0 0
\(685\) 4.49011 + 1.63426i 0.171558 + 0.0624421i
\(686\) 3.13334 7.26391i 0.119632 0.277337i
\(687\) 0 0
\(688\) −11.9188 + 2.82481i −0.454401 + 0.107695i
\(689\) −0.0312060 + 0.00739596i −0.00118885 + 0.000281764i
\(690\) 0 0
\(691\) 14.8306 34.3813i 0.564184 1.30793i −0.362464 0.931998i \(-0.618064\pi\)
0.926649 0.375929i \(-0.122676\pi\)
\(692\) −9.87198 3.59311i −0.375276 0.136589i
\(693\) 0 0
\(694\) 11.9523 4.35029i 0.453704 0.165135i
\(695\) −1.36762 + 23.4810i −0.0518766 + 0.890687i
\(696\) 0 0
\(697\) 11.8209 + 27.4038i 0.447747 + 1.03799i
\(698\) −0.821179 14.0991i −0.0310821 0.533659i
\(699\) 0 0
\(700\) 5.81006 6.15831i 0.219600 0.232762i
\(701\) −11.5923 20.0785i −0.437836 0.758355i 0.559686 0.828705i \(-0.310922\pi\)
−0.997522 + 0.0703498i \(0.977588\pi\)
\(702\) 0 0
\(703\) 4.49645 7.78807i 0.169587 0.293733i
\(704\) 0.567456 + 1.89544i 0.0213868 + 0.0714369i
\(705\) 0 0
\(706\) −8.12951 + 5.34686i −0.305958 + 0.201232i
\(707\) −8.60182 1.00541i −0.323505 0.0378123i
\(708\) 0 0
\(709\) 4.45037 2.23506i 0.167137 0.0839393i −0.363264 0.931686i \(-0.618338\pi\)
0.530401 + 0.847747i \(0.322041\pi\)
\(710\) 0.685132 3.88558i 0.0257126 0.145823i
\(711\) 0 0
\(712\) −5.11277 28.9960i −0.191609 1.08667i
\(713\) −9.57352 12.8595i −0.358531 0.481591i
\(714\) 0 0
\(715\) −16.5616 17.5543i −0.619370 0.656494i
\(716\) 6.81449 22.7620i 0.254669 0.850655i
\(717\) 0 0
\(718\) 7.03511 0.822287i 0.262548 0.0306875i
\(719\) −13.4111 + 11.2533i −0.500151 + 0.419677i −0.857648 0.514238i \(-0.828075\pi\)
0.357497 + 0.933914i \(0.383630\pi\)
\(720\) 0 0
\(721\) −6.50583 5.45904i −0.242290 0.203305i
\(722\) 4.52153 + 2.97386i 0.168274 + 0.110676i
\(723\) 0 0
\(724\) 5.23009 7.02523i 0.194375 0.261091i
\(725\) −6.55516 3.29212i −0.243452 0.122266i
\(726\) 0 0
\(727\) 7.81381 + 1.85191i 0.289798 + 0.0686834i 0.372944 0.927854i \(-0.378348\pi\)
−0.0831456 + 0.996537i \(0.526497\pi\)
\(728\) 31.4223 1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) −25.0896 5.94633i −0.927971 0.219933i
\(732\) 0 0
\(733\) −26.8789 13.4991i −0.992794 0.498600i −0.123207 0.992381i \(-0.539318\pi\)
−0.869586 + 0.493781i \(0.835614\pi\)
\(734\) −1.56622 + 2.10379i −0.0578101 + 0.0776524i
\(735\) 0 0
\(736\) 11.9887 + 7.88510i 0.441910 + 0.290649i
\(737\) −13.2568 11.1237i −0.488319 0.409748i
\(738\) 0 0
\(739\) 1.84741 1.55016i 0.0679580 0.0570236i −0.608176 0.793802i \(-0.708098\pi\)
0.676134 + 0.736779i \(0.263654\pi\)
\(740\) 10.6664 1.24672i 0.392104 0.0458304i
\(741\) 0 0
\(742\) −0.00771300 + 0.0257632i −0.000283153 + 0.000945797i
