Properties

Label 243.2.g.a.199.5
Level $243$
Weight $2$
Character 243.199
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 199.5
Character \(\chi\) \(=\) 243.199
Dual form 243.2.g.a.127.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.165895 + 0.175839i) q^{2} +(0.112892 - 1.93827i) q^{4} +(-4.21919 + 0.493153i) q^{5} +(-1.02960 - 0.517085i) q^{7} +(0.729927 - 0.612481i) q^{8} +(-0.786660 - 0.660086i) q^{10} +(-0.782094 - 1.81310i) q^{11} +(-3.89722 - 0.923659i) q^{13} +(-0.0798824 - 0.266826i) q^{14} +(-3.62807 - 0.424061i) q^{16} +(0.731666 - 4.14948i) q^{17} +(0.525049 + 2.97770i) q^{19} +(0.479554 + 8.23363i) q^{20} +(0.189067 - 0.438307i) q^{22} +(1.09019 - 0.547514i) q^{23} +(12.6932 - 3.00834i) q^{25} +(-0.484116 - 0.838513i) q^{26} +(-1.11849 + 1.93728i) q^{28} +(-0.171179 + 0.571777i) q^{29} +(1.62541 + 1.06905i) q^{31} +(-1.66532 - 2.23691i) q^{32} +(0.851020 - 0.559725i) q^{34} +(4.59909 + 1.67393i) q^{35} +(-4.95333 + 1.80287i) q^{37} +(-0.436492 + 0.586310i) q^{38} +(-2.77766 + 2.94414i) q^{40} +(3.93113 - 4.16676i) q^{41} +(4.35863 - 5.85466i) q^{43} +(-3.60257 + 1.31123i) q^{44} +(0.277132 + 0.100868i) q^{46} +(-0.364825 + 0.239949i) q^{47} +(-3.38741 - 4.55008i) q^{49} +(2.63472 + 1.73288i) q^{50} +(-2.23027 + 7.44961i) q^{52} +(2.23695 - 3.87450i) q^{53} +(4.19394 + 7.26412i) q^{55} +(-1.06824 + 0.253177i) q^{56} +(-0.128938 + 0.0647553i) q^{58} +(-3.30053 + 7.65148i) q^{59} +(0.613247 + 10.5290i) q^{61} +(0.0816677 + 0.463161i) q^{62} +(-1.15153 + 6.53063i) q^{64} +(16.8986 + 1.97517i) q^{65} +(-2.10105 - 7.01801i) q^{67} +(-7.96024 - 1.88661i) q^{68} +(0.468625 + 1.08640i) q^{70} +(3.66891 + 3.07858i) q^{71} +(5.52198 - 4.63349i) q^{73} +(-1.13875 - 0.571901i) q^{74} +(5.83087 - 0.681531i) q^{76} +(-0.132281 + 2.27118i) q^{77} +(-8.64862 - 9.16700i) q^{79} +15.5167 q^{80} +1.38483 q^{82} +(-7.94414 - 8.42030i) q^{83} +(-1.04071 + 17.8683i) q^{85} +(1.75255 - 0.204844i) q^{86} +(-1.68136 - 0.844410i) q^{88} +(-8.43420 + 7.07713i) q^{89} +(3.53497 + 2.96620i) q^{91} +(-0.938159 - 2.17490i) q^{92} +(-0.102715 - 0.0243439i) q^{94} +(-3.68374 - 12.3046i) q^{95} +(-6.24523 - 0.729963i) q^{97} +(0.238125 - 1.35047i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.165895 + 0.175839i 0.117306 + 0.124337i 0.783365 0.621562i \(-0.213502\pi\)
−0.666059 + 0.745899i \(0.732020\pi\)
\(3\) 0 0
\(4\) 0.112892 1.93827i 0.0564458 0.969137i
\(5\) −4.21919 + 0.493153i −1.88688 + 0.220545i −0.979739 0.200280i \(-0.935815\pi\)
−0.907142 + 0.420824i \(0.861741\pi\)
\(6\) 0 0
\(7\) −1.02960 0.517085i −0.389153 0.195440i 0.243455 0.969912i \(-0.421719\pi\)
−0.632608 + 0.774472i \(0.718015\pi\)
\(8\) 0.729927 0.612481i 0.258068 0.216545i
\(9\) 0 0
\(10\) −0.786660 0.660086i −0.248764 0.208738i
\(11\) −0.782094 1.81310i −0.235810 0.546669i 0.758684 0.651458i \(-0.225843\pi\)
−0.994494 + 0.104789i \(0.966583\pi\)
\(12\) 0 0
\(13\) −3.89722 0.923659i −1.08089 0.256177i −0.348674 0.937244i \(-0.613368\pi\)
−0.732221 + 0.681067i \(0.761516\pi\)
\(14\) −0.0798824 0.266826i −0.0213495 0.0713122i
\(15\) 0 0
\(16\) −3.62807 0.424061i −0.907018 0.106015i
\(17\) 0.731666 4.14948i 0.177455 1.00640i −0.757817 0.652467i \(-0.773734\pi\)
0.935272 0.353930i \(-0.115155\pi\)
\(18\) 0 0
\(19\) 0.525049 + 2.97770i 0.120454 + 0.683131i 0.983904 + 0.178696i \(0.0571880\pi\)
−0.863450 + 0.504435i \(0.831701\pi\)
\(20\) 0.479554 + 8.23363i 0.107232 + 1.84110i
\(21\) 0 0
\(22\) 0.189067 0.438307i 0.0403092 0.0934473i
\(23\) 1.09019 0.547514i 0.227320 0.114165i −0.331494 0.943457i \(-0.607553\pi\)
0.558814 + 0.829293i \(0.311256\pi\)
\(24\) 0 0
\(25\) 12.6932 3.00834i 2.53863 0.601667i
\(26\) −0.484116 0.838513i −0.0949430 0.164446i
\(27\) 0 0
\(28\) −1.11849 + 1.93728i −0.211374 + 0.366111i
\(29\) −0.171179 + 0.571777i −0.0317871 + 0.106176i −0.972411 0.233274i \(-0.925056\pi\)
0.940624 + 0.339451i \(0.110241\pi\)
\(30\) 0 0
\(31\) 1.62541 + 1.06905i 0.291932 + 0.192007i 0.687024 0.726635i \(-0.258917\pi\)
−0.395091 + 0.918642i \(0.629287\pi\)
\(32\) −1.66532 2.23691i −0.294390 0.395434i
\(33\) 0 0
\(34\) 0.851020 0.559725i 0.145949 0.0959920i
\(35\) 4.59909 + 1.67393i 0.777388 + 0.282946i
\(36\) 0 0
\(37\) −4.95333 + 1.80287i −0.814323 + 0.296389i −0.715408 0.698706i \(-0.753759\pi\)
−0.0989148 + 0.995096i \(0.531537\pi\)
\(38\) −0.436492 + 0.586310i −0.0708083 + 0.0951121i
\(39\) 0 0
\(40\) −2.77766 + 2.94414i −0.439186 + 0.465510i
\(41\) 3.93113 4.16676i 0.613940 0.650738i −0.343574 0.939126i \(-0.611638\pi\)
0.957514 + 0.288387i \(0.0931190\pi\)
\(42\) 0 0
\(43\) 4.35863 5.85466i 0.664685 0.892827i −0.334078 0.942545i \(-0.608425\pi\)
0.998763 + 0.0497186i \(0.0158324\pi\)
\(44\) −3.60257 + 1.31123i −0.543108 + 0.197675i
\(45\) 0 0
\(46\) 0.277132 + 0.100868i 0.0408608 + 0.0148721i
\(47\) −0.364825 + 0.239949i −0.0532152 + 0.0350002i −0.575838 0.817564i \(-0.695324\pi\)
0.522623 + 0.852564i \(0.324954\pi\)
\(48\) 0 0
\(49\) −3.38741 4.55008i −0.483915 0.650011i
\(50\) 2.63472 + 1.73288i 0.372606 + 0.245067i
\(51\) 0 0
\(52\) −2.23027 + 7.44961i −0.309282 + 1.03308i
\(53\) 2.23695 3.87450i 0.307268 0.532204i −0.670496 0.741913i \(-0.733919\pi\)
0.977764 + 0.209710i \(0.0672518\pi\)
\(54\) 0 0
\(55\) 4.19394 + 7.26412i 0.565511 + 0.979493i
\(56\) −1.06824 + 0.253177i −0.142749 + 0.0338322i
\(57\) 0 0
\(58\) −0.128938 + 0.0647553i −0.0169304 + 0.00850279i
\(59\) −3.30053 + 7.65148i −0.429692 + 0.996138i 0.556548 + 0.830816i \(0.312126\pi\)
−0.986240 + 0.165322i \(0.947134\pi\)
\(60\) 0 0
\(61\) 0.613247 + 10.5290i 0.0785182 + 1.34811i 0.775650 + 0.631163i \(0.217422\pi\)
−0.697132 + 0.716943i \(0.745541\pi\)
\(62\) 0.0816677 + 0.463161i 0.0103718 + 0.0588215i
\(63\) 0 0
\(64\) −1.15153 + 6.53063i −0.143941 + 0.816329i
\(65\) 16.8986 + 1.97517i 2.09602 + 0.244989i
\(66\) 0 0
\(67\) −2.10105 7.01801i −0.256685 0.857387i −0.985060 0.172209i \(-0.944910\pi\)
0.728376 0.685178i \(-0.240276\pi\)
\(68\) −7.96024 1.88661i −0.965321 0.228785i
\(69\) 0 0
\(70\) 0.468625 + 1.08640i 0.0560115 + 0.129849i
\(71\) 3.66891 + 3.07858i 0.435420 + 0.365361i 0.833992 0.551776i \(-0.186050\pi\)
−0.398572 + 0.917137i \(0.630494\pi\)
\(72\) 0 0
\(73\) 5.52198 4.63349i 0.646298 0.542309i −0.259647 0.965704i \(-0.583606\pi\)
0.905945 + 0.423395i \(0.139162\pi\)
\(74\) −1.13875 0.571901i −0.132377 0.0664822i
\(75\) 0 0
\(76\) 5.83087 0.681531i 0.668847 0.0781770i
