Properties

Label 243.2.g.a.181.7
Level $243$
Weight $2$
Character 243.181
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 181.7
Character \(\chi\) \(=\) 243.181
Dual form 243.2.g.a.145.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.685792 - 1.58984i) q^{2} +(-0.684812 - 0.725858i) q^{4} +(-0.0800683 - 1.37472i) q^{5} +(3.19962 + 0.758323i) q^{7} +(1.63042 - 0.593424i) q^{8} +(-2.24050 - 0.815476i) q^{10} +(-0.171563 - 0.112839i) q^{11} +(-5.21927 - 0.610045i) q^{13} +(3.39989 - 4.56684i) q^{14} +(0.290724 - 4.99154i) q^{16} +(-3.88762 + 3.26210i) q^{17} +(-2.25026 - 1.88819i) q^{19} +(-0.943020 + 0.999543i) q^{20} +(-0.297052 + 0.195374i) q^{22} +(3.66075 - 0.867613i) q^{23} +(3.08275 - 0.360321i) q^{25} +(-4.54921 + 7.87946i) q^{26} +(-1.64070 - 2.84178i) q^{28} +(3.76701 + 5.05998i) q^{29} +(-1.45734 + 4.86786i) q^{31} +(-4.63538 - 2.32798i) q^{32} +(2.52014 + 8.41784i) q^{34} +(0.786294 - 4.45930i) q^{35} +(1.44468 + 8.19321i) q^{37} +(-4.54514 + 2.28266i) q^{38} +(-0.946337 - 2.19386i) q^{40} +(1.09418 + 2.53659i) q^{41} +(-1.41783 + 0.712061i) q^{43} +(0.0355834 + 0.201803i) q^{44} +(1.13114 - 6.41502i) q^{46} +(-0.596924 - 1.99387i) q^{47} +(3.40707 + 1.71109i) q^{49} +(1.54127 - 5.14819i) q^{50} +(3.13141 + 4.20621i) q^{52} +(-4.51663 - 7.82303i) q^{53} +(-0.141385 + 0.244885i) q^{55} +(5.66673 - 0.662345i) q^{56} +(10.6280 - 2.51887i) q^{58} +(-12.4036 + 8.15798i) q^{59} +(1.03396 - 1.09593i) q^{61} +(6.73971 + 5.65528i) q^{62} +(0.780406 - 0.654838i) q^{64} +(-0.420743 + 7.22388i) q^{65} +(-8.00722 + 10.7556i) q^{67} +(5.03012 + 0.587936i) q^{68} +(-6.55035 - 4.30824i) q^{70} +(-4.39214 - 1.59861i) q^{71} +(15.3008 - 5.56905i) q^{73} +(14.0167 + 3.32202i) q^{74} +(0.170445 + 2.92643i) q^{76} +(-0.463367 - 0.491140i) q^{77} +(-0.588953 + 1.36535i) q^{79} -6.88524 q^{80} +4.78316 q^{82} +(5.64471 - 13.0859i) q^{83} +(4.79576 + 5.08320i) q^{85} +(0.159730 + 2.74246i) q^{86} +(-0.346680 - 0.0821648i) q^{88} +(4.83016 - 1.75803i) q^{89} +(-16.2370 - 5.90980i) q^{91} +(-3.13669 - 2.06303i) q^{92} +(-3.57930 - 0.418360i) q^{94} +(-2.41556 + 3.24466i) q^{95} +(0.104394 - 1.79238i) q^{97} +(5.05691 - 4.24325i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.685792 1.58984i 0.484928 1.12419i −0.483601 0.875289i \(-0.660671\pi\)
0.968529 0.248901i \(-0.0800694\pi\)
\(3\) 0 0
\(4\) −0.684812 0.725858i −0.342406 0.362929i
\(5\) −0.0800683 1.37472i −0.0358076 0.614794i −0.967707 0.252077i \(-0.918886\pi\)
0.931900 0.362717i \(-0.118151\pi\)
\(6\) 0 0
\(7\) 3.19962 + 0.758323i 1.20934 + 0.286619i 0.785353 0.619048i \(-0.212481\pi\)
0.423989 + 0.905667i \(0.360630\pi\)
\(8\) 1.63042 0.593424i 0.576441 0.209807i
\(9\) 0 0
\(10\) −2.24050 0.815476i −0.708509 0.257876i
\(11\) −0.171563 0.112839i −0.0517281 0.0340221i 0.523382 0.852098i \(-0.324670\pi\)
−0.575110 + 0.818076i \(0.695041\pi\)
\(12\) 0 0
\(13\) −5.21927 0.610045i −1.44756 0.169196i −0.644279 0.764791i \(-0.722842\pi\)
−0.803285 + 0.595595i \(0.796916\pi\)
\(14\) 3.39989 4.56684i 0.908658 1.22054i
\(15\) 0 0
\(16\) 0.290724 4.99154i 0.0726810 1.24788i
\(17\) −3.88762 + 3.26210i −0.942887 + 0.791176i −0.978085 0.208204i \(-0.933238\pi\)
0.0351981 + 0.999380i \(0.488794\pi\)
\(18\) 0 0
\(19\) −2.25026 1.88819i −0.516245 0.433181i 0.347075 0.937837i \(-0.387175\pi\)
−0.863320 + 0.504656i \(0.831619\pi\)
\(20\) −0.943020 + 0.999543i −0.210866 + 0.223505i
\(21\) 0 0
\(22\) −0.297052 + 0.195374i −0.0633317 + 0.0416539i
\(23\) 3.66075 0.867613i 0.763318 0.180910i 0.169523 0.985526i \(-0.445777\pi\)
0.593795 + 0.804616i \(0.297629\pi\)
\(24\) 0 0
\(25\) 3.08275 0.360321i 0.616549 0.0720643i
\(26\) −4.54921 + 7.87946i −0.892173 + 1.54529i
\(27\) 0 0
\(28\) −1.64070 2.84178i −0.310063 0.537045i
\(29\) 3.76701 + 5.05998i 0.699517 + 0.939614i 0.999899 0.0142046i \(-0.00452163\pi\)
−0.300382 + 0.953819i \(0.597114\pi\)
\(30\) 0 0
\(31\) −1.45734 + 4.86786i −0.261746 + 0.874293i 0.721563 + 0.692349i \(0.243424\pi\)
−0.983309 + 0.181944i \(0.941761\pi\)
\(32\) −4.63538 2.32798i −0.819428 0.411532i
\(33\) 0 0
\(34\) 2.52014 + 8.41784i 0.432200 + 1.44365i
\(35\) 0.786294 4.45930i 0.132908 0.753759i
\(36\) 0 0
\(37\) 1.44468 + 8.19321i 0.237505 + 1.34696i 0.837274 + 0.546783i \(0.184148\pi\)
−0.599770 + 0.800173i \(0.704741\pi\)
\(38\) −4.54514 + 2.28266i −0.737319 + 0.370296i
\(39\) 0 0
\(40\) −0.946337 2.19386i −0.149629 0.346879i
\(41\) 1.09418 + 2.53659i 0.170882 + 0.396148i 0.982039 0.188680i \(-0.0604210\pi\)
−0.811157 + 0.584829i \(0.801162\pi\)
\(42\) 0 0
\(43\) −1.41783 + 0.712061i −0.216217 + 0.108588i −0.553611 0.832775i \(-0.686751\pi\)
0.337394 + 0.941363i \(0.390454\pi\)
\(44\) 0.0355834 + 0.201803i 0.00536439 + 0.0304230i
\(45\) 0 0
\(46\) 1.13114 6.41502i 0.166778 0.945843i
\(47\) −0.596924 1.99387i −0.0870703 0.290835i 0.903353 0.428897i \(-0.141098\pi\)
−0.990424 + 0.138062i \(0.955913\pi\)
\(48\) 0 0
\(49\) 3.40707 + 1.71109i 0.486724 + 0.244442i
\(50\) 1.54127 5.14819i 0.217968 0.728065i
\(51\) 0 0
\(52\) 3.13141 + 4.20621i 0.434248 + 0.583297i
\(53\) −4.51663 7.82303i −0.620407 1.07458i −0.989410 0.145148i \(-0.953634\pi\)
0.369003 0.929428i \(-0.379699\pi\)
\(54\) 0 0
\(55\) −0.141385 + 0.244885i −0.0190643 + 0.0330203i
\(56\) 5.66673 0.662345i 0.757248 0.0885096i
\(57\) 0 0
\(58\) 10.6280 2.51887i 1.39552 0.330744i
\(59\) −12.4036 + 8.15798i −1.61481 + 1.06208i −0.666136 + 0.745830i \(0.732053\pi\)
−0.948676 + 0.316249i \(0.897577\pi\)
\(60\) 0 0
\(61\) 1.03396 1.09593i 0.132385 0.140320i −0.657790 0.753202i \(-0.728508\pi\)
0.790175 + 0.612882i \(0.209990\pi\)
\(62\) 6.73971 + 5.65528i 0.855943 + 0.718222i
\(63\) 0 0
\(64\) 0.780406 0.654838i 0.0975508 0.0818548i
\(65\) −0.420743 + 7.22388i −0.0521867 + 0.896012i
\(66\) 0 0
\(67\) −8.00722 + 10.7556i −0.978238 + 1.31400i −0.0289544 + 0.999581i \(0.509218\pi\)
−0.949284 + 0.314421i \(0.898190\pi\)
\(68\) 5.03012 + 0.587936i 0.609991 + 0.0712977i
\(69\) 0 0
\(70\) −6.55035 4.30824i −0.782917 0.514933i
\(71\) −4.39214 1.59861i −0.521252 0.189720i 0.0679763 0.997687i \(-0.478346\pi\)
−0.589228 + 0.807967i \(0.700568\pi\)
\(72\) 0 0
\(73\) 15.3008 5.56905i 1.79083 0.651808i 0.791662 0.610960i \(-0.209216\pi\)
0.999165 0.0408483i \(-0.0130060\pi\)
\(74\) 14.0167 + 3.32202i 1.62941 + 0.386176i
\(75\) 0 0
\(76\) 0.170445 + 2.92643i 0.0195514 + 0.335684i
\(77\) −0.463367 0.491140i −0.0528055 0.0559706i
