Properties

Label 243.2.g.a.118.5
Level $243$
Weight $2$
Character 243.118
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 118.5
Character \(\chi\) \(=\) 243.118
Dual form 243.2.g.a.208.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.643544 - 0.152523i) q^{2} +(-1.39638 + 0.701288i) q^{4} +(1.50096 + 2.01613i) q^{5} +(-3.43556 + 2.25960i) q^{7} +(-1.80495 + 1.51453i) q^{8} +(1.27344 + 1.06854i) q^{10} +(2.94058 + 0.343704i) q^{11} +(0.930150 + 3.10692i) q^{13} +(-1.86629 + 1.97816i) q^{14} +(0.935660 - 1.25681i) q^{16} +(0.572741 - 3.24818i) q^{17} +(-0.571121 - 3.23899i) q^{19} +(-3.50979 - 1.76268i) q^{20} +(1.94481 - 0.227316i) q^{22} +(2.08548 + 1.37164i) q^{23} +(-0.377908 + 1.26230i) q^{25} +(1.07247 + 1.85757i) q^{26} +(3.21271 - 5.56458i) q^{28} +(3.82031 + 4.04929i) q^{29} +(-0.373446 + 6.41181i) q^{31} +(2.27693 - 5.27851i) q^{32} +(-0.126837 - 2.17770i) q^{34} +(-9.71228 - 3.53498i) q^{35} +(-2.56937 + 0.935175i) q^{37} +(-0.861562 - 1.99733i) q^{38} +(-5.76265 - 1.36577i) q^{40} +(8.80462 + 2.08673i) q^{41} +(-3.09638 - 7.17822i) q^{43} +(-4.34719 + 1.58225i) q^{44} +(1.55131 + 0.564629i) q^{46} +(-0.588422 - 10.1028i) q^{47} +(3.92470 - 9.09847i) q^{49} +(-0.0506710 + 0.869987i) q^{50} +(-3.47769 - 3.68613i) q^{52} +(-0.00494432 + 0.00856381i) q^{53} +(3.72072 + 6.44448i) q^{55} +(2.77877 - 9.28173i) q^{56} +(3.07615 + 2.02322i) q^{58} +(-11.2961 + 1.32033i) q^{59} +(8.05332 + 4.04453i) q^{61} +(0.737619 + 4.18325i) q^{62} +(0.116049 - 0.658144i) q^{64} +(-4.86785 + 6.53865i) q^{65} +(-4.01126 + 4.25169i) q^{67} +(1.47814 + 4.93734i) q^{68} +(-6.78945 - 0.793572i) q^{70} +(1.81817 + 1.52563i) q^{71} +(3.61987 - 3.03743i) q^{73} +(-1.51087 + 0.993715i) q^{74} +(3.06897 + 4.12234i) q^{76} +(-10.8792 + 5.46372i) q^{77} +(8.75936 - 2.07601i) q^{79} +3.93828 q^{80} +5.98444 q^{82} +(3.60157 - 0.853588i) q^{83} +(7.40842 - 3.72065i) q^{85} +(-3.08750 - 4.14723i) q^{86} +(-5.82815 + 3.83323i) q^{88} +(9.57258 - 8.03235i) q^{89} +(-10.2160 - 8.57223i) q^{91} +(-3.87404 - 0.452810i) q^{92} +(-1.91958 - 6.41186i) q^{94} +(5.67301 - 6.01304i) q^{95} +(-4.27084 + 5.73673i) q^{97} +(1.13799 - 6.45388i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.643544 0.152523i 0.455055 0.107850i 0.00330473 0.999995i \(-0.498948\pi\)
0.451750 + 0.892145i \(0.350800\pi\)
\(3\) 0 0
\(4\) −1.39638 + 0.701288i −0.698189 + 0.350644i
\(5\) 1.50096 + 2.01613i 0.671248 + 0.901642i 0.999071 0.0430971i \(-0.0137225\pi\)
−0.327823 + 0.944739i \(0.606315\pi\)
\(6\) 0 0
\(7\) −3.43556 + 2.25960i −1.29852 + 0.854049i −0.995106 0.0988101i \(-0.968496\pi\)
−0.303412 + 0.952859i \(0.598126\pi\)
\(8\) −1.80495 + 1.51453i −0.638146 + 0.535468i
\(9\) 0 0
\(10\) 1.27344 + 1.06854i 0.402696 + 0.337902i
\(11\) 2.94058 + 0.343704i 0.886617 + 0.103631i 0.547197 0.837004i \(-0.315695\pi\)
0.339421 + 0.940635i \(0.389769\pi\)
\(12\) 0 0
\(13\) 0.930150 + 3.10692i 0.257977 + 0.861704i 0.984623 + 0.174692i \(0.0558930\pi\)
−0.726646 + 0.687012i \(0.758922\pi\)
\(14\) −1.86629 + 1.97816i −0.498788 + 0.528684i
\(15\) 0 0
\(16\) 0.935660 1.25681i 0.233915 0.314202i
\(17\) 0.572741 3.24818i 0.138910 0.787799i −0.833146 0.553052i \(-0.813463\pi\)
0.972057 0.234746i \(-0.0754260\pi\)
\(18\) 0 0
\(19\) −0.571121 3.23899i −0.131024 0.743075i −0.977546 0.210722i \(-0.932419\pi\)
0.846522 0.532354i \(-0.178692\pi\)
\(20\) −3.50979 1.76268i −0.784813 0.394148i
\(21\) 0 0
\(22\) 1.94481 0.227316i 0.414636 0.0484640i
\(23\) 2.08548 + 1.37164i 0.434853 + 0.286007i 0.748002 0.663697i \(-0.231014\pi\)
−0.313149 + 0.949704i \(0.601384\pi\)
\(24\) 0 0
\(25\) −0.377908 + 1.26230i −0.0755816 + 0.252460i
\(26\) 1.07247 + 1.85757i 0.210329 + 0.364300i
\(27\) 0 0
\(28\) 3.21271 5.56458i 0.607145 1.05161i