\(77\) −0.132281 + 2.27118i −0.0150748 + 0.258825i
\(78\) 0 0
\(79\) −8.64862 9.16700i −0.973046 1.03137i −0.999497 0.0317183i \(-0.989902\pi\)
0.0264509 0.999650i \(-0.491579\pi\)
\(80\) 15.5167 1.73482
\(81\) 0 0
\(82\) 1.38483 0.152929
\(83\) −7.94414 8.42030i −0.871983 0.924248i 0.125715 0.992066i \(-0.459878\pi\)
−0.997698 + 0.0678183i \(0.978396\pi\)
\(84\) 0 0
\(85\) −1.04071 + 17.8683i −0.112881 + 1.93809i
\(86\) 1.75255 0.204844i 0.188983 0.0220889i
\(87\) 0 0
\(88\) −1.68136 0.844410i −0.179233 0.0900144i
\(89\) −8.43420 + 7.07713i −0.894023 + 0.750174i −0.969013 0.247010i \(-0.920552\pi\)
0.0749899 + 0.997184i \(0.476108\pi\)
\(90\) 0 0
\(91\) 3.53497 + 2.96620i 0.370566 + 0.310942i
\(92\) −0.938159 2.17490i −0.0978098 0.226749i
\(93\) 0 0
\(94\) −0.102715 0.0243439i −0.0105943 0.00251088i
\(95\) −3.68374 12.3046i −0.377944 1.26242i
\(96\) 0 0
\(97\) −6.24523 0.729963i −0.634107 0.0741165i −0.207034 0.978334i \(-0.566381\pi\)
−0.427073 + 0.904217i \(0.640455\pi\)
\(98\) 0.238125 1.35047i 0.0240543 0.136419i
\(99\) 0 0
\(100\) −4.39803 24.9425i −0.439803 2.49425i
\(101\) −0.235359 4.04096i −0.0234191 0.402090i −0.989564 0.144092i \(-0.953974\pi\)
0.966145 0.257999i \(-0.0830630\pi\)
\(102\) 0 0
\(103\) 3.28144 7.60723i 0.323330 0.749563i −0.676583 0.736366i \(-0.736540\pi\)
0.999913 0.0131964i \(-0.00420066\pi\)
\(104\) −3.41041 + 1.71277i −0.334418 + 0.167951i
\(105\) 0 0
\(106\) 1.05239 0.249420i 0.102217 0.0242258i
\(107\) −7.95369 13.7762i −0.768912 1.33179i −0.938153 0.346220i \(-0.887465\pi\)
0.169241 0.985575i \(-0.445868\pi\)
\(108\) 0 0
\(109\) 1.81056 3.13598i 0.173420 0.300372i −0.766193 0.642610i \(-0.777852\pi\)
0.939613 + 0.342238i \(0.111185\pi\)
\(110\) −0.581558 + 1.94254i −0.0554494 + 0.185214i
\(111\) 0 0
\(112\) 3.51619 + 2.31264i 0.332249 + 0.218524i
\(113\) 5.67010 + 7.61626i 0.533398 + 0.716477i 0.984380 0.176055i \(-0.0563338\pi\)
−0.450983 + 0.892533i \(0.648926\pi\)
\(114\) 0 0
\(115\) −4.32971 + 2.84770i −0.403748 + 0.265549i
\(116\) 1.08894 + 0.396341i 0.101105 + 0.0367993i
\(117\) 0 0
\(118\) −1.89297 + 0.688984i −0.174262 + 0.0634261i
\(119\) −2.89896 + 3.89398i −0.265747 + 0.356961i
\(120\) 0 0
\(121\) 4.87301 5.16509i 0.443001 0.469553i
\(122\) −1.74968 + 1.85455i −0.158409 + 0.167903i
\(123\) 0 0
\(124\) 2.25561 3.02981i 0.202560 0.272085i
\(125\) −32.1127 + 11.6881i −2.87225 + 1.04541i
\(126\) 0 0
\(127\) −10.4753 3.81269i −0.929532 0.338322i −0.167508 0.985871i \(-0.553572\pi\)
−0.762024 + 0.647549i \(0.775794\pi\)
\(128\) −5.99929 + 3.94580i −0.530267 + 0.348762i
\(129\) 0 0
\(130\) 2.45609 + 3.29911i 0.215414 + 0.289351i
\(131\) 10.1355 + 6.66624i 0.885545 + 0.582432i 0.908770 0.417298i \(-0.137023\pi\)
−0.0232244 + 0.999730i \(0.507393\pi\)
\(132\) 0 0
\(133\) 0.999133 3.33734i 0.0866359 0.289384i
\(134\) 0.885484 1.53370i 0.0764941 0.132492i
\(135\) 0 0
\(136\) −2.00742 3.47695i −0.172135 0.298146i
\(137\) 0.291152 0.0690043i 0.0248748 0.00589543i −0.218160 0.975913i \(-0.570005\pi\)
0.243034 + 0.970018i \(0.421857\pi\)
\(138\) 0 0
\(139\) −5.01291 + 2.51758i −0.425189 + 0.213538i −0.648509 0.761207i \(-0.724607\pi\)
0.223319 + 0.974745i \(0.428311\pi\)
\(140\) 3.76374 8.72533i 0.318094 0.737425i
\(141\) 0 0
\(142\) 0.0673212 + 1.15586i 0.00564947 + 0.0969976i
\(143\) 1.37331 + 7.78843i 0.114842 + 0.651301i
\(144\) 0 0
\(145\) 0.440263 2.49686i 0.0365619 0.207353i
\(146\) 1.73082 + 0.202304i 0.143243 + 0.0167428i
\(147\) 0 0
\(148\) 2.93526 + 9.80445i 0.241277 + 0.805921i
\(149\) 13.2590 + 3.14244i 1.08622 + 0.257438i 0.734460 0.678652i \(-0.237436\pi\)
0.351759 + 0.936091i \(0.385584\pi\)
\(150\) 0 0
\(151\) −3.74426 8.68017i −0.304703 0.706382i 0.695219 0.718798i \(-0.255307\pi\)
−0.999923 + 0.0124155i \(0.996048\pi\)
\(152\) 2.20703 + 1.85192i 0.179014 + 0.150211i
\(153\) 0 0
\(154\) −0.421306 + 0.353517i −0.0339498 + 0.0284872i
\(155\) −7.38513 3.70895i −0.593188 0.297910i
\(156\) 0 0
\(157\) 9.06059 1.05903i 0.723114 0.0845199i 0.253429 0.967354i \(-0.418442\pi\)
0.469685 + 0.882834i \(0.344368\pi\)
\(158\) 0.177149 3.04153i 0.0140932 0.241971i
\(159\) 0 0
\(160\) 8.12945 + 8.61672i 0.642690 + 0.681211i
\(161\) −1.40557 −0.110775
\(162\) 0 0
\(163\) 7.94158 0.622033 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(164\) −7.63253 8.09001i −0.596001 0.631724i
\(165\) 0 0
\(166\) 0.162719 2.79378i 0.0126294 0.216839i
\(167\) −4.41487 + 0.516025i −0.341633 + 0.0399312i −0.285180 0.958474i \(-0.592053\pi\)
−0.0564535 + 0.998405i \(0.517979\pi\)
\(168\) 0 0
\(169\) 2.71797 + 1.36502i 0.209074 + 0.105001i
\(170\) −3.31459 + 2.78127i −0.254217 + 0.213314i
\(171\) 0 0
\(172\) −10.8559 9.10916i −0.827753 0.694567i
\(173\) −1.23517 2.86344i −0.0939080 0.217703i 0.864787 0.502138i \(-0.167453\pi\)
−0.958695 + 0.284435i \(0.908194\pi\)
\(174\) 0 0
\(175\) −14.6245 3.46606i −1.10551 0.262010i
\(176\) 2.06863 + 6.90970i 0.155929 + 0.520839i
\(177\) 0 0
\(178\) −2.64363 0.308996i −0.198148 0.0231602i
\(179\) 2.47200 14.0194i 0.184766 1.04786i −0.741489 0.670965i \(-0.765880\pi\)
0.926255 0.376897i \(-0.123009\pi\)
\(180\) 0 0
\(181\) 2.75966 + 15.6508i 0.205124 + 1.16332i 0.897244 + 0.441535i \(0.145566\pi\)
−0.692120 + 0.721783i \(0.743323\pi\)
\(182\) 0.0648635 + 1.11366i 0.00480800 + 0.0825502i
\(183\) 0 0
\(184\) 0.460417 1.06737i 0.0339424 0.0786872i
\(185\) 20.0100 10.0494i 1.47116 0.738846i
\(186\) 0 0
\(187\) −8.09565 + 1.91870i −0.592012 + 0.140310i
\(188\) 0.423901 + 0.734219i 0.0309162 + 0.0535484i
\(189\) 0 0
\(190\) 1.55250 2.68901i 0.112630 0.195082i
\(191\) 5.82426 19.4544i 0.421429 1.40767i −0.439178 0.898400i \(-0.644730\pi\)
0.860607 0.509270i \(-0.170085\pi\)
\(192\) 0 0
\(193\) 2.23280 + 1.46854i 0.160720 + 0.105707i 0.627321 0.778760i \(-0.284151\pi\)
−0.466601 + 0.884468i \(0.654522\pi\)
\(194\) −0.907699 1.21925i −0.0651690 0.0875372i
\(195\) 0 0
\(196\) −9.20171 + 6.05206i −0.657265 + 0.432290i
\(197\) 15.7132 + 5.71915i 1.11952 + 0.407473i 0.834478 0.551042i \(-0.185770\pi\)
0.285044 + 0.958514i \(0.407992\pi\)
\(198\) 0 0
\(199\) −1.83812 + 0.669021i −0.130301 + 0.0474257i −0.406348 0.913719i \(-0.633198\pi\)
0.276047 + 0.961144i \(0.410976\pi\)
\(200\) 7.42253 9.97019i 0.524852 0.704999i
\(201\) 0 0
\(202\) 0.671512 0.711761i 0.0472474 0.0500794i
\(203\) 0.471904 0.500189i 0.0331211 0.0351064i
\(204\) 0 0
\(205\) −14.5314 + 19.5190i −1.01491 + 1.36327i