\(78\) 0 0
\(79\) −0.588953 + 1.36535i −0.0662624 + 0.153613i −0.948129 0.317885i \(-0.897027\pi\)
0.881867 + 0.471498i \(0.156287\pi\)
\(80\) −6.88524 −0.769794
\(81\) 0 0
\(82\) 4.78316 0.528211
\(83\) 5.64471 13.0859i 0.619587 1.43636i −0.262339 0.964976i \(-0.584494\pi\)
0.881926 0.471388i \(-0.156247\pi\)
\(84\) 0 0
\(85\) 4.79576 + 5.08320i 0.520173 + 0.551351i
\(86\) 0.159730 + 2.74246i 0.0172241 + 0.295727i
\(87\) 0 0
\(88\) −0.346680 0.0821648i −0.0369562 0.00875879i
\(89\) 4.83016 1.75803i 0.511996 0.186351i −0.0730859 0.997326i \(-0.523285\pi\)
0.585082 + 0.810974i \(0.301062\pi\)
\(90\) 0 0
\(91\) −16.2370 5.90980i −1.70210 0.619515i
\(92\) −3.13669 2.06303i −0.327022 0.215086i
\(93\) 0 0
\(94\) −3.57930 0.418360i −0.369177 0.0431506i
\(95\) −2.41556 + 3.24466i −0.247831 + 0.332895i
\(96\) 0 0
\(97\) 0.104394 1.79238i 0.0105996 0.181989i −0.988853 0.148897i \(-0.952428\pi\)
0.999452 0.0330916i \(-0.0105353\pi\)
\(98\) 5.05691 4.24325i 0.510825 0.428633i
\(99\) 0 0
\(100\) −2.37264 1.99088i −0.237264 0.199088i
\(101\) −7.87467 + 8.34666i −0.783559 + 0.830524i −0.988964 0.148153i \(-0.952667\pi\)
0.205406 + 0.978677i \(0.434149\pi\)
\(102\) 0 0
\(103\) −0.417908 + 0.274862i −0.0411777 + 0.0270830i −0.569931 0.821693i \(-0.693030\pi\)
0.528753 + 0.848776i \(0.322660\pi\)
\(104\) −8.87161 + 2.10261i −0.869933 + 0.206178i
\(105\) 0 0
\(106\) −15.5349 + 1.81577i −1.50888 + 0.176363i
\(107\) 2.72183 4.71434i 0.263129 0.455752i −0.703943 0.710257i \(-0.748579\pi\)
0.967072 + 0.254504i \(0.0819123\pi\)
\(108\) 0 0
\(109\) −8.38980 14.5316i −0.803597 1.39187i −0.917234 0.398348i \(-0.869584\pi\)
0.113637 0.993522i \(-0.463750\pi\)
\(110\) 0.292369 + 0.392720i 0.0278763 + 0.0374444i
\(111\) 0 0
\(112\) 4.71540 15.7505i 0.445564 1.48829i
\(113\) 7.89295 + 3.96399i 0.742506 + 0.372901i 0.779490 0.626415i \(-0.215479\pi\)
−0.0369833 + 0.999316i \(0.511775\pi\)
\(114\) 0 0
\(115\) −1.48583 4.96303i −0.138555 0.462805i
\(116\) 1.09313 6.19945i 0.101495 0.575604i
\(117\) 0 0
\(118\) 4.46363 + 25.3145i 0.410910 + 2.33039i
\(119\) −14.9126 + 7.48941i −1.36704 + 0.686553i
\(120\) 0 0
\(121\) −4.34018 10.0617i −0.394561 0.914696i
\(122\) −1.03328 2.39542i −0.0935490 0.216871i
\(123\) 0 0
\(124\) 4.53138 2.27574i 0.406930 0.204368i
\(125\) −1.93778 10.9897i −0.173321 0.982950i
\(126\) 0 0
\(127\) −1.21170 + 6.87190i −0.107521 + 0.609783i 0.882662 + 0.470008i \(0.155749\pi\)
−0.990183 + 0.139775i \(0.955362\pi\)
\(128\) −3.48126 11.6282i −0.307703 1.02780i
\(129\) 0 0
\(130\) 11.1963 + 5.62299i 0.981980 + 0.493169i
\(131\) 1.61749 5.40278i 0.141320 0.472043i −0.857800 0.513984i \(-0.828169\pi\)
0.999120 + 0.0419413i \(0.0133542\pi\)
\(132\) 0 0
\(133\) −5.76811 7.74792i −0.500159 0.671829i
\(134\) 11.6084 + 20.1063i 1.00281 + 1.73692i
\(135\) 0 0
\(136\) −4.40265 + 7.62561i −0.377524 + 0.653891i
\(137\) −1.10693 + 0.129381i −0.0945712 + 0.0110538i −0.163247 0.986585i \(-0.552197\pi\)
0.0686757 + 0.997639i \(0.478123\pi\)
\(138\) 0 0
\(139\) −4.62972 + 1.09726i −0.392688 + 0.0930687i −0.422216 0.906495i \(-0.638748\pi\)
0.0295282 + 0.999564i \(0.490600\pi\)
\(140\) −3.77528 + 2.48304i −0.319069 + 0.209855i
\(141\) 0 0
\(142\) −5.55364 + 5.88651i −0.466051 + 0.493985i
\(143\) 0.826595 + 0.693595i 0.0691233 + 0.0580014i
\(144\) 0 0
\(145\) 6.65443 5.58373i 0.552621 0.463704i
\(146\) 1.63927 28.1452i 0.135667 2.32931i
\(147\) 0 0
\(148\) 4.95777 6.65944i 0.407526 0.547403i
\(149\) 7.62562 + 0.891307i 0.624715 + 0.0730187i 0.422560 0.906335i \(-0.361132\pi\)
0.202155 + 0.979354i \(0.435206\pi\)
\(150\) 0 0
\(151\) −2.58058 1.69727i −0.210005 0.138122i 0.440150 0.897924i \(-0.354925\pi\)
−0.650154 + 0.759802i \(0.725296\pi\)
\(152\) −4.78937 1.74319i −0.388469 0.141391i
\(153\) 0 0
\(154\) −1.09861 + 0.399861i −0.0885285 + 0.0322217i
\(155\) 6.80863 + 1.61367i 0.546882 + 0.129613i
\(156\) 0 0
\(157\) −0.356474 6.12042i −0.0284497 0.488463i −0.982197 0.187853i \(-0.939847\pi\)
0.953747 0.300609i \(-0.0971900\pi\)
\(158\) 1.76679 + 1.87269i 0.140558 + 0.148983i
\(159\) 0 0
\(160\) −2.82917 + 6.55875i −0.223666 + 0.518515i
\(161\) 12.3709 0.974965
\(162\) 0 0
\(163\) −0.171894 −0.0134638 −0.00673188 0.999977i \(-0.502143\pi\)
−0.00673188 + 0.999977i \(0.502143\pi\)
\(164\) 1.09190 2.53130i 0.0852628 0.197661i
\(165\) 0 0
\(166\) −16.9335 17.9484i −1.31429 1.39307i
\(167\) −0.0171142 0.293839i −0.00132434 0.0227380i 0.997581 0.0695100i \(-0.0221436\pi\)
−0.998906 + 0.0467721i \(0.985107\pi\)
\(168\) 0 0
\(169\) 14.2190 + 3.36997i 1.09377 + 0.259228i
\(170\) 11.3704 4.13849i 0.872069 0.317407i
\(171\) 0 0
\(172\) 1.48780 + 0.541516i 0.113444 + 0.0412902i
\(173\) −2.24492 1.47651i −0.170678 0.112257i 0.461296 0.887246i \(-0.347385\pi\)
−0.631974 + 0.774990i \(0.717755\pi\)
\(174\) 0 0
\(175\) 10.1369 + 1.18483i 0.766274 + 0.0895646i
\(176\) −0.613115 + 0.823556i −0.0462153 + 0.0620779i
\(177\) 0 0
\(178\) 0.517483 8.88485i 0.0387870 0.665947i
\(179\) 1.83356 1.53854i 0.137047 0.114996i −0.571687 0.820471i \(-0.693711\pi\)
0.708734 + 0.705476i \(0.249267\pi\)
\(180\) 0 0
\(181\) 12.8278 + 10.7638i 0.953481 + 0.800065i 0.979880 0.199586i \(-0.0639598\pi\)
−0.0263995 + 0.999651i \(0.508404\pi\)
\(182\) −20.5309 + 21.7615i −1.52185 + 1.61307i
\(183\) 0 0
\(184\) 5.45369 3.58695i 0.402051 0.264433i
\(185\) 11.1477 2.64205i 0.819595 0.194248i
\(186\) 0 0
\(187\) 1.03506 0.120981i 0.0756912 0.00884704i
\(188\) −1.03848 + 1.79870i −0.0757391 + 0.131184i
\(189\) 0 0
\(190\) 3.50193 + 6.06553i 0.254057 + 0.440040i
\(191\) −8.47415 11.3828i −0.613168 0.823627i 0.381755 0.924263i \(-0.375320\pi\)
−0.994923 + 0.100636i \(0.967912\pi\)
\(192\) 0 0
\(193\) 1.19766 4.00046i 0.0862094 0.287959i −0.904003 0.427525i \(-0.859386\pi\)
0.990213 + 0.139566i \(0.0445707\pi\)
\(194\) −2.77802 1.39517i −0.199450 0.100168i
\(195\) 0 0
\(196\) −1.09119 3.64483i −0.0779421 0.260345i
\(197\) −3.59768 + 20.4035i −0.256324 + 1.45369i 0.536326 + 0.844011i \(0.319812\pi\)
−0.792650 + 0.609677i \(0.791299\pi\)
\(198\) 0 0
\(199\) 0.499478 + 2.83268i 0.0354071 + 0.200803i 0.997380 0.0723417i \(-0.0230472\pi\)
−0.961973 + 0.273145i \(0.911936\pi\)
\(200\) 4.81235 2.41685i 0.340285 0.170897i
\(201\) 0 0
\(202\) 7.86951 + 18.2436i 0.553697 + 1.28361i
\(203\) 8.21590 + 19.0466i 0.576643 + 1.33681i
\(204\) 0 0
\(205\) 3.39949 1.70729i 0.237431 0.119242i
\(206\) 0.150390 + 0.852907i 0.0104782 + 0.0594248i