\(29\) 3.82031 + 4.04929i 0.709414 + 0.751935i 0.977379 0.211494i \(-0.0678327\pi\)
−0.267965 + 0.963429i \(0.586351\pi\)
\(30\) 0 0
\(31\) −0.373446 + 6.41181i −0.0670728 + 1.15160i 0.781986 + 0.623297i \(0.214207\pi\)
−0.849058 + 0.528299i \(0.822830\pi\)
\(32\) 2.27693 5.27851i 0.402508 0.933118i
\(33\) 0 0
\(34\) −0.126837 2.17770i −0.0217523 0.373473i
\(35\) −9.71228 3.53498i −1.64167 0.597521i
\(36\) 0 0
\(37\) −2.56937 + 0.935175i −0.422402 + 0.153742i −0.544471 0.838780i \(-0.683269\pi\)
0.122069 + 0.992522i \(0.461047\pi\)
\(38\) −0.861562 1.99733i −0.139764 0.324009i
\(39\) 0 0
\(40\) −5.76265 1.36577i −0.911155 0.215948i
\(41\) 8.80462 + 2.08673i 1.37505 + 0.325893i 0.850719 0.525621i \(-0.176167\pi\)
0.524332 + 0.851514i \(0.324315\pi\)
\(42\) 0 0
\(43\) −3.09638 7.17822i −0.472194 1.09467i −0.973353 0.229313i \(-0.926352\pi\)
0.501159 0.865355i \(-0.332907\pi\)
\(44\) −4.34719 + 1.58225i −0.655364 + 0.238533i
\(45\) 0 0
\(46\) 1.55131 + 0.564629i 0.228728 + 0.0832500i
\(47\) −0.588422 10.1028i −0.0858301 1.47365i −0.716496 0.697591i \(-0.754255\pi\)
0.630666 0.776055i \(-0.282782\pi\)
\(48\) 0 0
\(49\) 3.92470 9.09847i 0.560671 1.29978i
\(50\) −0.0506710 + 0.869987i −0.00716596 + 0.123035i
\(51\) 0 0
\(52\) −3.47769 3.68613i −0.482268 0.511175i
\(53\) −0.00494432 + 0.00856381i −0.000679154 + 0.00117633i −0.866365 0.499412i \(-0.833550\pi\)
0.865686 + 0.500588i \(0.166883\pi\)
\(54\) 0 0
\(55\) 3.72072 + 6.44448i 0.501702 + 0.868973i
\(56\) 2.77877 9.28173i 0.371329 1.24032i
\(57\) 0 0
\(58\) 3.07615 + 2.02322i 0.403918 + 0.265661i
\(59\) −11.2961 + 1.32033i −1.47063 + 0.171892i −0.813359 0.581762i \(-0.802364\pi\)
−0.657272 + 0.753654i \(0.728290\pi\)
\(60\) 0 0
\(61\) 8.05332 + 4.04453i 1.03112 + 0.517849i 0.882138 0.470990i \(-0.156103\pi\)
0.148984 + 0.988840i \(0.452400\pi\)
\(62\) 0.737619 + 4.18325i 0.0936777 + 0.531273i
\(63\) 0 0
\(64\) 0.116049 0.658144i 0.0145061 0.0822680i
\(65\) −4.86785 + 6.53865i −0.603782 + 0.811020i
\(66\) 0 0
\(67\) −4.01126 + 4.25169i −0.490054 + 0.519427i −0.924454 0.381293i \(-0.875479\pi\)
0.434400 + 0.900720i \(0.356960\pi\)
\(68\) 1.47814 + 4.93734i 0.179251 + 0.598741i
\(69\) 0 0
\(70\) −6.78945 0.793572i −0.811494 0.0948500i
\(71\) 1.81817 + 1.52563i 0.215777 + 0.181058i 0.744269 0.667880i \(-0.232798\pi\)
−0.528492 + 0.848938i \(0.677242\pi\)
\(72\) 0 0
\(73\) 3.61987 3.03743i 0.423674 0.355505i −0.405885 0.913924i \(-0.633037\pi\)
0.829559 + 0.558420i \(0.188592\pi\)
\(74\) −1.51087 + 0.993715i −0.175635 + 0.115517i
\(75\) 0 0
\(76\) 3.06897 + 4.12234i 0.352035 + 0.472865i
\(77\) −10.8792 + 5.46372i −1.23979 + 0.622648i
\(78\) 0 0
\(79\) 8.75936 2.07601i 0.985505 0.233569i 0.293893 0.955838i \(-0.405049\pi\)
0.691612 + 0.722269i \(0.256901\pi\)
\(80\) 3.93828 0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) 3.60157 0.853588i 0.395324 0.0936935i −0.0281457 0.999604i \(-0.508960\pi\)
0.423469 + 0.905910i \(0.360812\pi\)
\(84\) 0 0
\(85\) 7.40842 3.72065i 0.803555 0.403561i
\(86\) −3.08750 4.14723i −0.332934 0.447208i
\(87\) 0 0
\(88\) −5.82815 + 3.83323i −0.621282 + 0.408624i
\(89\) 9.57258 8.03235i 1.01469 0.851427i 0.0257399 0.999669i \(-0.491806\pi\)
0.988951 + 0.148242i \(0.0473614\pi\)
\(90\) 0 0
\(91\) −10.2160 8.57223i −1.07093 0.898614i
\(92\) −3.87404 0.452810i −0.403896 0.0472087i
\(93\) 0 0
\(94\) −1.91958 6.41186i −0.197990 0.661333i
\(95\) 5.67301 6.01304i 0.582038 0.616924i
\(96\) 0 0
\(97\) −4.27084 + 5.73673i −0.433638 + 0.582477i −0.964202 0.265168i \(-0.914573\pi\)
0.530565 + 0.847645i \(0.321980\pi\)
\(98\) 1.13799 6.45388i 0.114955 0.651940i
\(99\) 0 0
\(100\) −0.357534 2.02767i −0.0357534 0.202767i
\(101\) 1.88208 + 0.945217i 0.187274 + 0.0940526i 0.539966 0.841687i \(-0.318437\pi\)