\(206\) 1.88202 0.685000i 0.131127 0.0477262i
\(207\) 0 0
\(208\) 13.7477 + 5.00376i 0.953233 + 0.346948i
\(209\) 4.98822 3.28080i 0.345042 0.226938i
\(210\) 0 0
\(211\) 6.18914 + 8.31346i 0.426078 + 0.572322i 0.962381 0.271704i \(-0.0875870\pi\)
−0.536303 + 0.844025i \(0.680180\pi\)
\(212\) −7.25732 4.77321i −0.498435 0.327826i
\(213\) 0 0
\(214\) 1.10291 3.68397i 0.0753933 0.251831i
\(215\) −15.5027 + 26.8514i −1.05727 + 1.83125i
\(216\) 0 0
\(217\) −1.12074 1.94117i −0.0760805 0.131775i
\(218\) 0.851789 0.201878i 0.0576904 0.0136729i
\(219\) 0 0
\(220\) 14.5533 7.30895i 0.981184 0.492769i
\(221\) −6.68417 + 15.4956i −0.449626 + 1.04235i
\(222\) 0 0
\(223\) −0.426091 7.31569i −0.0285331 0.489895i −0.982058 0.188580i \(-0.939611\pi\)
0.953525 0.301315i \(-0.0974256\pi\)
\(224\) 0.557941 + 3.16424i 0.0372790 + 0.211420i
\(225\) 0 0
\(226\) −0.398592 + 2.26052i −0.0265139 + 0.150368i
\(227\) −23.1203 2.70238i −1.53455 0.179363i −0.693554 0.720404i \(-0.743956\pi\)
−0.840996 + 0.541041i \(0.818030\pi\)
\(228\) 0 0
\(229\) 0.0143156 + 0.0478175i 0.000946003 + 0.00315987i 0.958461 0.285223i \(-0.0920676\pi\)
−0.957515 + 0.288383i \(0.906882\pi\)
\(230\) −1.21901 0.288912i −0.0803795 0.0190503i
\(231\) 0 0
\(232\) 0.225255 + 0.522199i 0.0147887 + 0.0342841i
\(233\) 17.1664 + 14.4043i 1.12461 + 0.943660i 0.998828 0.0483977i \(-0.0154115\pi\)
0.125782 + 0.992058i \(0.459856\pi\)
\(234\) 0 0
\(235\) 1.42093 1.19231i 0.0926916 0.0777775i
\(236\) 14.4581 + 7.26111i 0.941140 + 0.472658i
\(237\) 0 0
\(238\) −1.16564 + 0.136243i −0.0755570 + 0.00883135i
\(239\) −1.19389 + 20.4983i −0.0772265 + 1.32593i 0.707777 + 0.706436i \(0.249698\pi\)
−0.785003 + 0.619491i \(0.787339\pi\)
\(240\) 0 0
\(241\) 19.7548 + 20.9389i 1.27252 + 1.34879i 0.908772 + 0.417292i \(0.137021\pi\)
0.363746 + 0.931498i \(0.381498\pi\)
\(242\) 1.71663 0.110349
\(243\) 0 0
\(244\) 20.4774 1.31093
\(245\) 16.5360 + 17.5272i 1.05645 + 1.11977i
\(246\) 0 0
\(247\) 0.704146 12.0897i 0.0448037 0.769251i
\(248\) 1.84120 0.215206i 0.116917 0.0136656i
\(249\) 0 0
\(250\) −7.38256 3.70766i −0.466914 0.234493i
\(251\) 7.80826 6.55190i 0.492853 0.413553i −0.362195 0.932102i \(-0.617972\pi\)
0.855047 + 0.518550i \(0.173528\pi\)
\(252\) 0 0
\(253\) −1.84533 1.54841i −0.116015 0.0973479i
\(254\) −1.06738 2.47447i −0.0669735 0.155262i
\(255\) 0 0
\(256\) 11.2162 + 2.65828i 0.701011 + 0.166143i
\(257\) 1.73817 + 5.80588i 0.108424 + 0.362161i 0.994932 0.100553i \(-0.0320610\pi\)
−0.886508 + 0.462714i \(0.846876\pi\)
\(258\) 0 0
\(259\) 6.03220 + 0.705063i 0.374822 + 0.0438105i
\(260\) 5.73613 32.5312i 0.355740 2.01750i
\(261\) 0 0
\(262\) 0.509253 + 2.88812i 0.0314618 + 0.178429i
\(263\) 0.780181 + 13.3952i 0.0481080 + 0.825983i 0.932931 + 0.360055i \(0.117242\pi\)
−0.884823 + 0.465927i \(0.845721\pi\)
\(264\) 0 0
\(265\) −7.52738 + 17.4504i −0.462403 + 1.07197i
\(266\) 0.752585 0.377962i 0.0461440 0.0231744i
\(267\) 0 0
\(268\) −13.8400 + 3.28015i −0.845414 + 0.200367i
\(269\) −1.44120 2.49623i −0.0878715 0.152198i 0.818740 0.574165i \(-0.194673\pi\)
−0.906611 + 0.421967i \(0.861340\pi\)
\(270\) 0 0
\(271\) −1.60573 + 2.78120i −0.0975410 + 0.168946i −0.910666 0.413143i \(-0.864431\pi\)
0.813125 + 0.582089i \(0.197764\pi\)
\(272\) −4.41417 + 14.7444i −0.267648 + 0.894008i
\(273\) 0 0
\(274\) 0.0604344 + 0.0397483i 0.00365098 + 0.00240128i
\(275\) −15.3817 20.6612i −0.927549 1.24591i
\(276\) 0 0
\(277\) 2.84591 1.87178i 0.170994 0.112465i −0.461127 0.887334i \(-0.652555\pi\)
0.632121 + 0.774869i \(0.282184\pi\)
\(278\) −1.27431 0.463810i −0.0764278 0.0278174i
\(279\) 0 0
\(280\) 4.38225 1.59501i 0.261889 0.0953200i
\(281\) 6.85829 9.21228i 0.409131 0.549558i −0.549025 0.835806i \(-0.685001\pi\)
0.958156 + 0.286248i \(0.0924081\pi\)
\(282\) 0 0
\(283\) −17.3905 + 18.4328i −1.03376 + 1.09572i −0.0384196 + 0.999262i \(0.512232\pi\)
−0.995337 + 0.0964565i \(0.969249\pi\)
\(284\) 6.38133 6.76381i 0.378662 0.401358i
\(285\) 0 0
\(286\) −1.14168 + 1.53355i −0.0675091 + 0.0906804i
\(287\) −6.20207 + 2.25737i −0.366097 + 0.133248i
\(288\) 0 0
\(289\) −0.708104 0.257729i −0.0416532 0.0151605i
\(290\) 0.512082 0.336802i 0.0300705 0.0197777i
\(291\) 0 0
\(292\) −8.35759 11.2262i −0.489091 0.656963i
\(293\) −3.35543 2.20690i −0.196027 0.128929i 0.447701 0.894183i \(-0.352243\pi\)
−0.643728 + 0.765254i \(0.722613\pi\)
\(294\) 0 0
\(295\) 10.1522 33.9107i 0.591084 1.97436i
\(296\) −2.51135 + 4.34978i −0.145969 + 0.252826i
\(297\) 0 0
\(298\) 1.64704 + 2.85276i 0.0954106 + 0.165256i
\(299\) −4.75443 + 1.12682i −0.274956 + 0.0651657i
\(300\) 0 0
\(301\) −7.51501 + 3.77418i −0.433158 + 0.217540i
\(302\) 0.905155 2.09839i 0.0520858 0.120749i
\(303\) 0 0
\(304\) −0.642189 11.0260i −0.0368321 0.632382i
\(305\) −7.77984 44.1216i −0.445472 2.52640i
\(306\) 0 0
\(307\) 3.45206 19.5776i 0.197020 1.11735i −0.712493 0.701679i \(-0.752434\pi\)
0.909513 0.415675i \(-0.136455\pi\)
\(308\) 4.38723 + 0.512794i 0.249986 + 0.0292191i
\(309\) 0 0
\(310\) −0.572981 1.91389i −0.0325431 0.108702i
\(311\) −1.50256 0.356114i −0.0852026 0.0201934i 0.187793 0.982209i \(-0.439866\pi\)
−0.272996 + 0.962015i \(0.588015\pi\)
\(312\) 0 0
\(313\) −6.93106 16.0680i −0.391767 0.908218i −0.993947 0.109858i \(-0.964961\pi\)
0.602181 0.798360i \(-0.294299\pi\)
\(314\) 1.68933 + 1.41751i 0.0953343 + 0.0799950i
\(315\) 0 0
\(316\) −18.7445 + 15.7285i −1.05446 + 0.884799i
\(317\) −1.75554 0.881664i −0.0986008 0.0495192i 0.398815 0.917031i \(-0.369421\pi\)
−0.497416 + 0.867512i \(0.665718\pi\)
\(318\) 0 0
\(319\) 1.17057 0.136819i 0.0655391 0.00766042i
\(320\) 1.63791 28.1219i 0.0915622 1.57206i
\(321\) 0 0
\(322\) −0.233178 0.247154i −0.0129945 0.0137734i
\(323\) 12.7401 0.708877
\(324\) 0 0
\(325\) −52.2468 −2.89813
\(326\) 1.31747 + 1.39644i 0.0729680 + 0.0773416i
\(327\) 0 0
\(328\) 0.317378 5.44917i 0.0175243 0.300880i
\(329\) 0.499698 0.0584063i 0.0275492 0.00322005i
\(330\) 0 0
\(331\) 30.8145 + 15.4756i 1.69372 + 0.850616i 0.990154 + 0.139982i \(0.0447045\pi\)
0.703562 + 0.710634i \(0.251592\pi\)
\(332\) −17.2177 + 14.4474i −0.944943 + 0.792901i
\(333\) 0 0
\(334\) −0.823144 0.690700i −0.0450405 0.0377934i
\(335\) 12.3257 + 28.5742i 0.673426 + 1.56118i
\(336\) 0 0
\(337\) 15.7401 + 3.73046i 0.857415 + 0.203211i 0.635734 0.771908i \(-0.280697\pi\)
0.221681 + 0.975119i \(0.428846\pi\)
\(338\) 0.210876 + 0.704374i 0.0114701 + 0.0383129i
\(339\) 0 0