\(207\) 0 0
\(208\) −4.56243 + 25.8748i −0.316347 + 1.79409i
\(209\) 0.173000 + 0.577859i 0.0119666 + 0.0399714i
\(210\) 0 0
\(211\) −9.48492 4.76351i −0.652969 0.327933i 0.0912903 0.995824i \(-0.470901\pi\)
−0.744259 + 0.667891i \(0.767197\pi\)
\(212\) −2.58537 + 8.63574i −0.177564 + 0.593105i
\(213\) 0 0
\(214\) −5.62846 7.56034i −0.384754 0.516814i
\(215\) 1.09241 + 1.89211i 0.0745016 + 0.129041i
\(216\) 0 0
\(217\) −8.35434 + 14.4701i −0.567130 + 0.982298i
\(218\) −28.8566 + 3.37285i −1.95441 + 0.228438i
\(219\) 0 0
\(220\) 0.274574 0.0650752i 0.0185118 0.00438737i
\(221\) 22.2806 14.6542i 1.49875 0.985746i
\(222\) 0 0
\(223\) 16.2468 17.2206i 1.08797 1.15318i 0.100568 0.994930i \(-0.467934\pi\)
0.987399 0.158248i \(-0.0505844\pi\)
\(224\) −13.0661 10.9638i −0.873015 0.732547i
\(225\) 0 0
\(226\) 11.7150 9.83009i 0.779273 0.653888i
\(227\) 0.0266893 0.458237i 0.00177143 0.0304143i −0.997307 0.0733452i \(-0.976633\pi\)
0.999078 + 0.0429309i \(0.0136695\pi\)
\(228\) 0 0
\(229\) 9.55048 12.8285i 0.631113 0.847732i −0.365427 0.930840i \(-0.619077\pi\)
0.996541 + 0.0831075i \(0.0264845\pi\)
\(230\) −8.90942 1.04136i −0.587470 0.0686654i
\(231\) 0 0
\(232\) 9.14453 + 6.01445i 0.600368 + 0.394868i
\(233\) 7.46875 + 2.71840i 0.489294 + 0.178089i 0.574873 0.818243i \(-0.305052\pi\)
−0.0855784 + 0.996331i \(0.527274\pi\)
\(234\) 0 0
\(235\) −2.69321 + 0.980249i −0.175686 + 0.0639444i
\(236\) 14.4157 + 3.41658i 0.938381 + 0.222400i
\(237\) 0 0
\(238\) 1.68003 + 28.8450i 0.108900 + 1.86974i
\(239\) −14.5603 15.4330i −0.941828 0.998280i 0.0581718 0.998307i \(-0.481473\pi\)
−1.00000 2.70339e-5i \(0.999991\pi\)
\(240\) 0 0
\(241\) −7.15707 + 16.5920i −0.461028 + 1.06878i 0.516177 + 0.856482i \(0.327355\pi\)
−0.977205 + 0.212300i \(0.931905\pi\)
\(242\) −18.9729 −1.21963
\(243\) 0 0
\(244\) −1.50356 −0.0962556
\(245\) 2.07948 4.82077i 0.132853 0.307988i
\(246\) 0 0
\(247\) 10.5928 + 11.2277i 0.674005 + 0.714404i
\(248\) 0.512628 + 8.80148i 0.0325519 + 0.558894i
\(249\) 0 0
\(250\) −18.8008 4.45588i −1.18907 0.281815i
\(251\) −7.58786 + 2.76176i −0.478942 + 0.174321i −0.570199 0.821507i \(-0.693134\pi\)
0.0912569 + 0.995827i \(0.470912\pi\)
\(252\) 0 0
\(253\) −0.725947 0.264223i −0.0456399 0.0166116i
\(254\) 10.0943 + 6.63911i 0.633371 + 0.416575i
\(255\) 0 0
\(256\) −18.8508 2.20334i −1.17817 0.137709i
\(257\) −9.87311 + 13.2619i −0.615868 + 0.827254i −0.995185 0.0980126i \(-0.968751\pi\)
0.379317 + 0.925267i \(0.376159\pi\)
\(258\) 0 0
\(259\) −1.59067 + 27.3107i −0.0988392 + 1.69700i
\(260\) 5.53164 4.64160i 0.343058 0.287860i
\(261\) 0 0
\(262\) −7.48032 6.27673i −0.462135 0.387778i
\(263\) −0.0115217 + 0.0122123i −0.000710459 + 0.000753043i −0.727729 0.685865i \(-0.759424\pi\)
0.727018 + 0.686618i \(0.240906\pi\)
\(264\) 0 0
\(265\) −10.3928 + 6.83548i −0.638427 + 0.419900i
\(266\) −16.2737 + 3.85694i −0.997805 + 0.236484i
\(267\) 0 0
\(268\) 13.2905 1.55343i 0.811844 0.0948909i
\(269\) 3.16338 5.47913i 0.192874 0.334068i −0.753327 0.657646i \(-0.771552\pi\)
0.946202 + 0.323578i \(0.104886\pi\)
\(270\) 0 0
\(271\) −9.98751 17.2989i −0.606698 1.05083i −0.991781 0.127950i \(-0.959160\pi\)
0.385082 0.922882i \(-0.374173\pi\)
\(272\) 15.1527 + 20.3536i 0.918766 + 1.23412i
\(273\) 0 0
\(274\) −0.553426 + 1.84857i −0.0334337 + 0.111676i
\(275\) −0.569542 0.286035i −0.0343447 0.0172486i
\(276\) 0 0
\(277\) −1.79418 5.99296i −0.107802 0.360082i 0.887019 0.461734i \(-0.152772\pi\)
−0.994820 + 0.101652i \(0.967587\pi\)
\(278\) −1.43055 + 8.11303i −0.0857985 + 0.486587i
\(279\) 0 0
\(280\) −1.36427 7.73713i −0.0815304 0.462382i
\(281\) 5.20235 2.61272i 0.310346 0.155862i −0.286808 0.957988i \(-0.592594\pi\)
0.597154 + 0.802126i \(0.296298\pi\)
\(282\) 0 0
\(283\) −3.40508 7.89386i −0.202411 0.469241i 0.786530 0.617552i \(-0.211876\pi\)
−0.988941 + 0.148311i \(0.952616\pi\)
\(284\) 1.84743 + 4.28282i 0.109625 + 0.254139i
\(285\) 0 0
\(286\) 1.66958 0.838495i 0.0987244 0.0495812i
\(287\) 1.57739 + 8.94585i 0.0931106 + 0.528057i
\(288\) 0 0
\(289\) 1.52028 8.62194i 0.0894282 0.507173i
\(290\) −4.31371 14.4088i −0.253310 0.846114i
\(291\) 0 0
\(292\) −14.5205 7.29248i −0.849750 0.426760i
\(293\) 1.84582 6.16547i 0.107834 0.360190i −0.886992 0.461785i \(-0.847209\pi\)
0.994826 + 0.101594i \(0.0323944\pi\)
\(294\) 0 0
\(295\) 12.2081 + 16.3983i 0.710782 + 0.954746i
\(296\) 7.21749 + 12.5011i 0.419508 + 0.726610i
\(297\) 0 0
\(298\) 6.64663 11.5123i 0.385029 0.666889i
\(299\) −19.6357 + 2.29508i −1.13556 + 0.132728i
\(300\) 0 0
\(301\) −5.07649 + 1.20315i −0.292604 + 0.0693484i
\(302\) −4.46814 + 2.93874i −0.257113 + 0.169106i
\(303\) 0 0
\(304\) −10.0792 + 10.6833i −0.578081 + 0.612730i
\(305\) −1.58939 1.33366i −0.0910082 0.0763649i
\(306\) 0 0
\(307\) 18.8060 15.7801i 1.07332 0.900619i 0.0779670 0.996956i \(-0.475157\pi\)
0.995349 + 0.0963370i \(0.0307127\pi\)
\(308\) −0.0391790 + 0.672677i −0.00223243 + 0.0383293i
\(309\) 0 0
\(310\) 7.23480 9.71802i 0.410909 0.551946i
\(311\) −12.8990 1.50767i −0.731433 0.0854923i −0.257780 0.966204i \(-0.582991\pi\)
−0.473653 + 0.880711i \(0.657065\pi\)
\(312\) 0 0
\(313\) −4.36800 2.87288i −0.246894 0.162385i 0.420031 0.907510i \(-0.362019\pi\)
−0.666925 + 0.745125i \(0.732390\pi\)
\(314\) −9.97498 3.63060i −0.562921 0.204886i
\(315\) 0 0
\(316\) 1.39437 0.507509i 0.0784394 0.0285496i
\(317\) 29.7332 + 7.04690i 1.66998 + 0.395793i 0.953400 0.301709i \(-0.0975572\pi\)
0.716582 + 0.697502i \(0.245705\pi\)
\(318\) 0 0
\(319\) −0.0753184 1.29317i −0.00421702 0.0724035i
\(320\) −0.962705 1.02041i −0.0538169 0.0570425i
\(321\) 0 0
\(322\) 8.48388 19.6678i 0.472788 1.09605i
\(323\) 14.9076 0.829483
\(324\) 0 0
\(325\) −16.3095 −0.904688
\(326\) −0.117883 + 0.273284i −0.00652896 + 0.0151358i
\(327\) 0 0
\(328\) 3.28924 + 3.48639i 0.181618 + 0.192504i
\(329\) −0.397934 6.83227i −0.0219388 0.376675i
\(330\) 0 0
\(331\) 3.09786 + 0.734205i 0.170274 + 0.0403556i 0.314868 0.949135i \(-0.398040\pi\)
−0.144595 + 0.989491i \(0.546188\pi\)
\(332\) −13.3641 + 4.86412i −0.733449 + 0.266953i
\(333\) 0 0
\(334\) −0.478896 0.174304i −0.0262040 0.00953748i
\(335\) 15.4270 + 10.1465i 0.842868 + 0.554363i
\(336\) 0 0
\(337\) 32.5501 + 3.80456i 1.77312 + 0.207247i 0.938900 0.344191i \(-0.111847\pi\)
0.834216 + 0.551438i \(0.185921\pi\)
\(338\) 15.1090 20.2949i 0.821821 1.10390i
\(339\) 0 0
\(340\) 0.405495 6.96208i 0.0219910 0.377572i