−0.352692 + 0.935740i \(0.614733\pi\)
\(102\) 0 0
\(103\) 2.05137 0.239771i 0.202128 0.0236254i −0.0144264 0.999896i \(-0.504592\pi\)
0.216554 + 0.976271i \(0.430518\pi\)
\(104\) −6.38441 4.19909i −0.626042 0.411755i
\(105\) 0 0
\(106\) −0.00187571 + 0.00626531i −0.000182185 + 0.000608541i
\(107\) 7.13179 + 12.3526i 0.689456 + 1.19417i 0.972014 + 0.234923i \(0.0754838\pi\)
−0.282558 + 0.959250i \(0.591183\pi\)
\(108\) 0 0
\(109\) −6.70237 + 11.6088i −0.641970 + 1.11193i 0.343022 + 0.939327i \(0.388549\pi\)
−0.984992 + 0.172598i \(0.944784\pi\)
\(110\) 3.37738 + 3.57981i 0.322020 + 0.341322i
\(111\) 0 0
\(112\) −0.374625 + 6.43206i −0.0353987 + 0.607773i
\(113\) 1.17253 2.71823i 0.110302 0.255709i −0.854120 0.520076i \(-0.825904\pi\)
0.964422 + 0.264367i \(0.0851629\pi\)
\(114\) 0 0
\(115\) 0.364800 + 6.26337i 0.0340178 + 0.584063i
\(116\) −8.17432 2.97521i −0.758967 0.276241i
\(117\) 0 0
\(118\) −7.06818 + 2.57261i −0.650679 + 0.236828i
\(119\) 5.37190 + 12.4535i 0.492441 + 1.14161i
\(120\) 0 0
\(121\) −2.17464 0.515398i −0.197694 0.0468544i
\(122\) 5.79956 + 1.37452i 0.525067 + 0.124443i
\(123\) 0 0
\(124\) −3.97506 9.21521i −0.356971 0.827551i
\(125\) 8.69737 3.16558i 0.777917 0.283139i
\(126\) 0 0
\(127\) −11.3063 4.11514i −1.00327 0.365160i −0.212425 0.977177i \(-0.568136\pi\)
−0.790844 + 0.612017i \(0.790358\pi\)
\(128\) 0.642810 + 11.0366i 0.0568170 + 0.975509i
\(129\) 0 0
\(130\) −2.13538 + 4.95037i −0.187285 + 0.434176i
\(131\) −0.298647 + 5.12757i −0.0260929 + 0.447998i 0.959807 + 0.280661i \(0.0905537\pi\)
−0.985900 + 0.167337i \(0.946483\pi\)
\(132\) 0 0
\(133\) 9.28095 + 9.83723i 0.804760 + 0.852996i
\(134\) −1.93295 + 3.34796i −0.166981 + 0.289220i
\(135\) 0 0
\(136\) 3.88570 + 6.73023i 0.333196 + 0.577113i
\(137\) 0.545226 1.82118i 0.0465818 0.155594i −0.931534 0.363653i \(-0.881529\pi\)
0.978116 + 0.208059i \(0.0667146\pi\)
\(138\) 0 0
\(139\) −7.81835 5.14221i −0.663144 0.436156i 0.172811 0.984955i \(-0.444715\pi\)
−0.835955 + 0.548799i \(0.815085\pi\)
\(140\) 16.0411 1.87493i 1.35572 0.158461i
\(141\) 0 0
\(142\) 1.40277 + 0.704496i 0.117718 + 0.0591200i
\(143\) 1.66732 + 9.45583i 0.139428 + 0.790736i
\(144\) 0 0
\(145\) −2.42980 + 13.7801i −0.201784 + 1.14437i
\(146\) 1.86627 2.50684i 0.154454 0.207467i
\(147\) 0 0
\(148\) 2.93199 3.10773i 0.241008 0.255454i
\(149\) −0.254865 0.851310i −0.0208794 0.0697420i 0.946915 0.321484i \(-0.104182\pi\)
−0.967794 + 0.251742i \(0.918997\pi\)
\(150\) 0 0
\(151\) 8.00406 + 0.935541i 0.651362 + 0.0761332i 0.435355 0.900259i \(-0.356623\pi\)
0.216006 + 0.976392i \(0.430697\pi\)
\(152\) 5.93640 + 4.98123i 0.481506 + 0.404031i
\(153\) 0 0
\(154\) −6.16788 + 5.17546i −0.497022 + 0.417051i
\(155\) −13.4876 + 8.87093i −1.08335 + 0.712530i
\(156\) 0 0
\(157\) −8.64121 11.6072i −0.689643 0.926352i 0.310060 0.950717i \(-0.399651\pi\)
−0.999703 + 0.0243652i \(0.992244\pi\)
\(158\) 5.32040 2.67201i 0.423268 0.212573i
\(159\) 0 0
\(160\) 14.0598 3.33222i 1.11152 0.263435i
\(161\) −10.2641 −0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) −13.7580 + 3.26070i −1.07432 + 0.254618i
\(165\) 0 0
\(166\) 2.18758 1.09864i 0.169789 0.0852713i
\(167\) −10.0814 13.5417i −0.780126 1.04789i −0.997420 0.0717845i \(-0.977131\pi\)
0.217295 0.976106i \(-0.430277\pi\)
\(168\) 0 0
\(169\) 2.07358 1.36381i 0.159506 0.104909i
\(170\) 4.20016 3.52435i 0.322138 0.270306i
\(171\) 0 0
\(172\) 9.35772 + 7.85206i 0.713520 + 0.598714i
\(173\) 6.67771 + 0.780512i 0.507697 + 0.0593412i 0.366086 0.930581i \(-0.380698\pi\)
0.141611 + 0.989922i \(0.454772\pi\)
\(174\) 0 0
\(175\) −1.55397 5.19063i −0.117469 0.392375i
\(176\) 3.18335 3.37415i 0.239954 0.254336i
\(177\) 0 0
\(178\) 4.93526 6.62921i 0.369914 0.496880i
\(179\) 2.64043 14.9746i 0.197355 1.11926i −0.711669 0.702515i \(-0.752060\pi\)