\(340\) 34.5162 + 4.03436i 1.87190 + 0.218794i
\(341\) 0.667067 3.78313i 0.0361237 0.204868i
\(342\) 0 0
\(343\) 2.53539 + 14.3789i 0.136898 + 0.776387i
\(344\) −0.404387 6.94305i −0.0218031 0.374344i
\(345\) 0 0
\(346\) 0.298595 0.692221i 0.0160526 0.0372141i
\(347\) −28.4307 + 14.2785i −1.52624 + 0.766508i −0.996653 0.0817463i \(-0.973950\pi\)
−0.529589 + 0.848254i \(0.677654\pi\)
\(348\) 0 0
\(349\) −16.8680 + 3.99780i −0.902925 + 0.213997i −0.655754 0.754975i \(-0.727649\pi\)
−0.247171 + 0.968972i \(0.579501\pi\)
\(350\) −1.81666 3.14655i −0.0971048 0.168190i
\(351\) 0 0
\(352\) −2.75331 + 4.76887i −0.146752 + 0.254181i
\(353\) −0.975076 + 3.25698i −0.0518981 + 0.173352i −0.980009 0.198951i \(-0.936247\pi\)
0.928111 + 0.372303i \(0.121432\pi\)
\(354\) 0 0
\(355\) −16.9981 11.1798i −0.902164 0.593362i
\(356\) 12.7653 + 17.1467i 0.676558 + 0.908775i
\(357\) 0 0
\(358\) 2.87525 1.89108i 0.151962 0.0999469i
\(359\) −9.53489 3.47042i −0.503232 0.183162i 0.0779150 0.996960i \(-0.475174\pi\)
−0.581147 + 0.813798i \(0.697396\pi\)
\(360\) 0 0
\(361\) 9.26314 3.37151i 0.487534 0.177448i
\(362\) −2.29421 + 3.08166i −0.120581 + 0.161968i
\(363\) 0 0
\(364\) 6.14837 6.51689i 0.322262 0.341578i
\(365\) −21.0133 + 22.2728i −1.09988 + 1.16581i
\(366\) 0 0
\(367\) 8.87614 11.9227i 0.463331 0.622362i −0.507637 0.861571i \(-0.669481\pi\)
0.970968 + 0.239210i \(0.0768883\pi\)
\(368\) −4.18747 + 1.52411i −0.218287 + 0.0794499i
\(369\) 0 0
\(370\) 5.08664 + 1.85138i 0.264442 + 0.0962489i
\(371\) −4.30661 + 2.83250i −0.223588 + 0.147056i
\(372\) 0 0
\(373\) −12.5886 16.9094i −0.651814 0.875538i 0.346224 0.938152i \(-0.387464\pi\)
−0.998038 + 0.0626138i \(0.980056\pi\)
\(374\) −1.68041 1.10523i −0.0868921 0.0571498i
\(375\) 0 0
\(376\) −0.119331 + 0.398593i −0.00615403 + 0.0205559i
\(377\) 1.19525 2.07023i 0.0615585 0.106622i
\(378\) 0 0
\(379\) −3.47462 6.01822i −0.178479 0.309135i 0.762880 0.646540i \(-0.223784\pi\)
−0.941360 + 0.337404i \(0.890451\pi\)
\(380\) −24.2655 + 5.75103i −1.24479 + 0.295021i
\(381\) 0 0
\(382\) 4.38706 2.20326i 0.224461 0.112729i
\(383\) 13.9944 32.4427i 0.715081 1.65774i −0.0375433 0.999295i \(-0.511953\pi\)
0.752625 0.658450i \(-0.228788\pi\)
\(384\) 0 0
\(385\) −0.561918 9.64777i −0.0286380 0.491696i
\(386\) 0.112186 + 0.636236i 0.00571010 + 0.0323836i
\(387\) 0 0
\(388\) −2.11990 + 12.0226i −0.107622 + 0.610354i
\(389\) −25.5497 2.98633i −1.29542 0.151413i −0.559698 0.828697i \(-0.689083\pi\)
−0.735722 + 0.677284i \(0.763157\pi\)
\(390\) 0 0
\(391\) −1.47424 4.92432i −0.0745558 0.249034i
\(392\) −5.25940 1.24650i −0.265640 0.0629578i
\(393\) 0 0
\(394\) 1.60110 + 3.71178i 0.0806625 + 0.186997i
\(395\) 41.0109 + 34.4123i 2.06348 + 1.73147i
\(396\) 0 0
\(397\) 14.2470 11.9547i 0.715038 0.599988i −0.210970 0.977493i \(-0.567662\pi\)
0.926008 + 0.377504i \(0.123218\pi\)
\(398\) −0.422576 0.212225i −0.0211818 0.0106379i
\(399\) 0 0
\(400\) −47.3275 + 5.53179i −2.36637 + 0.276589i
\(401\) −0.268845 + 4.61589i −0.0134255 + 0.230506i 0.984920 + 0.173009i \(0.0553490\pi\)
−0.998346 + 0.0574971i \(0.981688\pi\)
\(402\) 0 0
\(403\) −5.34715 5.66765i −0.266361 0.282326i
\(404\) −7.85906 −0.391003
\(405\) 0 0
\(406\) 0.166239 0.00825031
\(407\) 7.14274 + 7.57087i 0.354053 + 0.375274i
\(408\) 0 0
\(409\) 0.636048 10.9205i 0.0314505 0.539985i −0.945380 0.325971i \(-0.894309\pi\)
0.976830 0.214015i \(-0.0686540\pi\)
\(410\) −5.84289 + 0.682936i −0.288560 + 0.0337278i
\(411\) 0 0
\(412\) −14.3745 7.21912i −0.708178 0.355661i
\(413\) 7.35469 6.17132i 0.361901 0.303671i
\(414\) 0 0
\(415\) 37.6704 + 31.6092i 1.84917 + 1.55163i
\(416\) 4.42398 + 10.2559i 0.216903 + 0.502839i
\(417\) 0 0
\(418\) 1.40442 + 0.332853i 0.0686922 + 0.0162804i
\(419\) −9.61972 32.1321i −0.469954 1.56976i −0.784259 0.620434i \(-0.786956\pi\)
0.314304 0.949322i \(-0.398229\pi\)
\(420\) 0 0
\(421\) −1.64743 0.192557i −0.0802908 0.00938465i 0.0758527 0.997119i \(-0.475832\pi\)
−0.156143 + 0.987734i \(0.549906\pi\)
\(422\) −0.435079 + 2.46745i −0.0211793 + 0.120114i
\(423\) 0 0
\(424\) −0.740254 4.19819i −0.0359499 0.203882i
\(425\) −3.19588 54.8712i −0.155023 2.66164i
\(426\) 0 0
\(427\) 4.81301 11.1578i 0.232918 0.539965i
\(428\) −27.5999 + 13.8612i −1.33409 + 0.670007i
\(429\) 0 0
\(430\) −7.29334 + 1.72855i −0.351716 + 0.0833582i
\(431\) −7.55425 13.0843i −0.363876 0.630251i 0.624720 0.780849i \(-0.285213\pi\)
−0.988595 + 0.150598i \(0.951880\pi\)
\(432\) 0 0
\(433\) −2.46655 + 4.27218i −0.118535 + 0.205308i −0.919187 0.393821i \(-0.871153\pi\)
0.800653 + 0.599129i \(0.204486\pi\)
\(434\) 0.155408 0.519100i 0.00745984 0.0249176i
\(435\) 0 0
\(436\) −5.87399 3.86338i −0.281313 0.185022i
\(437\) 2.20273 + 2.95879i 0.105371 + 0.141538i
\(438\) 0 0
\(439\) 16.8607 11.0894i 0.804716 0.529270i −0.0792316 0.996856i \(-0.525247\pi\)
0.883947 + 0.467586i \(0.154876\pi\)
\(440\) 7.51040 + 2.73356i 0.358044 + 0.130318i
\(441\) 0 0
\(442\) −3.83361 + 1.39532i −0.182346 + 0.0663686i
\(443\) −16.8317 + 22.6089i −0.799699 + 1.07418i 0.195915 + 0.980621i \(0.437232\pi\)
−0.995614 + 0.0935608i \(0.970175\pi\)
\(444\) 0 0
\(445\) 32.0954 34.0191i 1.52147 1.61266i
\(446\) 1.21570 1.28856i 0.0575649 0.0610152i
\(447\) 0 0
\(448\) 4.56251 6.12851i 0.215558 0.289545i
\(449\) 0.407937 0.148477i 0.0192517 0.00700706i −0.332376 0.943147i \(-0.607850\pi\)
0.351628 + 0.936140i \(0.385628\pi\)
\(450\) 0 0
\(451\) −10.6293 3.86873i −0.500512 0.182171i
\(452\) 15.4025 10.1304i 0.724473 0.476493i
\(453\) 0 0
\(454\) −3.36037 4.51376i −0.157710 0.211841i
\(455\) −16.3775 10.7717i −0.767790 0.504984i
\(456\) 0 0
\(457\) −7.77292 + 25.9634i −0.363602 + 1.21452i 0.559132 + 0.829079i \(0.311134\pi\)
−0.922734 + 0.385437i \(0.874051\pi\)
\(458\) −0.00603328 + 0.0104499i −0.000281917 + 0.000488294i
\(459\) 0 0
\(460\) 5.03083 + 8.71365i 0.234564 + 0.406276i
\(461\) 41.5746 9.85335i 1.93632 0.458916i 0.945081 0.326837i \(-0.105983\pi\)
0.991239 0.132079i \(-0.0421653\pi\)
\(462\) 0 0
\(463\) −27.1142 + 13.6173i −1.26011 + 0.632849i −0.948324 0.317305i \(-0.897222\pi\)
−0.311782 + 0.950154i \(0.600926\pi\)
\(464\) 0.863518 2.00186i 0.0400878 0.0929340i
\(465\) 0 0
\(466\) 0.314988 + 5.40814i 0.0145915 + 0.250527i
\(467\) −2.33662 13.2516i −0.108126 0.613212i −0.989926 0.141588i \(-0.954779\pi\)
0.881800 0.471624i \(-0.156332\pi\)
\(468\) 0 0
\(469\) −1.46566 + 8.31218i −0.0676779 + 0.383821i