\(341\) 0.799307 0.670699i 0.0432849 0.0363204i
\(342\) 0 0
\(343\) −8.02888 6.73703i −0.433519 0.363765i
\(344\) −1.88910 + 2.00233i −0.101854 + 0.107959i
\(345\) 0 0
\(346\) −3.88696 + 2.55649i −0.208964 + 0.137438i
\(347\) 21.8032 5.16746i 1.17046 0.277404i 0.400986 0.916084i \(-0.368668\pi\)
0.769472 + 0.638681i \(0.220519\pi\)
\(348\) 0 0
\(349\) −21.9185 + 2.56190i −1.17327 + 0.137136i −0.680315 0.732919i \(-0.738157\pi\)
−0.492955 + 0.870055i \(0.664083\pi\)
\(350\) 8.83546 15.3035i 0.472275 0.818005i
\(351\) 0 0
\(352\) 0.532573 + 0.922444i 0.0283863 + 0.0491664i
\(353\) 6.51907 + 8.75663i 0.346975 + 0.466068i 0.941014 0.338368i \(-0.109875\pi\)
−0.594039 + 0.804436i \(0.702467\pi\)
\(354\) 0 0
\(355\) −1.84597 + 6.16597i −0.0979739 + 0.327256i
\(356\) −4.58383 2.30209i −0.242943 0.122010i
\(357\) 0 0
\(358\) −1.18860 3.97019i −0.0628194 0.209831i
\(359\) 4.30460 24.4126i 0.227188 1.28845i −0.631269 0.775564i \(-0.717466\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(360\) 0 0
\(361\) −1.80092 10.2135i −0.0947851 0.537553i
\(362\) 25.9099 13.0125i 1.36180 0.683919i
\(363\) 0 0
\(364\) 6.82964 + 15.8329i 0.357971 + 0.829869i
\(365\) −8.88099 20.5885i −0.464853 1.07765i
\(366\) 0 0
\(367\) −11.4819 + 5.76642i −0.599350 + 0.301005i −0.722487 0.691385i \(-0.757001\pi\)
0.123137 + 0.992390i \(0.460705\pi\)
\(368\) −3.26645 18.5250i −0.170276 0.965681i
\(369\) 0 0
\(370\) 3.44455 19.5350i 0.179074 1.01558i
\(371\) −8.51910 28.4558i −0.442290 1.47735i
\(372\) 0 0
\(373\) 1.99340 + 1.00112i 0.103214 + 0.0518362i 0.499657 0.866223i \(-0.333459\pi\)
−0.396443 + 0.918059i \(0.629756\pi\)
\(374\) 0.517496 1.72856i 0.0267591 0.0893815i
\(375\) 0 0
\(376\) −2.15645 2.89661i −0.111210 0.149381i
\(377\) −16.5742 28.7074i −0.853617 1.47851i
\(378\) 0 0
\(379\) 3.67947 6.37302i 0.189001 0.327360i −0.755916 0.654668i \(-0.772808\pi\)
0.944918 + 0.327308i \(0.106142\pi\)
\(380\) 4.00937 0.468628i 0.205676 0.0240401i
\(381\) 0 0
\(382\) −23.9083 + 5.66638i −1.22326 + 0.289917i
\(383\) 12.0779 7.94378i 0.617154 0.405908i −0.202079 0.979369i \(-0.564770\pi\)
0.819233 + 0.573461i \(0.194400\pi\)
\(384\) 0 0
\(385\) −0.638079 + 0.676324i −0.0325195 + 0.0344687i
\(386\) −5.53876 4.64757i −0.281916 0.236555i
\(387\) 0 0
\(388\) −1.37251 + 1.15167i −0.0696784 + 0.0584671i
\(389\) −0.494471 + 8.48974i −0.0250707 + 0.430447i 0.962297 + 0.272001i \(0.0876854\pi\)
−0.987368 + 0.158446i \(0.949352\pi\)
\(390\) 0 0
\(391\) −11.4014 + 15.3147i −0.576592 + 0.774497i
\(392\) 6.57036 + 0.767965i 0.331853 + 0.0387881i
\(393\) 0 0
\(394\) 29.9711 + 19.7123i 1.50992 + 0.993091i
\(395\) 1.92413 + 0.700325i 0.0968133 + 0.0352372i
\(396\) 0 0
\(397\) −5.16106 + 1.87847i −0.259026 + 0.0942779i −0.468269 0.883586i \(-0.655122\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(398\) 4.84606 + 1.14854i 0.242911 + 0.0575710i
\(399\) 0 0
\(400\) −0.902330 15.4924i −0.0451165 0.774620i
\(401\) 6.45676 + 6.84377i 0.322435 + 0.341762i 0.868234 0.496155i \(-0.165255\pi\)
−0.545799 + 0.837916i \(0.683774\pi\)
\(402\) 0 0
\(403\) 10.5759 24.5176i 0.526821 1.22131i
\(404\) 11.4512 0.569716
\(405\) 0 0
\(406\) 35.9155 1.78246
\(407\) 0.676656 1.56867i 0.0335406 0.0777558i
\(408\) 0 0
\(409\) 10.5830 + 11.2174i 0.523297 + 0.554663i 0.934077 0.357072i \(-0.116225\pi\)
−0.410780 + 0.911735i \(0.634743\pi\)
\(410\) −0.382979 6.57550i −0.0189140 0.324741i
\(411\) 0 0
\(412\) 0.485699 + 0.115113i 0.0239287 + 0.00567120i
\(413\) −45.8732 + 16.6965i −2.25727 + 0.821580i
\(414\) 0 0
\(415\) −18.4414 6.71212i −0.905253 0.329485i
\(416\) 22.7731 + 14.9781i 1.11654 + 0.734363i
\(417\) 0 0
\(418\) 1.03735 + 0.121249i 0.0507384 + 0.00593046i
\(419\) −14.7527 + 19.8163i −0.720715 + 0.968088i 0.279254 + 0.960217i \(0.409913\pi\)
−0.999969 + 0.00787086i \(0.997495\pi\)
\(420\) 0 0
\(421\) 0.0108029 0.185479i 0.000526502 0.00903969i −0.998035 0.0626641i \(-0.980040\pi\)
0.998561 + 0.0536244i \(0.0170774\pi\)
\(422\) −14.0779 + 11.8128i −0.685302 + 0.575037i
\(423\) 0 0
\(424\) −12.0064 10.0746i −0.583082 0.489264i
\(425\) −10.8092 + 11.4570i −0.524321 + 0.555748i
\(426\) 0 0
\(427\) 4.13935 2.72249i 0.200317 0.131751i
\(428\) −5.28588 + 1.25278i −0.255503 + 0.0605552i
\(429\) 0 0
\(430\) 3.75732 0.439168i 0.181194 0.0211785i
\(431\) −7.27612 + 12.6026i −0.350478 + 0.607046i −0.986333 0.164762i \(-0.947314\pi\)
0.635855 + 0.771808i \(0.280648\pi\)
\(432\) 0 0
\(433\) 17.3096 + 29.9811i 0.831846 + 1.44080i 0.896573 + 0.442897i \(0.146049\pi\)
−0.0647264 + 0.997903i \(0.520617\pi\)
\(434\) 17.2759 + 23.2056i 0.829272 + 1.11391i
\(435\) 0 0
\(436\) −4.80242 + 16.0412i −0.229994 + 0.768233i
\(437\) −9.87585 4.95984i −0.472426 0.237261i
\(438\) 0 0
\(439\) 0.563799 + 1.88322i 0.0269087 + 0.0898812i 0.970389 0.241547i \(-0.0776548\pi\)
−0.943480 + 0.331428i \(0.892470\pi\)
\(440\) −0.0851954 + 0.483167i −0.00406153 + 0.0230341i
\(441\) 0 0
\(442\) −8.01800 45.4724i −0.381378 2.16290i
\(443\) −28.4252 + 14.2757i −1.35052 + 0.678257i −0.969220 0.246195i \(-0.920820\pi\)
−0.381300 + 0.924451i \(0.624523\pi\)
\(444\) 0 0
\(445\) −2.80355 6.49935i −0.132901 0.308099i
\(446\) −16.2362 37.6397i −0.768805 1.78229i
\(447\) 0 0
\(448\) 2.99358 1.50343i 0.141433 0.0710305i
\(449\) 5.17251 + 29.3348i 0.244106 + 1.38439i 0.822560 + 0.568679i \(0.192545\pi\)
−0.578454 + 0.815715i \(0.696344\pi\)
\(450\) 0 0
\(451\) 0.0985049 0.558649i 0.00463841 0.0263057i
\(452\) −2.52789 8.44375i −0.118902 0.397160i
\(453\) 0 0
\(454\) −0.710223 0.356687i −0.0333324 0.0167402i
\(455\) −6.82425 + 22.7946i −0.319926 + 1.06863i
\(456\) 0 0
\(457\) 7.61163 + 10.2242i 0.356057 + 0.478267i 0.943676 0.330870i \(-0.107342\pi\)
−0.587619 + 0.809137i \(0.699935\pi\)
\(458\) −13.8457 23.9815i −0.646968 1.12058i
\(459\) 0 0
\(460\) −2.58494 + 4.47725i −0.120523 + 0.208753i
\(461\) 20.5283 2.39941i 0.956097 0.111752i 0.376287 0.926503i \(-0.377201\pi\)
0.579810 + 0.814752i \(0.303127\pi\)
\(462\) 0 0
\(463\) −16.2014 + 3.83980i −0.752943 + 0.178451i −0.589127 0.808040i \(-0.700528\pi\)
−0.163816 + 0.986491i \(0.552380\pi\)
\(464\) 26.3522 17.3321i 1.22337 0.804624i
\(465\) 0 0
\(466\) 9.44385 10.0099i 0.437478 0.463700i
\(467\) 22.4416 + 18.8308i 1.03848 + 0.871384i 0.991835 0.127527i \(-0.0407041\pi\)
0.0466403 + 0.998912i \(0.485149\pi\)
\(468\) 0 0
\(469\) −33.7762 + 28.3416i −1.55964 + 1.30870i