0.909024 0.416743i \(-0.136828\pi\)
\(180\) 0 0
\(181\) −0.973297 5.51984i −0.0723446 0.410287i −0.999377 0.0353044i \(-0.988760\pi\)
0.927032 0.374982i \(-0.122351\pi\)
\(182\) −7.88190 3.95844i −0.584245 0.293419i
\(183\) 0 0
\(184\) −5.84158 + 0.682783i −0.430647 + 0.0503354i
\(185\) −5.74195 3.77654i −0.422157 0.277657i
\(186\) 0 0
\(187\) 2.80060 9.35466i 0.204800 0.684081i
\(188\) 7.90664 + 13.6947i 0.576651 + 0.998788i
\(189\) 0 0
\(190\) 2.73371 4.73492i 0.198324 0.343507i
\(191\) −2.94787 3.12456i −0.213300 0.226085i 0.611886 0.790946i \(-0.290411\pi\)
−0.825186 + 0.564861i \(0.808930\pi\)
\(192\) 0 0
\(193\) −0.164764 + 2.82888i −0.0118600 + 0.203628i 0.987173 + 0.159655i \(0.0510383\pi\)
−0.999033 + 0.0439721i \(0.985999\pi\)
\(194\) −1.87349 + 4.34324i −0.134509 + 0.311826i
\(195\) 0 0
\(196\) 0.900283 + 15.4573i 0.0643059 + 1.10409i
\(197\) −19.9667 7.26729i −1.42257 0.517773i −0.487777 0.872968i \(-0.662192\pi\)
−0.934792 + 0.355195i \(0.884414\pi\)
\(198\) 0 0
\(199\) −9.14529 + 3.32862i −0.648293 + 0.235959i −0.645174 0.764036i \(-0.723215\pi\)
−0.00311899 + 0.999995i \(0.500993\pi\)
\(200\) −1.22969 2.85075i −0.0869523 0.201578i
\(201\) 0 0
\(202\) 1.35537 + 0.321229i 0.0953636 + 0.0226016i
\(203\) −22.2747 5.27920i −1.56338 0.370527i
\(204\) 0 0
\(205\) 9.00821 + 20.8834i 0.629161 + 1.45856i
\(206\) 1.28358 0.467185i 0.0894313 0.0325503i
\(207\) 0 0
\(208\) 4.77511 + 1.73800i 0.331094 + 0.120508i
\(209\) −0.566172 9.72080i −0.0391629 0.672402i
\(210\) 0 0
\(211\) 7.75452 17.9770i 0.533843 1.23759i −0.411470 0.911423i \(-0.634984\pi\)
0.945313 0.326164i \(-0.105756\pi\)
\(212\) 0.000898445 0.0154257i 6.17055e−5 0.00105944i
\(213\) 0 0
\(214\) 6.47368 + 6.86170i 0.442532 + 0.469056i
\(215\) 9.82471 17.0169i 0.670040 1.16054i
\(216\) 0 0
\(217\) −13.2052 22.8720i −0.896424 1.55265i
\(218\) −2.54266 + 8.49307i −0.172211 + 0.575223i
\(219\) 0 0
\(220\) −9.71497 6.38964i −0.654983 0.430789i
\(221\) 10.6246 1.24183i 0.714685 0.0835347i
\(222\) 0 0
\(223\) −14.4467 7.25542i −0.967424 0.485859i −0.106345 0.994329i \(-0.533915\pi\)
−0.861079 + 0.508471i \(0.830211\pi\)
\(224\) 4.10482 + 23.2796i 0.274265 + 1.55543i
\(225\) 0 0
\(226\) 0.339982 1.92814i 0.0226153 0.128258i
\(227\) −12.6779 + 17.0294i −0.841463 + 1.13028i 0.148494 + 0.988913i \(0.452557\pi\)
−0.989957 + 0.141368i \(0.954850\pi\)
\(228\) 0 0
\(229\) 5.92191 6.27686i 0.391331 0.414787i −0.501515 0.865149i \(-0.667224\pi\)
0.892846 + 0.450362i \(0.148705\pi\)
\(230\) 1.19007 + 3.97512i 0.0784711 + 0.262112i
\(231\) 0 0
\(232\) −13.0283 1.52279i −0.855347 0.0999758i
\(233\) 11.4634 + 9.61890i 0.750989 + 0.630155i 0.935764 0.352626i \(-0.114711\pi\)
−0.184775 + 0.982781i \(0.559156\pi\)
\(234\) 0 0
\(235\) 19.4854 16.3502i 1.27109 1.06657i
\(236\) 14.8477 9.76552i 0.966506 0.635681i
\(237\) 0 0
\(238\) 5.35650 + 7.19502i 0.347210 + 0.466384i
\(239\) 3.22647 1.62040i 0.208703 0.104815i −0.341377 0.939926i \(-0.610893\pi\)
0.550080 + 0.835112i \(0.314597\pi\)
\(240\) 0 0
\(241\) −22.2744 + 5.27912i −1.43482 + 0.340058i −0.873210 0.487345i \(-0.837966\pi\)
−0.561609 + 0.827403i \(0.689817\pi\)
\(242\) −1.47808 −0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) 24.2345 5.74369i 1.54829 0.366951i
\(246\) 0 0
\(247\) 9.53205 4.78718i 0.606510 0.304601i
\(248\) −9.03685 12.1386i −0.573841 0.770802i
\(249\) 0 0
\(250\) 5.11432 3.36374i 0.323458 0.212742i
\(251\) 16.2193 13.6096i 1.02375 0.859031i 0.0336587 0.999433i \(-0.489284\pi\)
0.990095 + 0.140402i \(0.0448396\pi\)
\(252\) 0 0
\(253\) 5.66107 + 4.75020i 0.355909 + 0.298643i
\(254\) −7.90374 0.923815i −0.495925 0.0579653i
\(255\) 0 0
\(256\) 2.48035 + 8.28496i 0.155022 + 0.517810i