\(470\) 0.445380 + 0.0520575i 0.0205439 + 0.00240123i
\(471\) 0 0
\(472\) 2.27725 + 7.60653i 0.104819 + 0.350119i
\(473\) −14.0239 3.32373i −0.644820 0.152825i
\(474\) 0 0
\(475\) 15.6225 + 36.2169i 0.716808 + 1.66175i
\(476\) 7.22033 + 6.05858i 0.330943 + 0.277695i
\(477\) 0 0
\(478\) −3.80246 + 3.19065i −0.173921 + 0.145937i
\(479\) 23.2134 + 11.6582i 1.06065 + 0.532677i 0.891550 0.452922i \(-0.149618\pi\)
0.169098 + 0.985599i \(0.445915\pi\)
\(480\) 0 0
\(481\) 20.9695 2.45098i 0.956126 0.111755i
\(482\) −0.404635 + 6.94732i −0.0184306 + 0.316442i
\(483\) 0 0
\(484\) −9.46123 10.0283i −0.430056 0.455833i
\(485\) 26.7098 1.21283
\(486\) 0 0
\(487\) 2.70578 0.122611 0.0613053 0.998119i \(-0.480474\pi\)
0.0613053 + 0.998119i \(0.480474\pi\)
\(488\) 6.89647 + 7.30983i 0.312188 + 0.330900i
\(489\) 0 0
\(490\) −0.338705 + 5.81535i −0.0153012 + 0.262711i
\(491\) 39.5384 4.62138i 1.78435 0.208560i 0.841151 0.540801i \(-0.181879\pi\)
0.943195 + 0.332241i \(0.107805\pi\)
\(492\) 0 0
\(493\) 2.24733 + 1.12865i 0.101215 + 0.0508320i
\(494\) 2.24266 1.88181i 0.100902 0.0846667i
\(495\) 0 0
\(496\) −5.44377 4.56786i −0.244432 0.205103i
\(497\) −2.18563 5.06685i −0.0980388 0.227279i
\(498\) 0 0
\(499\) 2.41838 + 0.573166i 0.108261 + 0.0256584i 0.284389 0.958709i \(-0.408209\pi\)
−0.176128 + 0.984367i \(0.556357\pi\)
\(500\) 19.0294 + 63.5627i 0.851022 + 2.84261i
\(501\) 0 0
\(502\) 2.44743 + 0.286064i 0.109234 + 0.0127677i
\(503\) 2.56729 14.5598i 0.114470 0.649191i −0.872541 0.488540i \(-0.837530\pi\)
0.987011 0.160651i \(-0.0513594\pi\)
\(504\) 0 0
\(505\) 2.98584 + 16.9335i 0.132868 + 0.753532i
\(506\) −0.0338600 0.581354i −0.00150526 0.0258444i
\(507\) 0 0
\(508\) −8.57262 + 19.8736i −0.380349 + 0.881747i
\(509\) 21.4552 10.7752i 0.950983 0.477602i 0.0954985 0.995430i \(-0.469556\pi\)
0.855485 + 0.517828i \(0.173259\pi\)
\(510\) 0 0
\(511\) −8.08134 + 1.91531i −0.357498 + 0.0847285i
\(512\) 8.57387 + 14.8504i 0.378915 + 0.656300i
\(513\) 0 0
\(514\) −0.732546 + 1.26881i −0.0323112 + 0.0559646i
\(515\) −10.0935 + 33.7146i −0.444773 + 1.48564i
\(516\) 0 0
\(517\) 0.720378 + 0.473800i 0.0316822 + 0.0208377i
\(518\) 0.876736 + 1.17766i 0.0385216 + 0.0517434i
\(519\) 0 0
\(520\) 13.5445 8.90837i 0.593966 0.390658i
\(521\) −18.5919 6.76690i −0.814526 0.296463i −0.0990342 0.995084i \(-0.531575\pi\)
−0.715492 + 0.698621i \(0.753798\pi\)
\(522\) 0 0
\(523\) 32.2975 11.7553i 1.41227 0.514025i 0.480477 0.877007i \(-0.340464\pi\)
0.931796 + 0.362982i \(0.118241\pi\)
\(524\) 14.0652 18.8929i 0.614442 0.825339i
\(525\) 0 0
\(526\) −2.22597 + 2.35939i −0.0970567 + 0.102874i
\(527\) 5.62526 5.96243i 0.245040 0.259728i
\(528\) 0 0
\(529\) −12.8459 + 17.2550i −0.558518 + 0.750219i
\(530\) −4.31722 + 1.57134i −0.187528 + 0.0682547i
\(531\) 0 0
\(532\) −6.35588 2.31335i −0.275563 0.100297i
\(533\) −19.1692 + 12.6078i −0.830309 + 0.546103i
\(534\) 0 0
\(535\) 40.3519 + 54.2020i 1.74457 + 2.34336i
\(536\) −5.83202 3.83578i −0.251905 0.165680i
\(537\) 0 0
\(538\) 0.199846 0.667532i 0.00861597 0.0287794i
\(539\) −5.60046 + 9.70029i −0.241229 + 0.417821i
\(540\) 0 0
\(541\) −18.0270 31.2237i −0.775042 1.34241i −0.934771 0.355252i \(-0.884395\pi\)
0.159728 0.987161i \(-0.448938\pi\)
\(542\) −0.755426 + 0.179039i −0.0324483 + 0.00769040i
\(543\) 0 0
\(544\) −10.5005 + 5.27355i −0.450205 + 0.226102i
\(545\) −6.09257 + 14.1242i −0.260977 + 0.605013i
\(546\) 0 0
\(547\) −0.502380 8.62553i −0.0214802 0.368801i −0.991870 0.127256i \(-0.959383\pi\)
0.970390 0.241545i \(-0.0776541\pi\)
\(548\) −0.100881 0.572123i −0.00430941 0.0244399i
\(549\) 0 0
\(550\) 1.08129 6.13228i 0.0461062 0.261481i
\(551\) −1.79246 0.209508i −0.0763613 0.00892535i
\(552\) 0 0
\(553\) 4.16451 + 13.9104i 0.177093 + 0.591532i
\(554\) 0.801255 + 0.189901i 0.0340421 + 0.00806812i
\(555\) 0 0
\(556\) 4.31384 + 10.0006i 0.182948 + 0.424120i
\(557\) −16.3664 13.7330i −0.693466 0.581887i 0.226441 0.974025i \(-0.427291\pi\)
−0.919906 + 0.392138i \(0.871736\pi\)
\(558\) 0 0
\(559\) −22.3943 + 18.7910i −0.947176 + 0.794775i
\(560\) −15.9760 8.02344i −0.675109 0.339052i
\(561\) 0 0
\(562\) 2.75763 0.322321i 0.116324 0.0135963i
\(563\) 1.60839 27.6150i 0.0677856 1.16383i −0.777274 0.629162i \(-0.783398\pi\)
0.845060 0.534672i \(-0.179565\pi\)
\(564\) 0 0
\(565\) −27.6792 29.3383i −1.16447 1.23427i
\(566\) −6.12621 −0.257504
\(567\) 0 0
\(568\) 4.56361 0.191485
\(569\) 15.1704 + 16.0796i 0.635975 + 0.674094i 0.962558 0.271075i \(-0.0873790\pi\)
−0.326584 + 0.945168i \(0.605898\pi\)
\(570\) 0 0
\(571\) −0.123744 + 2.12459i −0.00517851 + 0.0889115i −0.999907 0.0136314i \(-0.995661\pi\)
0.994729 + 0.102543i \(0.0326979\pi\)
\(572\) 15.2511 1.78260i 0.637683 0.0745344i
\(573\) 0 0
\(574\) −1.42583 0.716078i −0.0595129 0.0298885i
\(575\) 12.1909 10.2293i 0.508394 0.426593i
\(576\) 0 0
\(577\) −15.8954 13.3378i −0.661733 0.555260i 0.248872 0.968536i \(-0.419940\pi\)
−0.910606 + 0.413276i \(0.864384\pi\)
\(578\) −0.0721525 0.167268i −0.00300115 0.00695744i
\(579\) 0 0
\(580\) −4.78989 1.13523i −0.198889 0.0471377i
\(581\) 3.82529 + 12.7774i 0.158700 + 0.530094i
\(582\) 0 0
\(583\) −8.77435 1.02557i −0.363396 0.0424750i
\(584\) 1.19271 6.76421i 0.0493548 0.279905i
\(585\) 0 0
\(586\) −0.168592 0.956131i −0.00696446 0.0394974i
\(587\) 0.682898 + 11.7249i 0.0281862 + 0.483939i 0.982633 + 0.185558i \(0.0594094\pi\)
−0.954447 + 0.298380i \(0.903554\pi\)
\(588\) 0 0
\(589\) −2.32989 + 5.40129i −0.0960014 + 0.222556i
\(590\) 7.64703 3.84048i 0.314823 0.158110i
\(591\) 0 0
\(592\) 18.7356 4.44042i 0.770028 0.182500i
\(593\) −10.8840 18.8516i −0.446952 0.774144i 0.551234 0.834351i \(-0.314157\pi\)
−0.998186 + 0.0602070i \(0.980824\pi\)
\(594\) 0 0
\(595\) 10.3109 17.8591i 0.422708 0.732151i
\(596\) 7.58774 25.3448i 0.310806 1.03816i
\(597\) 0 0
\(598\) −0.986876 0.649078i −0.0403564 0.0265428i
\(599\) −6.11729 8.21695i −0.249946 0.335736i 0.659388 0.751803i \(-0.270815\pi\)
−0.909334 + 0.416067i \(0.863408\pi\)
\(600\) 0 0
\(601\) −2.35821 + 1.55102i −0.0961935 + 0.0632674i −0.596694 0.802469i \(-0.703520\pi\)
0.500501 + 0.865736i \(0.333149\pi\)
\(602\) −1.91035 0.695311i −0.0778601 0.0283388i
\(603\) 0 0
\(604\) −17.2472 + 6.27748i −0.701780 + 0.255427i
\(605\) −18.0130 + 24.1956i −0.732332 + 0.983693i
\(606\) 0 0
\(607\) −9.33562 + 9.89518i −0.378921 + 0.401633i −0.888564 0.458753i \(-0.848296\pi\)
0.509643 + 0.860386i \(0.329778\pi\)