\(743\) 13.4927 + 14.3015i 0.495000 + 0.524670i 0.925920 0.377721i \(-0.123292\pi\)
−0.430919 + 0.902391i \(0.641811\pi\)
\(744\) 0 0
\(745\) 1.33381 + 1.79162i 0.0488671 + 0.0656399i
\(746\) −2.72448 15.4513i −0.0997503 0.565712i
\(747\) 0 0
\(748\) 2.64961 15.0267i 0.0968793 0.549430i
\(749\) −52.4137 + 26.3231i −1.91515 + 0.961827i
\(750\) 0 0
\(751\) 6.82312 + 0.797508i 0.248979 + 0.0291015i 0.239667 0.970855i \(-0.422962\pi\)
0.00931213 + 0.999957i \(0.497036\pi\)
\(752\) −13.2479 + 8.71326i −0.483100 + 0.317740i
\(753\) 0 0
\(754\) −3.42468 11.4392i −0.124720 0.416593i
\(755\) 10.1276 17.5415i 0.368580 0.638399i
\(756\) 0 0
\(757\) −6.50209 11.2620i −0.236323 0.409323i 0.723334 0.690499i \(-0.242609\pi\)
−0.959656 + 0.281176i \(0.909276\pi\)
\(758\) 11.8089 12.5167i 0.428920 0.454628i
\(759\) 0 0
\(760\) −1.13255 19.4452i −0.0410820 0.705351i
\(761\) −6.89394 15.9819i −0.249905 0.579345i 0.746375 0.665526i \(-0.231793\pi\)
−0.996279 + 0.0861814i \(0.972534\pi\)
\(762\) 0 0
\(763\) −3.20499 + 55.0275i −0.116028 + 1.99213i
\(764\) 6.30756 2.29576i 0.228200 0.0830578i
\(765\) 0 0
\(766\) −18.2874 6.65607i −0.660751 0.240494i
\(767\) −14.6093 + 33.8681i −0.527510 + 1.22290i
\(768\) 0 0
\(769\) −18.1275 + 4.29629i −0.653693 + 0.154928i −0.544063 0.839044i \(-0.683115\pi\)
−0.109630 + 0.993972i \(0.534967\pi\)
\(770\) −19.6921 + 4.66712i −0.709655 + 0.168191i
\(771\) 0 0
\(772\) −1.75379 + 4.06574i −0.0631203 + 0.146329i
\(773\) 27.2264 + 9.90961i 0.979267 + 0.356424i 0.781555 0.623836i \(-0.214427\pi\)
0.197712 + 0.980260i \(0.436649\pi\)
\(774\) 0 0
\(775\) −7.95251 + 2.89448i −0.285663 + 0.103973i
\(776\) −0.979818 + 16.8228i −0.0351734 + 0.603904i
\(777\) 0 0
\(778\) 6.94285 + 16.0953i 0.248913 + 0.577046i
\(779\) 1.73040 + 29.7099i 0.0619981 + 1.06447i
\(780\) 0 0
\(781\) 4.82210 5.11113i 0.172548 0.182891i
\(782\) 2.72251 + 4.71553i 0.0973568 + 0.168627i
\(783\) 0 0
\(784\) −7.76286 + 13.4457i −0.277245 + 0.480203i
\(785\) 10.4315 + 34.8436i 0.372316 + 1.24362i
\(786\) 0 0
\(787\) 12.3774 8.14073i 0.441206 0.290186i −0.309405 0.950930i \(-0.600130\pi\)
0.750611 + 0.660745i \(0.229759\pi\)
\(788\) 32.9776 + 3.85452i 1.17478 + 0.137312i
\(789\) 0 0
\(790\) 13.3728 6.71607i 0.475783 0.238947i
\(791\) 2.11382 11.9881i 0.0751588 0.426247i
\(792\) 0 0
\(793\) −5.07523 28.7830i −0.180227 1.02212i
\(794\) −11.2403 15.0984i −0.398904 0.535821i
\(795\) 0 0
\(796\) 10.4360 + 11.0615i 0.369894 + 0.392064i
\(797\) 5.04957 16.8667i 0.178865 0.597450i −0.820791 0.571228i \(-0.806467\pi\)