\(257\) −5.34379 + 5.66408i −0.333336 + 0.353316i −0.872263 0.489037i \(-0.837348\pi\)
0.538927 + 0.842353i \(0.318830\pi\)
\(258\) 0 0
\(259\) 6.71410 9.01861i 0.417194 0.560389i
\(260\) 2.21188 12.5442i 0.137175 0.777958i
\(261\) 0 0
\(262\) 0.589879 + 3.34537i 0.0364428 + 0.206678i
\(263\) −1.36411 0.685083i −0.0841148 0.0422440i 0.406244 0.913764i \(-0.366838\pi\)
−0.490359 + 0.871520i \(0.663134\pi\)
\(264\) 0 0
\(265\) −0.0246870 + 0.00288549i −0.00151651 + 0.000177254i
\(266\) 7.47311 + 4.91514i 0.458206 + 0.301367i
\(267\) 0 0
\(268\) 2.61959 8.75002i 0.160017 0.534493i
\(269\) −14.7193 25.4946i −0.897454 1.55444i −0.830738 0.556663i \(-0.812081\pi\)
−0.0667154 0.997772i \(-0.521252\pi\)
\(270\) 0 0
\(271\) −7.28643 + 12.6205i −0.442619 + 0.766639i −0.997883 0.0650354i \(-0.979284\pi\)
0.555264 + 0.831674i \(0.312617\pi\)
\(272\) −3.54645 3.75902i −0.215035 0.227924i
\(273\) 0 0
\(274\) 0.0731054 1.25517i 0.00441646 0.0758277i
\(275\) −1.54513 + 3.58201i −0.0931746 + 0.216003i
\(276\) 0 0
\(277\) −0.594623 10.2093i −0.0357274 0.613416i −0.967890 0.251375i \(-0.919117\pi\)
0.932162 0.362041i \(-0.117920\pi\)
\(278\) −5.81576 2.11676i −0.348806 0.126955i
\(279\) 0 0
\(280\) 22.8840 8.32910i 1.36758 0.497759i
\(281\) −2.78193 6.44925i −0.165956 0.384730i 0.814862 0.579655i \(-0.196813\pi\)
−0.980818 + 0.194925i \(0.937554\pi\)
\(282\) 0 0
\(283\) −21.0395 4.98645i −1.25067 0.296414i −0.448647 0.893709i \(-0.648094\pi\)
−0.802021 + 0.597295i \(0.796242\pi\)
\(284\) −3.60876 0.855291i −0.214140 0.0507522i
\(285\) 0 0
\(286\) 2.51522 + 5.83094i 0.148728 + 0.344791i
\(287\) −34.9640 + 12.7258i −2.06386 + 0.751183i
\(288\) 0 0
\(289\) 5.75215 + 2.09361i 0.338362 + 0.123154i
\(290\) 0.538092 + 9.23868i 0.0315979 + 0.542514i
\(291\) 0 0
\(292\) −2.92460 + 6.77998i −0.171149 + 0.396768i
\(293\) −0.635343 + 10.9084i −0.0371171 + 0.637276i 0.927533 + 0.373742i \(0.121925\pi\)
−0.964650 + 0.263535i \(0.915112\pi\)
\(294\) 0 0
\(295\) −19.6169 20.7927i −1.14214 1.21060i
\(296\) 3.22124 5.57934i 0.187230 0.324293i
\(297\) 0 0
\(298\) −0.293862 0.508983i −0.0170229 0.0294846i
\(299\) −2.32177 + 7.75525i −0.134271 + 0.448498i
\(300\) 0 0
\(301\) 26.8577 + 17.6646i 1.54805 + 1.01817i
\(302\) 5.29366 0.618740i 0.304616 0.0356045i
\(303\) 0 0
\(304\) −4.60517 2.31280i −0.264125 0.132648i
\(305\) 3.93337 + 22.3072i 0.225224 + 1.27731i
\(306\) 0 0
\(307\) 0.798574 4.52894i 0.0455770 0.258480i −0.953502 0.301386i \(-0.902551\pi\)
0.999079 + 0.0429063i \(0.0136617\pi\)
\(308\) 11.3598 15.2588i 0.647284 0.869453i
\(309\) 0 0
\(310\) −7.32685 + 7.76600i −0.416137 + 0.441079i
\(311\) −5.00159 16.7065i −0.283614 0.947336i −0.974503 0.224375i \(-0.927966\pi\)
0.690889 0.722961i \(-0.257219\pi\)
\(312\) 0 0
\(313\) 15.7201 + 1.83741i 0.888550 + 0.103857i 0.548107 0.836408i \(-0.315349\pi\)
0.340443 + 0.940265i \(0.389423\pi\)
\(314\) −7.33136 6.15174i −0.413732 0.347163i
\(315\) 0 0
\(316\) −10.7755 + 9.04173i −0.606170 + 0.508637i
\(317\) 16.3777 10.7718i 0.919864 0.605004i 0.00118078 0.999999i \(-0.499624\pi\)
0.918683 + 0.394995i \(0.129254\pi\)
\(318\) 0 0
\(319\) 9.84216 + 13.2203i 0.551055 + 0.740196i
\(320\) 1.50109 0.753875i 0.0839134 0.0421429i
\(321\) 0 0
\(322\) −6.60544 + 1.56552i −0.368107 + 0.0872429i
\(323\) −10.8479 −0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) 5.18372 1.22856i 0.287099 0.0680438i
\(327\) 0 0
\(328\) −19.0523 + 9.56844i −1.05199 + 0.528329i
\(329\) 24.8499 + 33.3792i 1.37002 + 1.84025i
\(330\) 0 0
\(331\) 18.2792 12.0224i 1.00472 0.660813i 0.0632779 0.997996i \(-0.479845\pi\)
0.941439 + 0.337183i \(0.109474\pi\)
\(332\) −4.43055 + 3.71767i −0.243158 + 0.204034i
\(333\) 0 0
\(334\) −8.55328 7.17706i −0.468015 0.392711i
\(335\) −14.5927 1.70564i −0.797284 0.0931892i
\(336\) 0 0