\(608\) 5.78648 6.13331i 0.234673 0.248739i
\(609\) 0 0
\(610\) 6.46766 8.68757i 0.261868 0.351750i
\(611\) 1.64343 0.598161i 0.0664862 0.0241990i
\(612\) 0 0
\(613\) 15.3111 + 5.57278i 0.618410 + 0.225083i 0.632179 0.774823i \(-0.282161\pi\)
−0.0137693 + 0.999905i \(0.504383\pi\)
\(614\) 4.01519 2.64083i 0.162040 0.106575i
\(615\) 0 0
\(616\) 1.29450 + 1.73881i 0.0521568 + 0.0700587i
\(617\) −6.48426 4.26476i −0.261046 0.171693i 0.412239 0.911076i \(-0.364747\pi\)
−0.673285 + 0.739383i \(0.735117\pi\)
\(618\) 0 0
\(619\) −12.5687 + 41.9823i −0.505178 + 1.68741i 0.201178 + 0.979555i \(0.435523\pi\)
−0.706356 + 0.707857i \(0.749662\pi\)
\(620\) −8.02269 + 13.8957i −0.322199 + 0.558065i
\(621\) 0 0
\(622\) −0.186650 0.323287i −0.00748397 0.0129626i
\(623\) 12.3433 2.92543i 0.494525 0.117205i
\(624\) 0 0
\(625\) 71.4394 35.8782i 2.85758 1.43513i
\(626\) 1.67555 3.88436i 0.0669684 0.155250i
\(627\) 0 0
\(628\) −1.02983 17.6815i −0.0410946 0.705567i
\(629\) 3.85678 + 21.8729i 0.153780 + 0.872129i
\(630\) 0 0
\(631\) 3.55734 20.1747i 0.141615 0.803141i −0.828407 0.560126i \(-0.810753\pi\)
0.970023 0.243015i \(-0.0781363\pi\)
\(632\) −11.9275 1.39412i −0.474450 0.0554552i
\(633\) 0 0
\(634\) −0.136205 0.454956i −0.00540938 0.0180686i
\(635\) 46.0775 + 10.9206i 1.82853 + 0.433370i
\(636\) 0 0
\(637\) 8.99876 + 20.8615i 0.356544 + 0.826562i
\(638\) 0.218250 + 0.183133i 0.00864058 + 0.00725031i
\(639\) 0 0
\(640\) 23.3663 19.6066i 0.923634 0.775021i
\(641\) −30.8827 15.5099i −1.21979 0.612603i −0.281872 0.959452i \(-0.590955\pi\)
−0.937921 + 0.346849i \(0.887252\pi\)
\(642\) 0 0
\(643\) −29.5404 + 3.45278i −1.16496 + 0.136164i −0.676514 0.736430i \(-0.736510\pi\)
−0.488446 + 0.872594i \(0.662436\pi\)
\(644\) −0.158677 + 2.72438i −0.00625276 + 0.107356i
\(645\) 0 0
\(646\) 2.11352 + 2.24020i 0.0831553 + 0.0881395i
\(647\) −43.1443 −1.69618 −0.848089 0.529853i \(-0.822247\pi\)
−0.848089 + 0.529853i \(0.822247\pi\)
\(648\) 0 0
\(649\) 16.4542 0.645884
\(650\) −8.66750 9.18701i −0.339967 0.360344i
\(651\) 0 0
\(652\) 0.896538 15.3930i 0.0351111 0.602835i
\(653\) −30.9788 + 3.62090i −1.21229 + 0.141697i −0.698114 0.715987i \(-0.745977\pi\)
−0.514178 + 0.857683i \(0.671903\pi\)
\(654\) 0 0
\(655\) −46.0512 23.1278i −1.79937 0.903678i
\(656\) −16.0294 + 13.4503i −0.625843 + 0.525145i
\(657\) 0 0
\(658\) 0.0931677 + 0.0781770i 0.00363205 + 0.00304766i
\(659\) −16.1073 37.3409i −0.627452 1.45460i −0.874224 0.485523i \(-0.838629\pi\)
0.246772 0.969073i \(-0.420630\pi\)
\(660\) 0 0
\(661\) 16.8947 + 4.00411i 0.657126 + 0.155742i 0.545634 0.838024i \(-0.316289\pi\)
0.111492 + 0.993765i \(0.464437\pi\)
\(662\) 2.39076 + 7.98571i 0.0929197 + 0.310373i
\(663\) 0 0
\(664\) −10.9559 1.28056i −0.425172 0.0496955i
\(665\) −2.56972 + 14.5736i −0.0996494 + 0.565140i
\(666\) 0 0
\(667\) 0.126439 + 0.717068i 0.00489572 + 0.0277650i
\(668\) 0.501795 + 8.61550i 0.0194150 + 0.333344i
\(669\) 0 0
\(670\) −2.97968 + 6.90767i −0.115115 + 0.266866i
\(671\) 18.6106 9.34658i 0.718453 0.360821i
\(672\) 0 0
\(673\) 42.9001 10.1675i 1.65368 0.391928i 0.705258 0.708951i \(-0.250831\pi\)
0.948418 + 0.317023i \(0.102683\pi\)
\(674\) 1.95524 + 3.38658i 0.0753131 + 0.130446i
\(675\) 0 0
\(676\) 2.95261 5.11407i 0.113562 0.196695i
\(677\) 9.95022 33.2361i 0.382418 1.27737i −0.522814 0.852447i \(-0.675118\pi\)
0.905232 0.424918i \(-0.139697\pi\)
\(678\) 0 0
\(679\) 6.05265 + 3.98089i 0.232279 + 0.152772i
\(680\) 10.1844 + 13.6800i 0.390552 + 0.524603i
\(681\) 0 0
\(682\) 0.775884 0.510307i 0.0297101 0.0195407i
\(683\) 40.1564 + 14.6157i 1.53654 + 0.559256i 0.965213 0.261465i \(-0.0842057\pi\)
0.571329 + 0.820721i \(0.306428\pi\)
\(684\) 0 0
\(685\) −1.19440 + 0.434725i −0.0456356 + 0.0166100i
\(686\) −2.10776 + 2.83121i −0.0804746 + 0.108096i
\(687\) 0 0
\(688\) −18.2962 + 19.3928i −0.697535 + 0.739343i
\(689\) −12.2966 + 13.0336i −0.468463 + 0.496542i
\(690\) 0 0
\(691\) −9.57368 + 12.8597i −0.364200 + 0.489205i −0.946018 0.324113i \(-0.894934\pi\)
0.581818 + 0.813319i \(0.302341\pi\)
\(692\) −5.68957 + 2.07083i −0.216285 + 0.0787213i
\(693\) 0 0
\(694\) −7.22724 2.63050i −0.274342 0.0998524i
\(695\) 19.9089 13.0943i 0.755187 0.496694i
\(696\) 0 0
\(697\) −14.4136 19.3609i −0.545955 0.733345i
\(698\) −3.50129 2.30284i −0.132526 0.0871637i
\(699\) 0 0
\(700\) −8.36916 + 27.9550i −0.316325 + 1.05660i
\(701\) −20.8919 + 36.1858i −0.789075 + 1.36672i 0.137459 + 0.990507i \(0.456106\pi\)
−0.926534 + 0.376211i \(0.877227\pi\)
\(702\) 0 0
\(703\) −7.96914 13.8029i −0.300562 0.520588i
\(704\) 12.7413 3.01974i 0.480205 0.113811i
\(705\) 0 0
\(706\) −0.734464 + 0.368862i −0.0276419 + 0.0138823i
\(707\) −1.84719 + 4.28228i −0.0694709 + 0.161052i
\(708\) 0 0
\(709\) 0.982391 + 16.8670i 0.0368945 + 0.633453i 0.965180 + 0.261586i \(0.0842454\pi\)
−0.928286 + 0.371868i \(0.878718\pi\)
\(710\) −0.854057 4.84360i −0.0320522 0.181777i
\(711\) 0 0
\(712\) −1.82174 + 10.3316i −0.0682724 + 0.387192i
\(713\) 2.35733 + 0.275532i 0.0882825 + 0.0103187i
\(714\) 0 0
\(715\) −9.63515 32.1836i −0.360334 1.20360i
\(716\) −26.8944 6.37410i −1.00509 0.238211i
\(717\) 0 0
\(718\) −0.971560 2.25233i −0.0362583 0.0840562i
\(719\) 12.7933 + 10.7349i 0.477111 + 0.400344i 0.849381 0.527781i \(-0.176976\pi\)
−0.372269 + 0.928125i \(0.621420\pi\)
\(720\) 0 0
\(721\) −7.31216 + 6.13563i −0.272319 + 0.228503i
\(722\) 2.12955 + 1.06950i 0.0792538 + 0.0398028i
\(723\) 0 0
\(724\) 30.6472 3.58214i 1.13899 0.133129i
\(725\) −0.452704 + 7.77263i −0.0168130 + 0.288668i
\(726\) 0 0
\(727\) −15.1791 16.0889i −0.562963 0.596706i 0.381887 0.924209i \(-0.375274\pi\)
−0.944850 + 0.327503i \(0.893793\pi\)
\(728\) 4.39701 0.162964
\(729\) 0 0
\(730\) −7.40242 −0.273976
\(731\) −21.1047 22.3697i −0.780587 0.827374i
\(732\) 0 0
\(733\) 0.763834 13.1145i 0.0282128 0.484396i −0.954377 0.298606i \(-0.903479\pi\)
0.982589 0.185790i \(-0.0594845\pi\)
\(734\) 3.56899 0.417155i 0.131734 0.0153975i
\(735\) 0 0
\(736\) −3.04026 1.52687i −0.112065 0.0562813i
\(737\) −11.0811 + 9.29816i −0.408178 + 0.342502i
\(738\) 0 0
\(739\) −34.4177 28.8799i −1.26608 1.06236i −0.995007 0.0998052i \(-0.968178\pi\)
−0.271070 0.962560i \(-0.587378\pi\)
\(740\) −17.2195 39.9193i −0.633002 1.46746i
\(741\) 0 0
\(742\) −1.21251 0.287370i −0.0445127 0.0105497i
\(743\) −6.41571 21.4300i −0.235370 0.786189i −0.991310 0.131548i \(-0.958005\pi\)
0.755940 0.654641i \(-0.227180\pi\)