\(470\) −0.288540 + 4.95403i −0.0133093 + 0.228513i
\(471\) 0 0
\(472\) −15.3819 + 20.6615i −0.708012 + 0.951025i
\(473\) 0.323595 + 0.0378228i 0.0148789 + 0.00173909i
\(474\) 0 0
\(475\) −7.61734 5.01000i −0.349507 0.229875i
\(476\) 15.6486 + 5.69562i 0.717252 + 0.261059i
\(477\) 0 0
\(478\) −34.5215 + 12.5648i −1.57897 + 0.574700i
\(479\) −21.7592 5.15702i −0.994201 0.235630i −0.298850 0.954300i \(-0.596603\pi\)
−0.695351 + 0.718670i \(0.744751\pi\)
\(480\) 0 0
\(481\) −2.54197 43.6439i −0.115904 1.98999i
\(482\) 21.4704 + 22.7573i 0.977949 + 1.03657i
\(483\) 0 0
\(484\) −4.33113 + 10.0407i −0.196870 + 0.456395i
\(485\) −2.47238 −0.112265
\(486\) 0 0
\(487\) 3.73936 0.169447 0.0847233 0.996405i \(-0.472999\pi\)
0.0847233 + 0.996405i \(0.472999\pi\)
\(488\) 1.03544 2.40041i 0.0468720 0.108661i
\(489\) 0 0
\(490\) −6.23819 6.61209i −0.281813 0.298704i
\(491\) −0.0701629 1.20465i −0.00316641 0.0543651i 0.996355 0.0853058i \(-0.0271867\pi\)
−0.999521 + 0.0309407i \(0.990150\pi\)
\(492\) 0 0
\(493\) −31.1509 7.38290i −1.40297 0.332509i
\(494\) 25.1148 9.14105i 1.12997 0.411275i
\(495\) 0 0
\(496\) 23.8744 + 8.68957i 1.07199 + 0.390173i
\(497\) −12.8409 8.44560i −0.575994 0.378837i
\(498\) 0 0
\(499\) −3.31533 0.387506i −0.148415 0.0173472i 0.0415612 0.999136i \(-0.486767\pi\)
−0.189976 + 0.981789i \(0.560841\pi\)
\(500\) −6.64995 + 8.93244i −0.297395 + 0.399471i
\(501\) 0 0
\(502\) −0.812933 + 13.9575i −0.0362830 + 0.622954i
\(503\) −18.7108 + 15.7002i −0.834274 + 0.700039i −0.956268 0.292492i \(-0.905516\pi\)
0.121994 + 0.992531i \(0.461071\pi\)
\(504\) 0 0
\(505\) 12.1048 + 10.1572i 0.538658 + 0.451988i
\(506\) −0.917923 + 0.972941i −0.0408066 + 0.0432525i
\(507\) 0 0
\(508\) 5.81781 3.82643i 0.258124 0.169771i
\(509\) −30.1051 + 7.13503i −1.33438 + 0.316255i −0.835059 0.550160i \(-0.814567\pi\)
−0.499325 + 0.866415i \(0.666418\pi\)
\(510\) 0 0
\(511\) 53.1800 6.21585i 2.35254 0.274973i
\(512\) −4.29252 + 7.43487i −0.189705 + 0.328578i
\(513\) 0 0
\(514\) 14.3134 + 24.7916i 0.631339 + 1.09351i
\(515\) 0.411320 + 0.552499i 0.0181249 + 0.0243460i
\(516\) 0 0
\(517\) −0.122575 + 0.409429i −0.00539084 + 0.0180067i
\(518\) 42.3289 + 21.2584i 1.85982 + 0.934039i
\(519\) 0 0
\(520\) 3.60084 + 12.0276i 0.157907 + 0.527447i
\(521\) −2.47495 + 14.0361i −0.108430 + 0.614934i 0.881365 + 0.472435i \(0.156625\pi\)
−0.989795 + 0.142499i \(0.954486\pi\)
\(522\) 0 0
\(523\) 0.234960 + 1.33253i 0.0102741 + 0.0582673i 0.989514 0.144439i \(-0.0461376\pi\)
−0.979240 + 0.202706i \(0.935026\pi\)
\(524\) −5.02932 + 2.52582i −0.219707 + 0.110341i
\(525\) 0 0
\(526\) 0.0115142 + 0.0266928i 0.000502042 + 0.00116386i
\(527\) −10.2139 23.6784i −0.444923 1.03145i
\(528\) 0 0
\(529\) −7.90524 + 3.97016i −0.343706 + 0.172616i
\(530\) 3.74002 + 21.2107i 0.162456 + 0.921335i
\(531\) 0 0
\(532\) −1.67382 + 9.49269i −0.0725692 + 0.411560i
\(533\) −4.16337 13.9066i −0.180335 0.602362i
\(534\) 0 0
\(535\) −6.69883 3.36428i −0.289616 0.145450i
\(536\) −6.67252 + 22.2878i −0.288209 + 0.962685i
\(537\) 0 0
\(538\) −6.54154 8.78682i −0.282026 0.378827i
\(539\) −0.391448 0.678008i −0.0168609 0.0292039i
\(540\) 0 0
\(541\) 12.5060 21.6611i 0.537676 0.931283i −0.461352 0.887217i \(-0.652636\pi\)
0.999029 0.0440659i \(-0.0140312\pi\)
\(542\) −34.3519 + 4.01516i −1.47554 + 0.172466i
\(543\) 0 0
\(544\) 25.6147 6.07080i 1.09822 0.260284i
\(545\) −19.3051 + 12.6971i −0.826938 + 0.543886i
\(546\) 0 0
\(547\) −19.4886 + 20.6567i −0.833273 + 0.883218i −0.994611 0.103681i \(-0.966938\pi\)
0.161337 + 0.986899i \(0.448419\pi\)
\(548\) 0.851950 + 0.714871i 0.0363935 + 0.0305378i
\(549\) 0 0
\(550\) −0.845339 + 0.709324i −0.0360454 + 0.0302457i
\(551\) 1.07745 18.4991i 0.0459009 0.788089i
\(552\) 0 0
\(553\) −2.91980 + 3.92197i −0.124162 + 0.166779i
\(554\) −10.7583 1.25747i −0.457077 0.0534246i
\(555\) 0 0
\(556\) 3.96695 + 2.60910i 0.168236 + 0.110651i
\(557\) 34.6621 + 12.6160i 1.46868 + 0.534556i 0.947742 0.319039i \(-0.103360\pi\)
0.520938 + 0.853594i \(0.325582\pi\)
\(558\) 0 0
\(559\) 7.83442 2.85150i 0.331361 0.120605i
\(560\) −22.0301 5.22124i −0.930943 0.220638i
\(561\) 0 0
\(562\) −0.586086 10.0627i −0.0247226 0.424470i
\(563\) 15.2051 + 16.1164i 0.640817 + 0.679226i 0.963631 0.267236i \(-0.0861104\pi\)
−0.322814 + 0.946462i \(0.604629\pi\)
\(564\) 0 0
\(565\) 4.81740 11.1680i 0.202670 0.469841i
\(566\) −14.8852 −0.625671
\(567\) 0 0
\(568\) −8.10969 −0.340275
\(569\) −2.53616 + 5.87948i −0.106321 + 0.246480i −0.963069 0.269256i \(-0.913222\pi\)
0.856747 + 0.515736i \(0.172482\pi\)
\(570\) 0 0
\(571\) 3.79067 + 4.01787i 0.158634 + 0.168143i 0.801816 0.597571i \(-0.203867\pi\)
−0.643182 + 0.765714i \(0.722386\pi\)
\(572\) −0.0626100 1.07497i −0.00261786 0.0449469i
\(573\) 0 0
\(574\) 15.3043 + 3.62718i 0.638788 + 0.151395i
\(575\) 10.9725 3.99368i 0.457586 0.166548i
\(576\) 0 0
\(577\) 36.7599 + 13.3795i 1.53033 + 0.556996i 0.963703 0.266977i \(-0.0860246\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(578\) −12.6649 8.32986i −0.526792 0.346477i
\(579\) 0 0
\(580\) −8.61003 1.00637i −0.357512 0.0417872i
\(581\) 27.9842 37.5894i 1.16098 1.55947i
\(582\) 0 0
\(583\) −0.107855 + 1.85179i −0.00446688 + 0.0766933i
\(584\) 21.6420 18.1598i 0.895551 0.751457i
\(585\) 0 0
\(586\) −8.53628 7.16279i −0.352631 0.295892i
\(587\) 9.54436 10.1164i 0.393938 0.417550i −0.499799 0.866141i \(-0.666593\pi\)
0.893737 + 0.448592i \(0.148074\pi\)
\(588\) 0 0
\(589\) 12.4708 8.20221i 0.513852 0.337966i
\(590\) 34.4429 8.16313i 1.41799 0.336071i
\(591\) 0 0
\(592\) 41.3167 4.82923i 1.69811 0.198480i
\(593\) −8.67989 + 15.0340i −0.356441 + 0.617373i −0.987363 0.158472i \(-0.949343\pi\)
0.630923 + 0.775846i \(0.282676\pi\)
\(594\) 0 0
\(595\) 11.4899 + 19.9010i 0.471039 + 0.815863i
\(596\) −4.57515 6.14549i −0.187405 0.251729i
\(597\) 0 0
\(598\) −9.81717 + 32.7916i −0.401454 + 1.34095i
\(599\) −37.1512 18.6580i −1.51796 0.762346i −0.522065 0.852906i \(-0.674838\pi\)
−0.995891 + 0.0905596i \(0.971134\pi\)
\(600\) 0 0
\(601\) 2.64850 + 8.84660i 0.108035 + 0.360860i 0.994862 0.101240i \(-0.0322811\pi\)
−0.886827 + 0.462101i \(0.847096\pi\)
\(602\) −1.56859 + 8.89594i −0.0639311 + 0.362571i
\(603\) 0 0
\(604\) 0.535232 + 3.03545i 0.0217783 + 0.123511i
\(605\) −13.4845 + 6.77215i −0.548221 + 0.275327i
\(606\) 0 0
\(607\) −5.34301 12.3865i −0.216866 0.502752i 0.774704 0.632324i \(-0.217899\pi\)
−0.991570 + 0.129572i \(0.958640\pi\)