\(337\) 2.57060 + 8.58639i 0.140029 + 0.467730i 0.999020 0.0442608i \(-0.0140932\pi\)
−0.858991 + 0.511991i \(0.828908\pi\)
\(338\) 1.12643 1.19394i 0.0612696 0.0649419i
\(339\) 0 0
\(340\) −7.73571 + 10.3909i −0.419528 + 0.563524i
\(341\) −3.30191 + 18.7261i −0.178809 + 1.01407i
\(342\) 0 0
\(343\) 2.07706 + 11.7796i 0.112151 + 0.636040i
\(344\) 16.4605 + 8.26676i 0.887489 + 0.445714i
\(345\) 0 0
\(346\) 4.41645 0.516209i 0.237430 0.0277516i
\(347\) 16.0680 + 10.5681i 0.862574 + 0.567324i 0.901921 0.431902i \(-0.142157\pi\)
−0.0393465 + 0.999226i \(0.512528\pi\)
\(348\) 0 0
\(349\) −6.12442 + 20.4570i −0.327833 + 1.09504i 0.622192 + 0.782864i \(0.286242\pi\)
−0.950025 + 0.312173i \(0.898943\pi\)
\(350\) −1.79174 3.10339i −0.0957726 0.165883i
\(351\) 0 0
\(352\) 8.50973 14.7393i 0.453570 0.785607i
\(353\) −10.0961 10.7013i −0.537364 0.569572i 0.400623 0.916243i \(-0.368794\pi\)
−0.937987 + 0.346671i \(0.887312\pi\)
\(354\) 0 0
\(355\) −0.346872 + 5.95557i −0.0184101 + 0.316089i
\(356\) −7.73396 + 17.9293i −0.409899 + 0.950253i
\(357\) 0 0
\(358\) −0.584739 10.0396i −0.0309044 0.530608i
\(359\) 10.0637 + 3.66289i 0.531142 + 0.193320i 0.593648 0.804725i \(-0.297687\pi\)
−0.0625063 + 0.998045i \(0.519909\pi\)
\(360\) 0 0
\(361\) 7.68928 2.79867i 0.404699 0.147298i
\(362\) −1.46826 3.40381i −0.0771701 0.178901i
\(363\) 0 0
\(364\) 20.2770 + 4.80573i 1.06280 + 0.251889i
\(365\) 11.5571 + 2.73909i 0.604928 + 0.143371i
\(366\) 0 0
\(367\) −1.57072 3.64134i −0.0819909 0.190076i 0.872289 0.488991i \(-0.162635\pi\)
−0.954280 + 0.298914i \(0.903376\pi\)
\(368\) 3.67519 1.33766i 0.191583 0.0697304i
\(369\) 0 0
\(370\) −4.27121 1.55459i −0.222050 0.0808194i
\(371\) −0.00236431 0.0405936i −0.000122749 0.00210752i
\(372\) 0 0
\(373\) −9.39616 + 21.7827i −0.486515 + 1.12787i 0.481380 + 0.876512i \(0.340136\pi\)
−0.967895 + 0.251356i \(0.919124\pi\)
\(374\) 0.375512 6.44730i 0.0194173 0.333382i
\(375\) 0 0
\(376\) 16.3631 + 17.3439i 0.843863 + 0.894442i
\(377\) −9.02736 + 15.6359i −0.464933 + 0.805287i
\(378\) 0 0
\(379\) 13.0094 + 22.5330i 0.668249 + 1.15744i 0.978393 + 0.206752i \(0.0662892\pi\)
−0.310145 + 0.950689i \(0.600377\pi\)
\(380\) −3.70480 + 12.3749i −0.190052 + 0.634818i
\(381\) 0 0
\(382\) −2.37365 1.56118i −0.121447 0.0798767i
\(383\) −29.2263 + 3.41606i −1.49339 + 0.174553i −0.823250 0.567678i \(-0.807842\pi\)
−0.670144 + 0.742231i \(0.733768\pi\)
\(384\) 0 0
\(385\) −27.3447 13.7330i −1.39362 0.699900i
\(386\) 0.325437 + 1.84564i 0.0165643 + 0.0939407i
\(387\) 0 0
\(388\) 1.94061 11.0057i 0.0985194 0.558731i
\(389\) 15.8270 21.2594i 0.802462 1.07789i −0.192855 0.981227i \(-0.561775\pi\)
0.995317 0.0966658i \(-0.0308178\pi\)
\(390\) 0 0
\(391\) 5.64977 5.98841i 0.285721 0.302847i
\(392\) 6.69605 + 22.3664i 0.338202 + 1.12967i
\(393\) 0 0
\(394\) −13.9579 1.63144i −0.703189 0.0821910i
\(395\) 17.3329 + 14.5440i 0.872114 + 0.731790i
\(396\) 0 0
\(397\) −21.8020 + 18.2941i −1.09421 + 0.918154i −0.997022 0.0771123i \(-0.975430\pi\)
−0.0971903 + 0.995266i \(0.530986\pi\)
\(398\) −5.37771 + 3.53698i −0.269560 + 0.177293i
\(399\) 0 0
\(400\) 1.23288 + 1.65604i 0.0616439 + 0.0828022i
\(401\) 12.7098 6.38308i 0.634695 0.318756i −0.102199 0.994764i \(-0.532588\pi\)
0.736894 + 0.676008i \(0.236292\pi\)
\(402\) 0 0
\(403\) −20.2683 + 4.80369i −1.00964 + 0.239289i
\(404\) −3.29097 −0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) −7.87686 + 1.86685i −0.390441 + 0.0925363i
\(408\) 0 0
\(409\) 2.78276 1.39755i 0.137598 0.0691045i −0.378668 0.925533i \(-0.623618\pi\)
0.516266 + 0.856428i \(0.327321\pi\)
\(410\) 8.98238 + 12.0654i 0.443608 + 0.595869i
\(411\) 0 0
\(412\) −2.69635 + 1.77342i −0.132840 + 0.0873699i
\(413\) 35.8251 30.0608i 1.76284 1.47920i
\(414\) 0 0