\(744\) 0 0
\(745\) −57.4919 6.71984i −2.10634 0.246196i
\(746\) 0.884944 5.01877i 0.0324001 0.183750i
\(747\) 0 0
\(748\) 2.80504 + 15.9082i 0.102563 + 0.581661i
\(749\) 1.06566 + 18.2967i 0.0389385 + 0.668547i
\(750\) 0 0
\(751\) 4.70782 10.9140i 0.171791 0.398256i −0.810469 0.585782i \(-0.800788\pi\)
0.982260 + 0.187526i \(0.0600469\pi\)
\(752\) 1.42536 0.715845i 0.0519777 0.0261042i
\(753\) 0 0
\(754\) 0.562313 0.133271i 0.0204782 0.00485343i
\(755\) 20.0784 + 34.7768i 0.730728 + 1.26566i
\(756\) 0 0
\(757\) −2.60890 + 4.51875i −0.0948221 + 0.164237i −0.909534 0.415629i \(-0.863562\pi\)
0.814712 + 0.579865i \(0.196895\pi\)
\(758\) 0.481813 1.60937i 0.0175003 0.0584549i
\(759\) 0 0
\(760\) −10.2252 6.72520i −0.370906 0.243949i
\(761\) 0.417060 + 0.560209i 0.0151184 + 0.0203075i 0.809618 0.586957i \(-0.199674\pi\)
−0.794500 + 0.607265i \(0.792267\pi\)
\(762\) 0 0
\(763\) −3.48572 + 2.29259i −0.126191 + 0.0829974i
\(764\) −37.0505 13.4853i −1.34044 0.487880i
\(765\) 0 0
\(766\) 8.02630 2.92133i 0.290002 0.105552i
\(767\) 19.9302 26.7710i 0.719639 0.966643i
\(768\) 0 0
\(769\) −7.63552 + 8.09318i −0.275344 + 0.291848i −0.850258 0.526366i \(-0.823554\pi\)
0.574914 + 0.818214i \(0.305036\pi\)
\(770\) 1.60323 1.69933i 0.0577765 0.0612395i
\(771\) 0 0
\(772\) 3.09849 4.16199i 0.111517 0.149793i
\(773\) 14.5554 5.29774i 0.523522 0.190546i −0.0667217 0.997772i \(-0.521254\pi\)
0.590243 + 0.807225i \(0.299032\pi\)
\(774\) 0 0
\(775\) 23.8477 + 8.67985i 0.856634 + 0.311789i
\(776\) −5.00565 + 3.29227i −0.179692 + 0.118186i
\(777\) 0 0
\(778\) −3.71346 4.98804i −0.133134 0.178830i
\(779\) 14.4714 + 9.51799i 0.518491 + 0.341017i
\(780\) 0 0
\(781\) 2.71234 9.05983i 0.0970550 0.324186i
\(782\) 0.621316 1.07615i 0.0222182 0.0384831i
\(783\) 0 0
\(784\) 10.3603 + 17.9445i 0.370009 + 0.640875i
\(785\) −37.7061 + 8.93651i −1.34579 + 0.318958i
\(786\) 0 0
\(787\) −31.4879 + 15.8138i −1.12242 + 0.563702i −0.910469 0.413578i \(-0.864279\pi\)
−0.211954 + 0.977280i \(0.567983\pi\)
\(788\) 12.8592 29.8109i 0.458089 1.06197i
\(789\) 0 0
\(790\) 0.752513 + 12.9202i 0.0267732 + 0.459678i
\(791\) −1.89968 10.7736i −0.0675449 0.383066i
\(792\) 0 0
\(793\) 7.33528 41.6004i 0.260483 1.47728i
\(794\) 4.46561 + 0.521955i 0.158479 + 0.0185235i
\(795\) 0 0
\(796\) 1.08924 + 3.63831i 0.0386070 + 0.128956i
\(797\) 25.7981 + 6.11427i 0.913816 + 0.216578i 0.660518 0.750810i \(-0.270337\pi\)
0.253298 + 0.967388i \(0.418485\pi\)
\(798\) 0 0
\(799\) 0.728735 + 1.68940i 0.0257808 + 0.0597666i
\(800\) −27.8676 23.3837i −0.985268 0.826738i
\(801\) 0 0
\(802\) −0.856252 + 0.718481i −0.0302353 + 0.0253704i
\(803\) −12.7197 6.38806i −0.448867 0.225430i
\(804\) 0 0
\(805\) 5.93038 0.693162i 0.209018 0.0244308i
\(806\) 0.109525 1.88047i 0.00385786 0.0662368i
\(807\) 0 0
\(808\) −2.64681 2.80545i −0.0931143 0.0986954i
\(809\) 4.72350 0.166070 0.0830348 0.996547i \(-0.473539\pi\)
0.0830348 + 0.996547i \(0.473539\pi\)
\(810\) 0 0
\(811\) −14.2884 −0.501733 −0.250866 0.968022i \(-0.580716\pi\)
−0.250866 + 0.968022i \(0.580716\pi\)
\(812\) −0.916229 0.971146i −0.0321533 0.0340805i
\(813\) 0 0
\(814\) −0.146304 + 2.51194i −0.00512795 + 0.0880436i
\(815\) −33.5071 + 3.91642i −1.17370 + 0.137186i
\(816\) 0 0
\(817\) 19.7219 + 9.90471i 0.689982 + 0.346522i
\(818\) 2.02577 1.69982i 0.0708294 0.0594329i
\(819\) 0 0
\(820\) 36.1927 + 30.3693i 1.26391 + 1.06054i
\(821\) 8.66239 + 20.0817i 0.302319 + 0.700855i 0.999877 0.0156735i \(-0.00498924\pi\)
−0.697558 + 0.716528i \(0.745730\pi\)
\(822\) 0 0
\(823\) 22.8742 + 5.42129i 0.797346 + 0.188974i 0.609044 0.793137i \(-0.291553\pi\)
0.188302 + 0.982111i \(0.439702\pi\)
\(824\) −2.26408 7.56254i −0.0788728 0.263454i
\(825\) 0 0
\(826\) 2.30527 + 0.269447i 0.0802105 + 0.00937526i
\(827\) −3.09330 + 17.5430i −0.107565 + 0.610030i 0.882600 + 0.470124i \(0.155791\pi\)
−0.990165 + 0.139905i \(0.955320\pi\)
\(828\) 0 0
\(829\) −9.35023 53.0278i −0.324747 1.84173i −0.511447 0.859315i \(-0.670890\pi\)
0.186700 0.982417i \(-0.440221\pi\)
\(830\) 0.691217 + 11.8677i 0.0239925 + 0.411935i
\(831\) 0 0
\(832\) 10.5198 24.3877i 0.364710 0.845492i
\(833\) −21.3589 + 10.7269i −0.740043 + 0.371664i
\(834\) 0 0
\(835\) 18.3727 4.35442i 0.635815 0.150691i
\(836\) −5.79597 10.0389i −0.200458 0.347203i
\(837\) 0 0
\(838\) 4.05420 7.02209i 0.140050 0.242574i
\(839\) −14.9376 + 49.8951i −0.515703 + 1.72257i 0.161591 + 0.986858i \(0.448337\pi\)
−0.677295 + 0.735712i \(0.736848\pi\)
\(840\) 0 0
\(841\) 23.9315 + 15.7400i 0.825225 + 0.542759i
\(842\) −0.239442 0.321626i −0.00825171 0.0110840i
\(843\) 0 0
\(844\) 16.8125 11.0577i 0.578709 0.380623i
\(845\) −12.1408 4.41889i −0.417656 0.152014i
\(846\) 0 0
\(847\) −7.68804 + 2.79822i −0.264164 + 0.0961480i
\(848\) −9.75883 + 13.1084i −0.335119 + 0.450144i
\(849\) 0 0
\(850\) 9.11831 9.66484i 0.312755 0.331501i
\(851\) −4.41298 + 4.67749i −0.151275 + 0.160342i
\(852\) 0 0
\(853\) 28.9997 38.9533i 0.992930 1.33374i 0.0507205 0.998713i \(-0.483848\pi\)
0.942210 0.335024i \(-0.108744\pi\)
\(854\) 2.76043 1.00472i 0.0944601 0.0343807i
\(855\) 0 0
\(856\) −14.2433 5.18412i −0.486825 0.177190i
\(857\) 36.4270 23.9584i 1.24432 0.818403i 0.255399 0.966836i \(-0.417793\pi\)
0.988922 + 0.148433i \(0.0474229\pi\)
\(858\) 0 0
\(859\) 9.73608 + 13.0778i 0.332191 + 0.446209i 0.936567 0.350490i \(-0.113985\pi\)
−0.604376 + 0.796699i \(0.706577\pi\)
\(860\) 50.2953 + 33.0797i 1.71505 + 1.12801i
\(861\) 0 0
\(862\) 1.04752 3.49896i 0.0356787 0.119175i
\(863\) 25.0920 43.4607i 0.854142 1.47942i −0.0232963 0.999729i \(-0.507416\pi\)
0.877439 0.479689i \(-0.159251\pi\)
\(864\) 0 0
\(865\) 6.62352 + 11.4723i 0.225207 + 0.390069i
\(866\) −1.16040 + 0.275021i −0.0394322 + 0.00934559i
\(867\) 0 0
\(868\) −3.88904 + 1.95315i −0.132003 + 0.0662943i
\(869\) −9.85663 + 22.8502i −0.334363 + 0.775142i
\(870\) 0 0
\(871\) 1.70603 + 29.2914i 0.0578066 + 0.992501i
\(872\) −0.599153 3.39796i −0.0202899 0.115070i
\(873\) 0 0
\(874\) −0.154846 + 0.878175i −0.00523774 + 0.0297047i
\(875\) 39.1070 + 4.57095i 1.32206 + 0.154526i
\(876\) 0 0
\(877\) 12.8676 + 42.9809i 0.434509 + 1.45136i 0.842660 + 0.538446i \(0.180988\pi\)
−0.408151 + 0.912914i \(0.633826\pi\)
\(878\) 4.74706 + 1.12507i 0.160206 + 0.0379694i
\(879\) 0 0
\(880\) −12.1355 28.1332i −0.409087 0.948371i
\(881\) −13.9661 11.7190i −0.470531 0.394822i 0.376457 0.926434i \(-0.377142\pi\)