\(608\) 6.03515 + 13.9910i 0.244758 + 0.567412i
\(609\) 0 0
\(610\) −3.21030 + 1.61227i −0.129981 + 0.0652790i
\(611\) 1.89916 + 10.7707i 0.0768317 + 0.435734i
\(612\) 0 0
\(613\) −0.675007 + 3.82815i −0.0272633 + 0.154618i −0.995400 0.0958034i \(-0.969458\pi\)
0.968137 + 0.250421i \(0.0805691\pi\)
\(614\) −12.1909 40.7205i −0.491986 1.64335i
\(615\) 0 0
\(616\) −1.04694 0.525792i −0.0421823 0.0211847i
\(617\) 6.88741 23.0055i 0.277276 0.926168i −0.699990 0.714153i \(-0.746812\pi\)
0.977266 0.212015i \(-0.0680026\pi\)
\(618\) 0 0
\(619\) −6.07827 8.16453i −0.244306 0.328160i 0.663009 0.748612i \(-0.269279\pi\)
−0.907315 + 0.420451i \(0.861872\pi\)
\(620\) −3.49133 6.04716i −0.140215 0.242860i
\(621\) 0 0
\(622\) −11.2430 + 19.4734i −0.450802 + 0.780812i
\(623\) 16.7878 1.96221i 0.672590 0.0786144i
\(624\) 0 0
\(625\) 0.147739 0.0350147i 0.00590955 0.00140059i
\(626\) −7.56297 + 4.97425i −0.302277 + 0.198811i
\(627\) 0 0
\(628\) −4.19844 + 4.45009i −0.167536 + 0.177578i
\(629\) −32.3435 27.1394i −1.28962 1.08212i
\(630\) 0 0
\(631\) −37.7162 + 31.6476i −1.50146 + 1.25987i −0.622836 + 0.782352i \(0.714020\pi\)
−0.878621 + 0.477520i \(0.841536\pi\)
\(632\) −0.150011 + 2.57559i −0.00596711 + 0.102451i
\(633\) 0 0
\(634\) 31.5943 42.4384i 1.25477 1.68545i
\(635\) 9.54396 + 1.11553i 0.378740 + 0.0442684i
\(636\) 0 0
\(637\) −16.7386 11.0091i −0.663206 0.436197i
\(638\) −2.10759 0.767099i −0.0834402 0.0303698i
\(639\) 0 0
\(640\) −15.7068 + 5.71682i −0.620867 + 0.225977i
\(641\) 33.1606 + 7.85921i 1.30976 + 0.310420i 0.825451 0.564474i \(-0.190921\pi\)
0.484314 + 0.874894i \(0.339069\pi\)
\(642\) 0 0
\(643\) 1.15570 + 19.8426i 0.0455764 + 0.782516i 0.941230 + 0.337765i \(0.109671\pi\)
−0.895654 + 0.444751i \(0.853292\pi\)
\(644\) −8.47175 8.97953i −0.333834 0.353843i
\(645\) 0 0
\(646\) 10.2235 23.7008i 0.402240 0.932497i
\(647\) 37.1636 1.46105 0.730525 0.682886i \(-0.239275\pi\)
0.730525 + 0.682886i \(0.239275\pi\)
\(648\) 0 0
\(649\) 3.04853 0.119665
\(650\) −11.1849 + 25.9296i −0.438709 + 1.01704i
\(651\) 0 0
\(652\) 0.117715 + 0.124771i 0.00461007 + 0.00488639i
\(653\) −0.320235 5.49823i −0.0125318 0.215162i −0.998760 0.0497749i \(-0.984150\pi\)
0.986229 0.165387i \(-0.0528874\pi\)
\(654\) 0 0
\(655\) −7.55681 1.79100i −0.295269 0.0699801i
\(656\) 12.9796 4.72418i 0.506767 0.184448i
\(657\) 0 0
\(658\) −11.1351 4.05286i −0.434093 0.157997i
\(659\) 31.8182 + 20.9272i 1.23946 + 0.815207i 0.988268 0.152730i \(-0.0488065\pi\)
0.251194 + 0.967937i \(0.419177\pi\)
\(660\) 0 0
\(661\) 27.9872 + 3.27123i 1.08857 + 0.127236i 0.641397 0.767209i \(-0.278355\pi\)
0.447177 + 0.894445i \(0.352429\pi\)
\(662\) 3.29176 4.42160i 0.127938 0.171850i
\(663\) 0 0
\(664\) 1.43775 24.6852i 0.0557955 0.957972i
\(665\) −10.1894 + 8.54990i −0.395127 + 0.331551i
\(666\) 0 0
\(667\) 18.1802 + 15.2550i 0.703939 + 0.590675i
\(668\) −0.201566 + 0.213647i −0.00779881 + 0.00826626i
\(669\) 0 0
\(670\) 26.7111 17.5682i 1.03194 0.678718i
\(671\) −0.301053 + 0.0713508i −0.0116220 + 0.00275447i
\(672\) 0 0
\(673\) −24.6772 + 2.88436i −0.951238 + 0.111184i −0.577536 0.816365i \(-0.695986\pi\)
−0.373702 + 0.927549i \(0.621912\pi\)
\(674\) 28.3712 49.1404i 1.09282 1.89282i
\(675\) 0 0
\(676\) −7.29123 12.6288i −0.280432 0.485722i
\(677\) −21.0707 28.3029i −0.809813 1.08777i −0.994476 0.104965i \(-0.966527\pi\)
0.184663 0.982802i \(-0.440881\pi\)
\(678\) 0 0
\(679\) 1.69323 5.65577i 0.0649801 0.217049i
\(680\) 10.8356 + 5.44184i 0.415526 + 0.208685i
\(681\) 0 0
\(682\) −0.518148 1.73073i −0.0198409 0.0662732i
\(683\) 6.86569 38.9372i 0.262708 1.48989i −0.512774 0.858523i \(-0.671382\pi\)
0.775483 0.631369i \(-0.217507\pi\)
\(684\) 0 0
\(685\) 0.266493 + 1.51136i 0.0101822 + 0.0577460i
\(686\) −16.2170 + 8.14447i −0.619167 + 0.310957i
\(687\) 0 0
\(688\) 3.14208 + 7.28417i 0.119791 + 0.277706i
\(689\) 18.8011 + 43.5859i 0.716265 + 1.66049i
\(690\) 0 0
\(691\) −15.1837 + 7.62552i −0.577613 + 0.290088i −0.713522 0.700633i \(-0.752901\pi\)
0.135908 + 0.990721i \(0.456605\pi\)
\(692\) 0.465612 + 2.64062i 0.0176999 + 0.100381i
\(693\) 0 0
\(694\) 6.73702 38.2075i 0.255734 1.45034i
\(695\) 1.87913 + 6.27672i 0.0712793 + 0.238089i
\(696\) 0 0
\(697\) −12.5284 6.29198i −0.474545 0.238326i
\(698\) −10.9585 + 36.6039i −0.414785 + 1.38548i
\(699\) 0 0
\(700\) −6.08182 8.16930i −0.229871 0.308771i
\(701\) −16.3741 28.3608i −0.618442 1.07117i −0.989770 0.142672i \(-0.954431\pi\)
0.371328 0.928502i \(-0.378903\pi\)
\(702\) 0 0
\(703\) 12.2194 21.1647i 0.460865 0.798241i
\(704\) −0.207780 + 0.0242859i −0.00783099 + 0.000915311i
\(705\) 0 0
\(706\) 18.3924 4.35908i 0.692207 0.164056i
\(707\) −31.5254 + 20.7346i −1.18563 + 0.779804i
\(708\) 0 0
\(709\) −22.5220 + 23.8719i −0.845830 + 0.896527i −0.995743 0.0921719i \(-0.970619\pi\)
0.149913 + 0.988699i \(0.452101\pi\)
\(710\) 8.53698 + 7.16337i 0.320387 + 0.268837i
\(711\) 0 0
\(712\) 6.83193 5.73267i 0.256037 0.214841i
\(713\) −1.11154 + 19.0844i −0.0416275 + 0.714716i
\(714\) 0 0
\(715\) 0.887315 1.19187i 0.0331837 0.0445735i
\(716\) −2.37241 0.277294i −0.0886610 0.0103630i
\(717\) 0 0
\(718\) −35.8602 23.5856i −1.33829 0.880208i
\(719\) 15.8250 + 5.75983i 0.590173 + 0.214806i 0.619806 0.784755i \(-0.287211\pi\)
−0.0296323 + 0.999561i \(0.509434\pi\)
\(720\) 0 0
\(721\) −1.54558 + 0.562545i −0.0575604 + 0.0209503i
\(722\) −17.4729 4.14116i −0.650275 0.154118i
\(723\) 0 0
\(724\) −0.971634 16.6823i −0.0361105 0.619993i
\(725\) 13.4360 + 14.2413i 0.498999 + 0.528908i
\(726\) 0 0
\(727\) −3.32819 + 7.71562i −0.123436 + 0.286157i −0.968718 0.248163i \(-0.920173\pi\)
0.845282 + 0.534320i \(0.179432\pi\)
\(728\) −29.9802 −1.11114
\(729\) 0 0
\(730\) −38.8230 −1.43690
\(731\) 3.18917 7.39334i 0.117956 0.273452i
\(732\) 0 0
\(733\) −8.47275 8.98059i −0.312948 0.331705i 0.551739 0.834017i \(-0.313965\pi\)
−0.864687 + 0.502312i \(0.832483\pi\)
\(734\) 1.29353 + 22.2090i 0.0477449 + 0.819749i
\(735\) 0 0
\(736\) −18.9887 4.50042i −0.699934 0.165888i
\(737\) 2.58738 0.941730i 0.0953075 0.0346891i
\(738\) 0 0
\(739\) 37.3973 + 13.6115i 1.37568 + 0.500707i 0.920866 0.389879i \(-0.127483\pi\)
0.454815 + 0.890586i \(0.349705\pi\)
\(740\) −9.55183 6.28234i −0.351132 0.230943i
\(741\) 0 0
\(742\) −51.0826 5.97070i −1.87530 0.219191i
\(743\) −11.8466 + 15.9127i −0.434608 + 0.583780i −0.964433 0.264327i \(-0.914850\pi\)