\(415\) 7.12674 + 5.98005i 0.349838 + 0.293549i
\(416\) 18.5178 + 2.16442i 0.907910 + 0.106119i
\(417\) 0 0
\(418\) −1.84700 6.16941i −0.0903397 0.301756i
\(419\) −4.70149 + 4.98329i −0.229683 + 0.243450i −0.831958 0.554839i \(-0.812780\pi\)
0.602275 + 0.798289i \(0.294261\pi\)
\(420\) 0 0
\(421\) −8.91706 + 11.9777i −0.434591 + 0.583757i −0.964429 0.264342i \(-0.914845\pi\)
0.529838 + 0.848099i \(0.322253\pi\)
\(422\) 2.24848 12.7517i 0.109454 0.620745i
\(423\) 0 0
\(424\) −0.00404592 0.0229456i −0.000196487 0.00111434i
\(425\) 3.88374 + 1.95049i 0.188389 + 0.0946124i
\(426\) 0 0
\(427\) −36.8067 + 4.30209i −1.78120 + 0.208193i
\(428\) −18.6214 12.2475i −0.900101 0.592006i
\(429\) 0 0
\(430\) 3.72717 12.4496i 0.179740 0.600374i
\(431\) 15.4334 + 26.7314i 0.743399 + 1.28760i 0.950939 + 0.309378i \(0.100121\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(432\) 0 0
\(433\) 14.3849 24.9154i 0.691295 1.19736i −0.280119 0.959965i \(-0.590374\pi\)
0.971414 0.237393i \(-0.0762928\pi\)
\(434\) −11.9866 12.7051i −0.575375 0.609862i
\(435\) 0 0
\(436\) 1.21791 20.9106i 0.0583271 1.00144i
\(437\) 3.25167 7.53822i 0.155549 0.360602i
\(438\) 0 0
\(439\) 0.257222 + 4.41633i 0.0122765 + 0.210780i 0.998868 + 0.0475701i \(0.0151478\pi\)
−0.986591 + 0.163210i \(0.947815\pi\)
\(440\) −16.4761 5.99681i −0.785467 0.285886i
\(441\) 0 0
\(442\) 6.64797 2.41966i 0.316212 0.115092i
\(443\) 1.05658 + 2.44942i 0.0501994 + 0.116375i 0.941470 0.337096i \(-0.109445\pi\)
−0.891271 + 0.453471i \(0.850185\pi\)
\(444\) 0 0
\(445\) 30.5623 + 7.24339i 1.44879 + 0.343370i
\(446\) −10.4037 2.46573i −0.492631 0.116756i
\(447\) 0 0
\(448\) 1.08845 + 2.52331i 0.0514245 + 0.119215i
\(449\) −39.1256 + 14.2405i −1.84645 + 0.672053i −0.859474 + 0.511179i \(0.829209\pi\)
−0.986975 + 0.160874i \(0.948569\pi\)
\(450\) 0 0
\(451\) 25.1735 + 9.16239i 1.18537 + 0.431440i
\(452\) 0.268965 + 4.61795i 0.0126511 + 0.217210i
\(453\) 0 0
\(454\) −5.56143 + 12.8928i −0.261011 + 0.605091i
\(455\) 1.94902 33.4633i 0.0913713 1.56878i
\(456\) 0 0
\(457\) −5.25995 5.57522i −0.246050 0.260798i 0.592565 0.805523i \(-0.298116\pi\)
−0.838615 + 0.544725i \(0.816634\pi\)
\(458\) 2.85365 4.94267i 0.133342 0.230956i
\(459\) 0 0
\(460\) −4.90183 8.49022i −0.228549 0.395858i
\(461\) 6.32202 21.1170i 0.294446 0.983517i −0.674919 0.737892i \(-0.735821\pi\)
0.969365 0.245625i \(-0.0789933\pi\)
\(462\) 0 0
\(463\) −31.0464 20.4195i −1.44285 0.948975i −0.998591 0.0530751i \(-0.983098\pi\)
−0.444256 0.895900i \(-0.646532\pi\)
\(464\) 8.66370 1.01264i 0.402202 0.0470107i
\(465\) 0 0
\(466\) 8.84428 + 4.44177i 0.409703 + 0.205761i
\(467\) −1.44385 8.18848i −0.0668134 0.378918i −0.999818 0.0190543i \(-0.993934\pi\)
0.933005 0.359863i \(-0.117177\pi\)
\(468\) 0 0
\(469\) 4.17380 23.6708i 0.192728 1.09302i
\(470\) 10.0459 13.4941i 0.463385 0.622434i
\(471\) 0 0
\(472\) 18.3893 19.4915i 0.846435 0.897168i
\(473\) −6.63796 22.1723i −0.305214 1.01949i
\(474\) 0 0
\(475\) 4.30441 + 0.503114i 0.197500 + 0.0230844i
\(476\) −16.2347 13.6225i −0.744115 0.624387i
\(477\) 0 0
\(478\) 1.82923 1.53491i 0.0836671 0.0702050i
\(479\) 2.13297 1.40288i 0.0974580 0.0640991i −0.499845 0.866115i \(-0.666610\pi\)
0.597303 + 0.802016i \(0.296239\pi\)
\(480\) 0 0
\(481\) −5.29542 7.11298i −0.241450 0.324324i
\(482\) −13.5294 + 6.79470i −0.616246 + 0.309490i
\(483\) 0 0
\(484\) 3.39806 0.805354i 0.154457 0.0366070i
\(485\) −17.9763 −0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) −20.6614 + 4.89685i −0.935299 + 0.221670i
\(489\) 0 0
\(490\) 14.7200 7.39264i 0.664980 0.333965i
\(491\) 21.7872 + 29.2653i 0.983242 + 1.32072i 0.946950 + 0.321382i \(0.104147\pi\)
0.0362928 + 0.999341i \(0.488445\pi\)
\(492\) 0 0
\(493\) 15.3409 10.0899i 0.690918 0.454424i