0.999656 0.0262221i \(-0.00834772\pi\)
\(798\) 0 0
\(799\) −33.1527 + 3.87500i −1.17286 + 0.137088i
\(800\) 5.80261 4.86896i 0.205153 0.172144i
\(801\) 0 0
\(802\) 7.20573 + 6.04632i 0.254443 + 0.213503i
\(803\) 11.6885 + 7.68764i 0.412478 + 0.271291i
\(804\) 0 0
\(805\) −15.4060 + 20.6939i −0.542991 + 0.729364i
\(806\) −12.3109 6.18277i −0.433633 0.217779i
\(807\) 0 0
\(808\) −4.82863 1.14441i −0.169871 0.0402601i
\(809\) 13.3577 0.469632 0.234816 0.972040i \(-0.424551\pi\)
0.234816 + 0.972040i \(0.424551\pi\)
\(810\) 0 0
\(811\) 13.6700 0.480017 0.240009 0.970771i \(-0.422850\pi\)
0.240009 + 0.970771i \(0.422850\pi\)
\(812\) 34.8062 + 8.24921i 1.22146 + 0.289491i
\(813\) 0 0
\(814\) −4.78437 2.40280i −0.167692 0.0842182i
\(815\) 12.0901 16.2398i 0.423498 0.568857i
\(816\) 0 0
\(817\) −21.4818 14.1288i −0.751552 0.494304i
\(818\) 1.57767 + 1.32382i 0.0551619 + 0.0462863i
\(819\) 0 0
\(820\) −27.2241 + 22.8438i −0.950708 + 0.797739i
\(821\) 9.97247 1.16561i 0.348041 0.0406802i 0.0597236 0.998215i \(-0.480978\pi\)
0.288318 + 0.957535i \(0.406904\pi\)
\(822\) 0 0
\(823\) 8.67546 28.9781i 0.302408 1.01011i −0.662837 0.748764i \(-0.730648\pi\)
0.965245 0.261348i \(-0.0841670\pi\)
\(824\) −3.33949 3.53965i −0.116337 0.123310i
\(825\) 0 0
\(826\) 18.4701 + 24.8096i 0.642656 + 0.863237i
\(827\) 8.16805 + 46.3233i 0.284031 + 1.61082i 0.708726 + 0.705483i \(0.249270\pi\)
−0.424695 + 0.905336i \(0.639619\pi\)
\(828\) 0 0
\(829\) −0.608907 + 3.45328i −0.0211482 + 0.119938i −0.993554 0.113357i \(-0.963840\pi\)
0.972406 + 0.233295i \(0.0749507\pi\)
\(830\) 5.49847 2.76144i 0.190855 0.0958508i
\(831\) 0 0
\(832\) 2.15274 + 0.251619i 0.0746329 + 0.00872333i
\(833\) −27.3056 + 17.9592i −0.946084 + 0.622249i
\(834\) 0 0
\(835\) 12.1701 + 40.6511i 0.421165 + 1.40679i
\(836\) 7.60767 13.1769i 0.263117 0.455731i
\(837\) 0 0
\(838\) −2.26555 3.92405i −0.0782622 0.135554i
\(839\) 25.2637 26.7780i 0.872201 0.924479i −0.125511 0.992092i \(-0.540057\pi\)
0.997712 + 0.0676133i \(0.0215384\pi\)
\(840\) 0 0
\(841\) −0.115799 1.98820i −0.00399308 0.0685585i
\(842\) −3.91165 9.06823i −0.134804 0.312512i
\(843\) 0 0
\(844\) 1.77880 30.5409i 0.0612289 1.05126i
\(845\) 5.86198 2.13359i 0.201658 0.0733976i
\(846\) 0 0
\(847\) 8.63568 + 3.14313i 0.296725 + 0.107999i
\(848\) 0.00613688 0.0142269i 0.000210741 0.000488553i
\(849\) 0 0
\(850\) 2.79685 0.662866i 0.0959312 0.0227361i
\(851\) −6.64110 + 1.57397i −0.227654 + 0.0539550i
\(852\) 0 0
\(853\) −14.6197 + 33.8923i −0.500569 + 1.16045i 0.461376 + 0.887205i \(0.347356\pi\)
−0.961945 + 0.273244i \(0.911903\pi\)