0.529825 + 0.848107i \(0.322258\pi\)
\(744\) 0 0
\(745\) 0.614727 10.5545i 0.0225219 0.386685i
\(746\) 2.95869 2.48263i 0.108325 0.0908957i
\(747\) 0 0
\(748\) −0.796638 0.668459i −0.0291280 0.0244413i
\(749\) 12.2838 13.0201i 0.448840 0.475743i
\(750\) 0 0
\(751\) −32.0641 + 21.0889i −1.17004 + 0.769545i −0.977332 0.211712i \(-0.932096\pi\)
−0.192704 + 0.981257i \(0.561726\pi\)
\(752\) −10.1260 + 2.39990i −0.369257 + 0.0875155i
\(753\) 0 0
\(754\) −57.0068 + 6.66314i −2.07607 + 0.242657i
\(755\) −2.12665 + 3.68347i −0.0773969 + 0.134055i
\(756\) 0 0
\(757\) 7.07444 + 12.2533i 0.257125 + 0.445353i 0.965470 0.260513i \(-0.0838915\pi\)
−0.708346 + 0.705866i \(0.750558\pi\)
\(758\) −7.60877 10.2203i −0.276363 0.371220i
\(759\) 0 0
\(760\) −2.01292 + 6.72361i −0.0730162 + 0.243891i
\(761\) −8.47080 4.25420i −0.307066 0.154215i 0.288593 0.957452i \(-0.406813\pi\)
−0.595659 + 0.803237i \(0.703109\pi\)
\(762\) 0 0
\(763\) −15.8245 52.8576i −0.572886 1.91357i
\(764\) −2.45907 + 13.9461i −0.0889660 + 0.504551i
\(765\) 0 0
\(766\) −4.34643 24.6498i −0.157043 0.890634i
\(767\) 69.7145 35.0119i 2.51724 1.26421i
\(768\) 0 0
\(769\) −4.95943 11.4972i −0.178841 0.414601i 0.805089 0.593154i \(-0.202118\pi\)
−0.983930 + 0.178553i \(0.942858\pi\)
\(770\) 0.637661 + 1.47826i 0.0229797 + 0.0532730i
\(771\) 0 0
\(772\) −3.72394 + 1.87023i −0.134027 + 0.0673111i
\(773\) −6.23462 35.3583i −0.224244 1.27175i −0.864125 0.503277i \(-0.832128\pi\)
0.639882 0.768474i \(-0.278983\pi\)
\(774\) 0 0
\(775\) −2.73862 + 15.5315i −0.0983742 + 0.557908i
\(776\) −0.893437 2.98429i −0.0320725 0.107130i
\(777\) 0 0
\(778\) 13.1583 + 6.60833i 0.471747 + 0.236920i
\(779\) 2.32738 7.77399i 0.0833871 0.278532i
\(780\) 0 0
\(781\) 0.573143 + 0.769865i 0.0205087 + 0.0275479i
\(782\) 16.5290 + 28.6291i 0.591076 + 1.02377i
\(783\) 0 0
\(784\) 9.53150 16.5091i 0.340411 0.589609i
\(785\) −8.38532 + 0.980104i −0.299285 + 0.0349814i
\(786\) 0 0
\(787\) 38.8743 9.21338i 1.38572 0.328421i 0.530938 0.847411i \(-0.321840\pi\)
0.854781 + 0.518989i \(0.173691\pi\)
\(788\) 17.2738 11.3611i 0.615352 0.404724i
\(789\) 0 0
\(790\) 2.43296 2.57878i 0.0865607 0.0917490i
\(791\) 22.2484 + 18.6687i 0.791063 + 0.663781i
\(792\) 0 0
\(793\) −6.06508 + 5.08921i −0.215377 + 0.180723i
\(794\) −0.552935 + 9.49353i −0.0196229 + 0.336913i
\(795\) 0 0
\(796\) 1.71408 2.30240i 0.0607538 0.0816065i
\(797\) −33.8557 3.95716i −1.19923 0.140170i −0.507063 0.861909i \(-0.669269\pi\)
−0.692165 + 0.721739i \(0.743343\pi\)
\(798\) 0 0
\(799\) 8.82481 + 5.80417i 0.312199 + 0.205337i
\(800\) −15.1285 5.50634i −0.534875 0.194678i
\(801\) 0 0
\(802\) 15.3085 5.57185i 0.540563 0.196749i
\(803\) −3.25346 0.771083i −0.114812 0.0272109i
\(804\) 0 0
\(805\) −0.990519 17.0065i −0.0349112 0.599402i
\(806\) −31.7263 33.6280i −1.11751 1.18449i
\(807\) 0 0
\(808\) −7.88590 + 18.2816i −0.277425 + 0.643144i
\(809\) −7.57622 −0.266366 −0.133183 0.991091i \(-0.542520\pi\)
−0.133183 + 0.991091i \(0.542520\pi\)
\(810\) 0 0
\(811\) 20.5558 0.721810 0.360905 0.932602i \(-0.382468\pi\)
0.360905 + 0.932602i \(0.382468\pi\)
\(812\) 8.19879 19.0069i 0.287721 0.667012i
\(813\) 0 0
\(814\) −2.02989 2.15156i −0.0711475 0.0754120i
\(815\) 0.0137632 + 0.236306i 0.000482106 + 0.00827743i
\(816\) 0 0
\(817\) 4.53499 + 1.07481i 0.158659 + 0.0376030i
\(818\) 25.0916 9.13260i 0.877308 0.319314i
\(819\) 0 0
\(820\) −3.56726 1.29838i −0.124574 0.0453412i
\(821\) −25.4615 16.7463i −0.888613 0.584450i 0.0210583 0.999778i \(-0.493296\pi\)
−0.909672 + 0.415328i \(0.863667\pi\)
\(822\) 0 0
\(823\) 22.1674 + 2.59100i 0.772707 + 0.0903165i 0.493304 0.869857i \(-0.335789\pi\)
0.279404 + 0.960174i \(0.409863\pi\)
\(824\) −0.518255 + 0.696138i −0.0180543 + 0.0242511i
\(825\) 0 0
\(826\) −4.91467 + 84.3816i −0.171003 + 2.93601i
\(827\) 27.2509 22.8662i 0.947606 0.795136i −0.0312864 0.999510i \(-0.509960\pi\)
0.978893 + 0.204374i \(0.0655159\pi\)
\(828\) 0 0
\(829\) −13.4520 11.2875i −0.467206 0.392032i 0.378568 0.925573i \(-0.376416\pi\)
−0.845774 + 0.533541i \(0.820861\pi\)
\(830\) −23.3182 + 24.7159i −0.809387 + 0.857900i
\(831\) 0 0
\(832\) −4.47263 + 2.94169i −0.155060 + 0.101985i
\(833\) −18.8272 + 4.46212i −0.652323 + 0.154603i
\(834\) 0 0
\(835\) −0.402577 + 0.0470545i −0.0139317 + 0.00162839i
\(836\) 0.300972 0.521298i 0.0104093 0.0180295i
\(837\) 0 0
\(838\) 21.3875 + 37.0443i 0.738820 + 1.27967i
\(839\) 22.8900 + 30.7466i 0.790251 + 1.06149i 0.996549 + 0.0830022i \(0.0264509\pi\)
−0.206298 + 0.978489i \(0.566142\pi\)
\(840\) 0 0
\(841\) −3.09569 + 10.3403i −0.106748 + 0.356563i
\(842\) −0.287474 0.144375i −0.00990701 0.00497549i
\(843\) 0 0
\(844\) 3.03776 + 10.1468i 0.104564 + 0.349268i
\(845\) 3.49427 19.8170i 0.120206 0.681725i
\(846\) 0 0
\(847\) −6.25691 35.4847i −0.214990 1.21927i
\(848\) −40.3621 + 20.2706i −1.38604 + 0.696095i
\(849\) 0 0
\(850\) 10.8021 + 25.0420i 0.370508 + 0.858934i
\(851\) 12.3972 + 28.7398i 0.424969 + 0.985189i
\(852\) 0 0
\(853\) 7.50175 3.76752i 0.256855 0.128997i −0.315713 0.948855i \(-0.602244\pi\)
0.572568 + 0.819857i \(0.305947\pi\)
\(854\) −1.48961 8.44799i −0.0509733 0.289084i
\(855\) 0 0
\(856\) 1.64011 9.30155i 0.0560580 0.317920i
\(857\) 13.8014 + 46.0999i 0.471447 + 1.57474i 0.781424 + 0.624000i \(0.214493\pi\)
−0.309977 + 0.950744i \(0.600321\pi\)
\(858\) 0 0
\(859\) 45.6471 + 22.9248i 1.55746 + 0.782185i 0.998882 0.0472690i \(-0.0150518\pi\)
0.558575 + 0.829454i \(0.311348\pi\)
\(860\) 0.625307 2.08867i 0.0213228 0.0712231i
\(861\) 0 0
\(862\) 15.0463 + 20.2107i 0.512478 + 0.688378i
\(863\) 18.3885 + 31.8499i 0.625953 + 1.08418i 0.988356 + 0.152161i \(0.0486232\pi\)
−0.362403 + 0.932022i \(0.618043\pi\)
\(864\) 0 0
\(865\) −1.85003 + 3.20435i −0.0629031 + 0.108951i
\(866\) 59.5361 6.95877i 2.02312 0.236469i
\(867\) 0 0
\(868\) 16.2244 3.84526i 0.550693 0.130517i
\(869\) 0.255106 0.167786i 0.00865388 0.00569175i
\(870\) 0 0
\(871\) 48.3532 51.2514i 1.63839 1.73659i
\(872\) −22.3023 18.7138i −0.755250 0.633730i
\(873\) 0 0
\(874\) −14.6581 + 12.2996i −0.495819 + 0.416042i
\(875\) 2.13359 36.6323i 0.0721285 1.23840i
\(876\) 0 0
\(877\) −2.42437 + 3.25649i −0.0818651 + 0.109964i −0.841169 0.540772i \(-0.818132\pi\)
0.759304 + 0.650736i \(0.225540\pi\)
\(878\) 3.38068 + 0.395144i 0.114092 + 0.0133355i
\(879\) 0 0
\(880\) 1.18125 + 0.776921i 0.0398200 + 0.0261900i
\(881\) −38.2223 13.9118i −1.28774 0.468700i −0.394758 0.918785i \(-0.629171\pi\)