−0.846988 + 0.531612i \(0.821587\pi\)
\(882\) 0 0
\(883\) −13.4700 + 11.3026i −0.453300 + 0.380364i −0.840659 0.541565i \(-0.817832\pi\)
0.387359 + 0.921929i \(0.373388\pi\)
\(884\) 29.2802 + 14.7051i 0.984801 + 0.494586i
\(885\) 0 0
\(886\) −6.76783 + 0.791045i −0.227370 + 0.0265757i
\(887\) −1.91686 + 32.9112i −0.0643618 + 1.10505i 0.799285 + 0.600952i \(0.205212\pi\)
−0.863647 + 0.504097i \(0.831825\pi\)
\(888\) 0 0
\(889\) 8.81389 + 9.34217i 0.295608 + 0.313326i
\(890\) 11.3064 0.378990
\(891\) 0 0
\(892\) −14.2279 −0.476386
\(893\) −0.906047 0.960353i −0.0303197 0.0321370i
\(894\) 0 0
\(895\) −3.51614 + 60.3698i −0.117532 + 2.01794i
\(896\) 8.21719 0.960452i 0.274517 0.0320864i
\(897\) 0 0
\(898\) 0.0937829 + 0.0470995i 0.00312957 + 0.00157173i
\(899\) −0.889494 + 0.746374i −0.0296663 + 0.0248930i
\(900\) 0 0
\(901\) −14.4405 12.1170i −0.481082 0.403676i
\(902\) −1.08307 2.51084i −0.0360623 0.0836018i
\(903\) 0 0
\(904\) 8.80357 + 2.08648i 0.292802 + 0.0693954i
\(905\) −19.3618 64.6730i −0.643609 2.14980i
\(906\) 0 0
\(907\) 38.9906 + 4.55734i 1.29466 + 0.151324i 0.735380 0.677655i \(-0.237004\pi\)
0.559280 + 0.828979i \(0.311078\pi\)
\(908\) −7.84805 + 44.5085i −0.260447 + 1.47707i
\(909\) 0 0
\(910\) −0.822878 4.66678i −0.0272782 0.154702i
\(911\) 0.885525 + 15.2039i 0.0293388 + 0.503727i 0.980684 + 0.195600i \(0.0626653\pi\)
−0.951345 + 0.308127i \(0.900298\pi\)
\(912\) 0 0
\(913\) −9.05376 + 20.9890i −0.299636 + 0.694634i
\(914\) −5.85486 + 2.94042i −0.193662 + 0.0972605i
\(915\) 0 0
\(916\) 0.0942996 0.0223494i 0.00311575 0.000738445i
\(917\) −6.98854 12.1045i −0.230782 0.399726i
\(918\) 0 0
\(919\) −7.39953 + 12.8164i −0.244088 + 0.422773i −0.961875 0.273490i \(-0.911822\pi\)
0.717787 + 0.696263i \(0.245155\pi\)
\(920\) −1.41621 + 4.73048i −0.0466911 + 0.155959i
\(921\) 0 0
\(922\) 8.62963 + 5.67579i 0.284202 + 0.186922i
\(923\) −11.4550 15.3867i −0.377046 0.506461i
\(924\) 0 0
\(925\) −57.4499 + 37.7854i −1.88894 + 1.24238i
\(926\) −6.89258 2.50869i −0.226504 0.0824407i
\(927\) 0 0
\(928\) 1.56408 0.569280i 0.0513436 0.0186875i
\(929\) −18.2773 + 24.5506i −0.599658 + 0.805480i −0.993516 0.113691i \(-0.963733\pi\)
0.393858 + 0.919171i \(0.371140\pi\)
\(930\) 0 0
\(931\) 11.7702 12.4757i 0.385753 0.408874i
\(932\) 29.8575 31.6471i 0.978016 1.03664i
\(933\) 0 0
\(934\) 1.94252 2.60925i 0.0635610 0.0853773i
\(935\) 33.2109 12.0878i 1.08611 0.395313i
\(936\) 0 0
\(937\) 3.22880 + 1.17519i 0.105480 + 0.0383917i 0.394221 0.919016i \(-0.371014\pi\)
−0.288741 + 0.957407i \(0.593237\pi\)
\(938\) −1.70475 + 1.12123i −0.0556621 + 0.0366095i
\(939\) 0 0
\(940\) −2.15060 2.88876i −0.0701450 0.0942211i
\(941\) −16.1846 10.6448i −0.527603 0.347010i 0.257596 0.966253i \(-0.417069\pi\)
−0.785200 + 0.619242i \(0.787440\pi\)
\(942\) 0 0
\(943\) 2.00432 6.69491i 0.0652698 0.218016i
\(944\) 15.2192 26.3605i 0.495344 0.857961i
\(945\) 0 0
\(946\) −1.74206 3.01734i −0.0566393 0.0981022i
\(947\) −13.4174 + 3.17998i −0.436006 + 0.103335i −0.442757 0.896642i \(-0.645999\pi\)
0.00675038 + 0.999977i \(0.497851\pi\)
\(948\) 0 0
\(949\) −25.8001 + 12.9573i −0.837508 + 0.420612i
\(950\) −3.77665 + 8.75525i −0.122531 + 0.284058i
\(951\) 0 0
\(952\) 0.268961 + 4.61788i 0.00871707 + 0.149666i
\(953\) 6.51937 + 36.9732i 0.211183 + 1.19768i 0.887408 + 0.460984i \(0.152503\pi\)
−0.676225 + 0.736695i \(0.736385\pi\)
\(954\) 0 0
\(955\) −14.9797 + 84.9541i −0.484732 + 2.74905i
\(956\) 39.5966 + 4.62818i 1.28065 + 0.149686i
\(957\) 0 0
\(958\) 1.80103 + 6.01586i 0.0581887 + 0.194364i
\(959\) −0.335452 0.0795035i −0.0108323 0.00256730i
\(960\) 0 0
\(961\) −10.7794 24.9894i −0.347722 0.806110i
\(962\) 3.90972 + 3.28064i 0.126054 + 0.105772i
\(963\) 0 0
\(964\) 42.8154 35.9264i 1.37899 1.15711i
\(965\) −10.1448 5.09492i −0.326574 0.164011i
\(966\) 0 0
\(967\) −24.4158 + 2.85380i −0.785160 + 0.0917720i −0.499220 0.866475i \(-0.666380\pi\)
−0.285940 + 0.958248i \(0.592306\pi\)
\(968\) 0.393420 6.75476i 0.0126450 0.217106i
\(969\) 0 0
\(970\) 4.43104 + 4.69663i 0.142272 + 0.150800i
\(971\) −13.0415 −0.418522 −0.209261 0.977860i \(-0.567106\pi\)
−0.209261 + 0.977860i \(0.567106\pi\)
\(972\) 0 0
\(973\) 6.46310 0.207197
\(974\) 0.448877 + 0.475782i 0.0143829 + 0.0152450i
\(975\) 0 0
\(976\) 2.24005 38.4602i 0.0717023 1.23108i
\(977\) 48.1120 5.62348i 1.53924 0.179911i 0.696233 0.717816i \(-0.254858\pi\)
0.843006 + 0.537905i \(0.180784\pi\)
\(978\) 0 0
\(979\) 19.4279 + 9.75704i 0.620917 + 0.311836i
\(980\) 35.8392 30.0727i 1.14484 0.960636i
\(981\) 0 0
\(982\) 7.37186 + 6.18573i 0.235246 + 0.197394i
\(983\) 13.1111 + 30.3950i 0.418179 + 0.969449i 0.988938 + 0.148331i \(0.0473900\pi\)
−0.570759 + 0.821118i \(0.693351\pi\)
\(984\) 0 0
\(985\) −69.1176 16.3812i −2.20227 0.521948i
\(986\) 0.174361 + 0.582407i 0.00555279 + 0.0185476i
\(987\) 0 0
\(988\) −23.3537 2.72966i −0.742980 0.0868420i
\(989\) 1.54623 8.76910i 0.0491672 0.278841i
\(990\) 0 0
\(991\) −3.02007 17.1276i −0.0959355 0.544078i −0.994457 0.105147i \(-0.966469\pi\)
0.898521 0.438930i \(-0.144642\pi\)
\(992\) −0.315459 5.41622i −0.0100158 0.171965i
\(993\) 0 0
\(994\) 0.528364 1.22489i 0.0167587 0.0388510i
\(995\) 7.42546 3.72921i 0.235403 0.118224i
\(996\) 0 0
\(997\) −16.8175 + 3.98582i −0.532615 + 0.126232i −0.488119 0.872777i \(-0.662317\pi\)
−0.0444969 + 0.999010i \(0.514168\pi\)
\(998\) 0.300413 + 0.520330i 0.00950940 + 0.0164708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.199.5 144
3.2 odd 2 81.2.g.a.22.4 144
9.2 odd 6 729.2.g.d.352.4 144
9.4 even 3 729.2.g.b.595.4 144
9.5 odd 6 729.2.g.c.595.5 144
9.7 even 3 729.2.g.a.352.5 144
81.11 odd 54 81.2.g.a.70.4 yes 144
81.16 even 27 729.2.g.a.379.5 144
81.31 even 27 6561.2.a.d.1.32 72
81.38 odd 54 729.2.g.c.136.5 144
81.43 even 27 729.2.g.b.136.4 144
81.50 odd 54 6561.2.a.c.1.41 72
81.65 odd 54 729.2.g.d.379.4 144
81.70 even 27 inner 243.2.g.a.127.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.4 144 3.2 odd 2
81.2.g.a.70.4 yes 144 81.11 odd 54
243.2.g.a.127.5 144 81.70 even 27 inner
243.2.g.a.199.5 144 1.1 even 1 trivial
729.2.g.a.352.5 144 9.7 even 3
729.2.g.a.379.5 144 81.16 even 27
729.2.g.b.136.4 144 81.43 even 27
729.2.g.b.595.4 144 9.4 even 3
729.2.g.c.136.5 144 81.38 odd 54
729.2.g.c.595.5 144 9.5 odd 6
729.2.g.d.352.4 144 9.2 odd 6
729.2.g.d.379.4 144 81.65 odd 54
6561.2.a.c.1.41 72 81.50 odd 54
6561.2.a.d.1.32 72 81.31 even 27