\(854\) −23.0306 8.38245i −0.788090 0.286841i
\(855\) 0 0
\(856\) −31.5810 + 11.4945i −1.07942 + 0.392875i
\(857\) 1.75026 30.0508i 0.0597877 1.02652i −0.826369 0.563129i \(-0.809597\pi\)
0.886156 0.463386i \(-0.153366\pi\)
\(858\) 0 0
\(859\) −7.70264 17.8567i −0.262811 0.609264i 0.734805 0.678279i \(-0.237274\pi\)
−0.997616 + 0.0690147i \(0.978014\pi\)
\(860\) −1.78528 30.6520i −0.0608774 1.04522i
\(861\) 0 0
\(862\) 14.0092 14.8489i 0.477155 0.505755i
\(863\) −14.3566 24.8664i −0.488706 0.846463i 0.511210 0.859456i \(-0.329197\pi\)
−0.999916 + 0.0129930i \(0.995864\pi\)
\(864\) 0 0
\(865\) 8.44932 14.6347i 0.287286 0.497593i
\(866\) 5.45716 + 18.2282i 0.185442 + 0.619419i
\(867\) 0 0
\(868\) 34.4792 22.6774i 1.17030 0.769720i
\(869\) 26.4711 + 3.09403i 0.897971 + 0.104958i
\(870\) 0 0
\(871\) −16.9407 + 8.50796i −0.574015 + 0.288281i
\(872\) −5.48453 + 31.1043i −0.185730 + 1.05333i
\(873\) 0 0
\(874\) 0.942844 + 5.34714i 0.0318922 + 0.180870i
\(875\) −22.7274 30.5282i −0.768325 1.03204i
\(876\) 0 0
\(877\) 13.1238 + 13.9104i 0.443158 + 0.469720i 0.909992 0.414625i \(-0.136087\pi\)
−0.466835 + 0.884345i \(0.654606\pi\)
\(878\) 0.839125 2.80287i 0.0283191 0.0945924i
\(879\) 0 0
\(880\) 11.5808 1.35360i 0.390389 0.0456299i
\(881\) −35.7695 + 30.0142i −1.20510 + 1.01120i −0.205635 + 0.978629i \(0.565926\pi\)
−0.999469 + 0.0325741i \(0.989630\pi\)
\(882\) 0 0
\(883\) −10.7311 9.00449i −0.361131 0.303025i 0.444110 0.895972i \(-0.353520\pi\)
−0.805241 + 0.592947i \(0.797964\pi\)
\(884\) −13.9650 9.18494i −0.469695 0.308923i
\(885\) 0 0
\(886\) 1.05355 1.41516i 0.0353945 0.0475431i
\(887\) 9.26435 + 4.65273i 0.311066 + 0.156223i 0.597483 0.801882i \(-0.296168\pi\)
−0.286416 + 0.958105i \(0.592464\pi\)
\(888\) 0 0
\(889\) 48.1419 + 11.4098i 1.61463 + 0.382674i
\(890\) 20.7730 0.696312
\(891\) 0 0
\(892\) 25.2612 0.845809
\(893\) −32.3868 7.67582i −1.08378 0.256862i
\(894\) 0 0
\(895\) 34.1540 + 17.1528i 1.14164 + 0.573355i
\(896\) −27.1468 + 36.4645i −0.906911 + 1.21819i
\(897\) 0 0
\(898\) −23.0070 15.1320i −0.767755 0.504960i
\(899\) −27.3900 22.9829i −0.913508 0.766524i
\(900\) 0 0
\(901\) 0.0249850 0.0209649i 0.000832370 0.000698441i
\(902\) 17.5977 2.05688i 0.585940 0.0684865i
\(903\) 0 0
\(904\) 2.00049 6.68209i 0.0665352 0.222243i
\(905\) 9.66786 + 10.2473i 0.321371 + 0.340633i
\(906\) 0 0
\(907\) −21.4775 28.8493i −0.713149 0.957926i 0.286851 0.957975i \(-0.407392\pi\)
−1.00000 4.96814e-5i \(0.999984\pi\)
\(908\) 5.76067 + 32.6704i 0.191174 + 1.08420i
\(909\) 0 0
\(910\) −3.84964 + 21.8324i −0.127614 + 0.723737i