−0.892986 + 0.450085i \(0.851394\pi\)
\(882\) 0 0
\(883\) −24.6043 + 8.95523i −0.828000 + 0.301367i −0.721038 0.692896i \(-0.756335\pi\)
−0.106962 + 0.994263i \(0.534112\pi\)
\(884\) −25.8948 6.13719i −0.870938 0.206416i
\(885\) 0 0
\(886\) 3.20232 + 54.9817i 0.107584 + 1.84715i
\(887\) 14.9184 + 15.8126i 0.500910 + 0.530933i 0.927655 0.373438i \(-0.121821\pi\)
−0.426745 + 0.904372i \(0.640340\pi\)
\(888\) 0 0
\(889\) −9.08810 + 21.0686i −0.304805 + 0.706618i
\(890\) −12.2556 −0.410809
\(891\) 0 0
\(892\) −23.6257 −0.791048
\(893\) −2.42157 + 5.61382i −0.0810346 + 0.187859i
\(894\) 0 0
\(895\) −2.26187 2.39744i −0.0756060 0.0801377i
\(896\) −2.32075 39.8458i −0.0775310 1.33116i
\(897\) 0 0
\(898\) 50.1850 + 11.8941i 1.67470 + 0.396910i
\(899\) −30.1211 + 10.9632i −1.00459 + 0.365642i
\(900\) 0 0
\(901\) 43.0785 + 15.6793i 1.43515 + 0.522353i
\(902\) −0.820611 0.539724i −0.0273234 0.0179709i
\(903\) 0 0
\(904\) 15.2212 + 1.77910i 0.506248 + 0.0591719i
\(905\) 13.7701 18.4964i 0.457733 0.614842i
\(906\) 0 0
\(907\) 3.06495 52.6232i 0.101770 1.74733i −0.432160 0.901797i \(-0.642248\pi\)
0.533930 0.845529i \(-0.320714\pi\)
\(908\) −0.350892 + 0.294434i −0.0116448 + 0.00977113i
\(909\) 0 0
\(910\) 31.5598 + 26.4818i 1.04620 + 0.877864i
\(911\) 29.5444 31.3152i 0.978850 1.03752i −0.0204380 0.999791i \(-0.506506\pi\)
0.999288 0.0377293i \(-0.0120125\pi\)
\(912\) 0 0
\(913\) −2.44501 + 1.60811i −0.0809182 + 0.0532207i
\(914\) 21.4749 5.08964i 0.710325 0.168350i
\(915\) 0 0
\(916\) −15.8520 + 1.85283i −0.523764 + 0.0612192i
\(917\) 9.27238 16.0602i 0.306201 0.530356i
\(918\) 0 0
\(919\) −25.2136 43.6712i −0.831719 1.44058i −0.896674 0.442691i \(-0.854024\pi\)
0.0649552 0.997888i \(-0.479310\pi\)
\(920\) −5.36772 7.21010i −0.176968 0.237710i
\(921\) 0 0
\(922\) 10.2634 34.2823i 0.338008 1.12903i
\(923\) 21.9485 + 11.0230i 0.722445 + 0.362826i
\(924\) 0 0
\(925\) 7.40579 + 24.7370i 0.243501 + 0.813349i
\(926\) −5.00610 + 28.3910i −0.164511 + 0.932987i
\(927\) 0 0
\(928\) −5.68204 32.2245i −0.186522 1.05782i
\(929\) 14.2000 7.13149i 0.465886 0.233977i −0.200340 0.979726i \(-0.564205\pi\)
0.666226 + 0.745750i \(0.267909\pi\)
\(930\) 0 0
\(931\) −4.43591 10.2836i −0.145381 0.337032i
\(932\) −3.14152 7.28285i −0.102904 0.238558i
\(933\) 0 0
\(934\) 45.3283 22.7647i 1.48319 0.744885i
\(935\) −0.249191 1.41323i −0.00814943 0.0462177i
\(936\) 0 0
\(937\) 3.98093 22.5770i 0.130051 0.737557i −0.848128 0.529792i \(-0.822270\pi\)
0.978179 0.207765i \(-0.0666189\pi\)
\(938\) 21.8953 + 73.1355i 0.714907 + 2.38796i
\(939\) 0 0
\(940\) 2.55586 + 1.28360i 0.0833631 + 0.0418665i
\(941\) 4.05531 13.5457i 0.132199 0.441576i −0.866100 0.499870i \(-0.833381\pi\)
0.998299 + 0.0582943i \(0.0185662\pi\)
\(942\) 0 0
\(943\) 6.20628 + 8.33648i 0.202104 + 0.271473i
\(944\) 37.1148 + 64.2848i 1.20799 + 2.09229i
\(945\) 0 0
\(946\) 0.282051 0.488527i 0.00917027 0.0158834i
\(947\) −56.7038 + 6.62773i −1.84263 + 0.215372i −0.964687 0.263399i \(-0.915156\pi\)
−0.877940 + 0.478771i \(0.841082\pi\)
\(948\) 0 0
\(949\) −83.2565 + 19.7322i −2.70262 + 0.640533i
\(950\) −13.1890 + 8.67456i −0.427909 + 0.281440i
\(951\) 0 0
\(952\) −19.8695 + 21.0604i −0.643973 + 0.682572i
\(953\) 13.5816 + 11.3963i 0.439951 + 0.369163i 0.835691 0.549200i \(-0.185067\pi\)
−0.395740 + 0.918363i \(0.629512\pi\)
\(954\) 0 0
\(955\) −14.9696 + 12.5610i −0.484405 + 0.406464i
\(956\) −1.23112 + 21.1374i −0.0398171 + 0.683634i
\(957\) 0 0
\(958\) −23.1211 + 31.0570i −0.747009 + 1.00341i
\(959\) −3.63986 0.425438i −0.117537 0.0137381i
\(960\) 0 0
\(961\) 4.32792 + 2.84652i 0.139610 + 0.0918231i
\(962\) −71.1302 25.8893i −2.29333 0.834704i
\(963\) 0 0
\(964\) 16.9447 6.16735i 0.545751 0.198637i
\(965\) −5.59541 1.32614i −0.180122 0.0426898i
\(966\) 0 0
\(967\) 1.28606 + 22.0808i 0.0413568 + 0.710070i 0.953722 + 0.300691i \(0.0972174\pi\)
−0.912365 + 0.409378i \(0.865746\pi\)
\(968\) −13.0471 13.8292i −0.419351 0.444486i
\(969\) 0 0
\(970\) −1.69554 + 3.93070i −0.0544405 + 0.126207i
\(971\) 5.09901 0.163635 0.0818176 0.996647i \(-0.473928\pi\)
0.0818176 + 0.996647i \(0.473928\pi\)
\(972\) 0 0
\(973\) −15.6454 −0.501569
\(974\) 2.56442 5.94500i 0.0821694 0.190490i
\(975\) 0 0
\(976\) −5.16980 5.47966i −0.165481 0.175400i
\(977\) 1.35086 + 23.1934i 0.0432178 + 0.742022i 0.948415 + 0.317030i \(0.102686\pi\)
−0.905198 + 0.424991i \(0.860277\pi\)
\(978\) 0 0
\(979\) −1.02705 0.243415i −0.0328246 0.00777958i
\(980\) −4.92325 + 1.79191i −0.157267 + 0.0572406i
\(981\) 0 0
\(982\) −1.96332 0.714592i −0.0626522 0.0228035i
\(983\) −14.0814 9.26149i −0.449127 0.295396i 0.304724 0.952441i \(-0.401436\pi\)
−0.753851 + 0.657045i \(0.771806\pi\)
\(984\) 0 0
\(985\) 28.3371 + 3.31214i 0.902896 + 0.105533i
\(986\) −33.1007 + 44.4620i −1.05414 + 1.41596i
\(987\) 0 0
\(988\) 0.895653 15.3778i 0.0284945 0.489232i
\(989\) −4.57252 + 3.83680i −0.145398 + 0.122003i
\(990\) 0 0
\(991\) −0.316451 0.265534i −0.0100524 0.00843496i 0.637748 0.770245i \(-0.279866\pi\)
−0.647800 + 0.761810i \(0.724311\pi\)
\(992\) 18.0876 19.1717i 0.574282 0.608703i
\(993\) 0 0
\(994\) −22.2334 + 14.6231i −0.705200 + 0.463818i
\(995\) 3.85415 0.913450i 0.122185 0.0289583i
\(996\) 0 0
\(997\) −5.80233 + 0.678195i −0.183762 + 0.0214787i −0.207476 0.978240i \(-0.566525\pi\)
0.0237143 + 0.999719i \(0.492451\pi\)
\(998\) −2.88970 + 5.00511i −0.0914719 + 0.158434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.181.7 144
3.2 odd 2 81.2.g.a.34.2 yes 144
9.2 odd 6 729.2.g.c.298.7 144
9.4 even 3 729.2.g.a.541.7 144
9.5 odd 6 729.2.g.d.541.2 144
9.7 even 3 729.2.g.b.298.2 144
81.4 even 27 729.2.g.a.190.7 144
81.23 odd 54 729.2.g.c.433.7 144
81.29 odd 54 6561.2.a.c.1.17 72
81.31 even 27 inner 243.2.g.a.145.7 144
81.50 odd 54 81.2.g.a.31.2 144
81.52 even 27 6561.2.a.d.1.56 72
81.58 even 27 729.2.g.b.433.2 144
81.77 odd 54 729.2.g.d.190.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.31.2 144 81.50 odd 54
81.2.g.a.34.2 yes 144 3.2 odd 2
243.2.g.a.145.7 144 81.31 even 27 inner
243.2.g.a.181.7 144 1.1 even 1 trivial
729.2.g.a.190.7 144 81.4 even 27
729.2.g.a.541.7 144 9.4 even 3
729.2.g.b.298.2 144 9.7 even 3
729.2.g.b.433.2 144 81.58 even 27
729.2.g.c.298.7 144 9.2 odd 6
729.2.g.c.433.7 144 81.23 odd 54
729.2.g.d.190.2 144 81.77 odd 54
729.2.g.d.541.2 144 9.5 odd 6
6561.2.a.c.1.17 72 81.29 odd 54
6561.2.a.d.1.56 72 81.52 even 27