\(911\) 5.68443 2.85483i 0.188334 0.0945846i −0.352134 0.935950i \(-0.614544\pi\)
0.540467 + 0.841365i \(0.318247\pi\)
\(912\) 0 0
\(913\) 10.8841 + 1.27217i 0.360210 + 0.0421026i
\(914\) −4.23536 + 2.78564i −0.140093 + 0.0921408i
\(915\) 0 0
\(916\) −3.86735 12.9178i −0.127781 0.426818i
\(917\) −10.5602 + 18.2909i −0.348730 + 0.604018i
\(918\) 0 0
\(919\) 23.2884 + 40.3367i 0.768213 + 1.33058i 0.938531 + 0.345194i \(0.112187\pi\)
−0.170318 + 0.985389i \(0.554480\pi\)
\(920\) −10.1445 + 10.7526i −0.334455 + 0.354502i
\(921\) 0 0
\(922\) 0.847673 + 14.5540i 0.0279166 + 0.479310i
\(923\) −3.04882 7.06797i −0.100353 0.232645i
\(924\) 0 0
\(925\) −0.209486 + 3.59673i −0.00688785 + 0.118260i
\(926\) −23.0942 + 8.40558i −0.758921 + 0.276225i
\(927\) 0 0
\(928\) 30.0728 + 10.9456i 0.987189 + 0.359307i
\(929\) 17.7858 41.2322i 0.583535 1.35279i −0.329210 0.944257i \(-0.606783\pi\)
0.912745 0.408529i \(-0.133958\pi\)
\(930\) 0 0
\(931\) −31.7113 + 7.51573i −1.03930 + 0.246318i
\(932\) −22.7528 + 5.39251i −0.745293 + 0.176638i
\(933\) 0 0
\(934\) −2.17811 + 5.04943i −0.0712700 + 0.165222i
\(935\) 23.0638 + 8.39454i 0.754267 + 0.274531i
\(936\) 0 0
\(937\) −48.3251 + 17.5889i −1.57871 + 0.574605i −0.974924 0.222539i \(-0.928565\pi\)
−0.603790 + 0.797144i \(0.706343\pi\)
\(938\) −0.924311 + 15.8698i −0.0301798 + 0.518168i
\(939\) 0 0
\(940\) −15.7428 36.4960i −0.513474 1.19037i
\(941\) 0.606271 + 10.4093i 0.0197639 + 0.339333i 0.993667 + 0.112367i \(0.0358434\pi\)
−0.973903 + 0.226965i \(0.927120\pi\)
\(942\) 0 0
\(943\) 15.4996 16.4286i 0.504737 0.534990i
\(944\) −8.90994 15.4325i −0.289994 0.502284i
\(945\) 0 0
\(946\) −7.65361 + 13.2564i −0.248840 + 0.431004i
\(947\) 12.9484 + 43.2508i 0.420767 + 1.40546i 0.861470 + 0.507808i \(0.169544\pi\)
−0.440703 + 0.897653i \(0.645271\pi\)
\(948\) 0 0
\(949\) 12.8041 8.42138i 0.415638 0.273370i
\(950\) 2.84682 + 0.332745i 0.0923630 + 0.0107957i
\(951\) 0 0
\(952\) −28.5572 + 14.3420i −0.925544 + 0.464826i
\(953\) −5.08752 + 28.8527i −0.164801 + 0.934632i 0.784469 + 0.620168i \(0.212936\pi\)
−0.949270 + 0.314463i \(0.898175\pi\)
\(954\) 0 0
\(955\) 1.87491 + 10.6331i 0.0606705 + 0.344080i
\(956\) −3.36901 4.52537i −0.108962 0.146361i
\(957\) 0 0
\(958\) 1.15869 + 1.22814i 0.0374356 + 0.0396794i
\(959\) 2.24199 7.48877i 0.0723977 0.241825i
\(960\) 0 0
\(961\) −10.1815 + 1.19005i −0.328435 + 0.0383886i
\(962\) −4.49273 + 3.76985i −0.144851 + 0.121545i
\(963\) 0 0
\(964\) 27.4013 + 22.9924i 0.882536 + 0.740536i
\(965\) −5.95071 3.91384i −0.191560 0.125991i
\(966\) 0 0
\(967\) 27.9986 37.6086i 0.900374 1.20941i −0.0768159 0.997045i \(-0.524475\pi\)
0.977190 0.212367i \(-0.0681172\pi\)
\(968\) 4.70569 + 2.36329i 0.151247 + 0.0759590i
\(969\) 0 0
\(970\) −11.5686 2.74180i −0.371444 0.0880340i
\(971\) −45.6691 −1.46559 −0.732795 0.680449i \(-0.761785\pi\)
−0.732795 + 0.680449i \(0.761785\pi\)
\(972\) 0 0
\(973\) 38.4797 1.23360
\(974\) 10.5302 + 2.49570i 0.337409 + 0.0799673i
\(975\) 0 0
\(976\) 12.6184 + 6.33719i 0.403905 + 0.202848i
\(977\) 0.740310 0.994408i 0.0236846 0.0318139i −0.790123 0.612948i \(-0.789983\pi\)
0.813808 + 0.581134i \(0.197391\pi\)
\(978\) 0 0
\(979\) 30.9096 + 20.3296i 0.987877 + 0.649737i
\(980\) −29.8126 25.0157i −0.952329 0.799099i
\(981\) 0 0
\(982\) 18.4847 15.5105i 0.589869 0.494959i
\(983\) −36.3380 + 4.24731i −1.15900 + 0.135468i −0.673787 0.738926i \(-0.735333\pi\)
−0.485217 + 0.874394i \(0.661259\pi\)
\(984\) 0 0
\(985\) −15.3173 + 51.1634i −0.488050 + 1.63020i
\(986\) 8.33360 + 8.83310i 0.265396 + 0.281303i
\(987\) 0 0
\(988\) −9.95317 13.3694i −0.316652 0.425338i
\(989\) 3.38850 + 19.2172i 0.107748 + 0.611070i
\(990\) 0 0
\(991\) −7.21791 + 40.9348i −0.229285 + 1.30034i 0.625038 + 0.780594i \(0.285083\pi\)
−0.854323 + 0.519743i \(0.826028\pi\)
\(992\) 32.9945 16.5705i 1.04758 0.526113i
\(993\) 0 0
\(994\) −6.41116 0.749358i −0.203350 0.0237682i
\(995\) −20.4376 + 13.4420i −0.647916 + 0.426141i
\(996\) 0 0
\(997\) −6.06973 20.2743i −0.192230 0.642094i −0.998707 0.0508285i \(-0.983814\pi\)
0.806477 0.591265i \(-0.201371\pi\)
\(998\) 10.4952 18.1782i 0.332220 0.575421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.208.5 144
3.2 odd 2 81.2.g.a.16.4 144
9.2 odd 6 729.2.g.c.379.5 144
9.4 even 3 729.2.g.a.622.4 144
9.5 odd 6 729.2.g.d.622.5 144
9.7 even 3 729.2.g.b.379.4 144
81.5 odd 54 81.2.g.a.76.4 yes 144
81.20 odd 54 6561.2.a.c.1.31 72
81.22 even 27 729.2.g.b.352.4 144
81.32 odd 54 729.2.g.d.109.5 144
81.49 even 27 729.2.g.a.109.4 144
81.59 odd 54 729.2.g.c.352.5 144
81.61 even 27 6561.2.a.d.1.42 72
81.76 even 27 inner 243.2.g.a.118.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.4 144 3.2 odd 2
81.2.g.a.76.4 yes 144 81.5 odd 54
243.2.g.a.118.5 144 81.76 even 27 inner
243.2.g.a.208.5 144 1.1 even 1 trivial
729.2.g.a.109.4 144 81.49 even 27
729.2.g.a.622.4 144 9.4 even 3
729.2.g.b.352.4 144 81.22 even 27
729.2.g.b.379.4 144 9.7 even 3
729.2.g.c.352.5 144 81.59 odd 54
729.2.g.c.379.5 144 9.2 odd 6
729.2.g.d.109.5 144 81.32 odd 54
729.2.g.d.622.5 144 9.5 odd 6
6561.2.a.c.1.31 72 81.20 odd 54
6561.2.a.d.1.42 72 81.61 even 27