\(494\) 5.40415 4.53462i 0.243144 0.204022i
\(495\) 0 0
\(496\) 7.70901 + 6.46863i 0.346145 + 0.290450i
\(497\) −9.69374 1.13304i −0.434823 0.0508236i
\(498\) 0 0
\(499\) 9.10246 + 30.4043i 0.407482 + 1.36108i 0.877986 + 0.478687i \(0.158887\pi\)
−0.470504 + 0.882398i \(0.655928\pi\)
\(500\) −9.92484 + 10.5197i −0.443852 + 0.470456i
\(501\) 0 0
\(502\) 8.36207 11.2322i 0.373217 0.501318i
\(503\) −1.04817 + 5.94449i −0.0467358 + 0.265052i −0.999218 0.0395428i \(-0.987410\pi\)
0.952482 + 0.304595i \(0.0985210\pi\)
\(504\) 0 0
\(505\) 0.919238 + 5.21326i 0.0409055 + 0.231987i
\(506\) 4.36767 + 2.19352i 0.194166 + 0.0975141i
\(507\) 0 0
\(508\) 18.6737 2.18265i 0.828513 0.0968393i
\(509\) 21.9762 + 14.4540i 0.974079 + 0.640662i 0.933524 0.358516i \(-0.116717\pi\)
0.0405551 + 0.999177i \(0.487087\pi\)
\(510\) 0 0
\(511\) −5.57289 + 18.6147i −0.246530 + 0.823468i
\(512\) −8.19547 14.1950i −0.362192 0.627335i
\(513\) 0 0
\(514\) −2.57506 + 4.46014i −0.113581 + 0.196728i
\(515\) 3.56243 + 3.77596i 0.156980 + 0.166389i
\(516\) 0 0
\(517\) 1.74208 29.9103i 0.0766165 1.31545i
\(518\) 2.94528 6.82793i 0.129408 0.300002i
\(519\) 0 0
\(520\) −1.11678 19.1745i −0.0489742 0.840855i
\(521\) −23.7819 8.65589i −1.04190 0.379221i −0.236301 0.971680i \(-0.575935\pi\)
−0.805601 + 0.592459i \(0.798157\pi\)
\(522\) 0 0
\(523\) 2.76727 1.00720i 0.121004 0.0440420i −0.280808 0.959764i \(-0.590603\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(524\) −3.17888 7.36947i −0.138870 0.321937i
\(525\) 0 0
\(526\) −0.982358 0.232823i −0.0428328 0.0101516i
\(527\) 20.6128 + 4.88533i 0.897909 + 0.212808i
\(528\) 0 0
\(529\) −6.64201 15.3979i −0.288783 0.669474i
\(530\) −0.0154471 + 0.00562227i −0.000670977 + 0.000244216i
\(531\) 0 0
\(532\) −19.8585 7.22789i −0.860973 0.313369i
\(533\) 1.70631 + 29.2962i 0.0739085 + 1.26896i
\(534\) 0 0
\(535\) −14.2000 + 32.9194i −0.613921 + 1.42323i
\(536\) 0.800805 13.7493i 0.0345895 0.593879i
\(537\) 0 0
\(538\) −13.3611 14.1619i −0.576036 0.610563i
\(539\) 14.6681 25.4058i 0.631798 1.09431i
\(540\) 0 0
\(541\) −8.84669 15.3229i −0.380349 0.658784i 0.610763 0.791813i \(-0.290863\pi\)
−0.991112 + 0.133030i \(0.957529\pi\)
\(542\) −2.76423 + 9.23318i −0.118734 + 0.396599i
\(543\) 0 0
\(544\) −15.8415 10.4191i −0.679197 0.446715i
\(545\) −33.4649 + 3.91149i −1.43348 + 0.167550i
\(546\) 0 0
\(547\) 36.4161 + 18.2889i 1.55704 + 0.781975i 0.998860 0.0477434i \(-0.0152030\pi\)
0.558182 + 0.829719i \(0.311499\pi\)
\(548\) 0.515831 + 2.92542i 0.0220352 + 0.124968i
\(549\) 0 0
\(550\) −0.448020 + 2.54085i −0.0191036 + 0.108342i
\(551\) 10.9338 14.6866i 0.465794 0.625670i
\(552\) 0 0
\(553\) −25.4023 + 26.9249i −1.08022 + 1.14496i
\(554\) −1.93981 6.47943i −0.0824148 0.275285i
\(555\) 0 0
\(556\) 14.5235 + 1.69756i 0.615935 + 0.0719925i
\(557\) 23.1644 + 19.4372i 0.981505 + 0.823581i 0.984316 0.176415i \(-0.0564501\pi\)
−0.00281036 + 0.999996i \(0.500895\pi\)
\(558\) 0 0
\(559\) 19.4220 16.2970i 0.821465 0.689291i
\(560\) −13.5302 + 8.89894i −0.571755 + 0.376049i
\(561\) 0 0
\(562\) −2.77396 3.72607i −0.117012 0.157175i
\(563\) 16.5135 8.29337i 0.695959 0.349524i −0.0653954 0.997859i \(-0.520831\pi\)
0.761355 + 0.648336i \(0.224535\pi\)
\(564\) 0 0
\(565\) 7.24021 1.71596i 0.304598 0.0721911i
\(566\) −14.3004 −0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) −8.75519 + 2.07502i −0.367037 + 0.0869893i −0.409995 0.912088i \(-0.634470\pi\)
0.0429589 + 0.999077i \(0.486322\pi\)
\(570\) 0 0
\(571\) −15.0828 + 7.57485i −0.631194 + 0.316998i −0.735477 0.677550i \(-0.763042\pi\)
0.104282 + 0.994548i \(0.466745\pi\)
\(572\) −8.95947 12.0347i −0.374614 0.503194i
\(573\) 0 0
\(574\) −20.5599 + 13.5225i −0.858153 + 0.564416i
\(575\) −2.51954 + 2.11415i −0.105072 + 0.0881661i
\(576\) 0 0
\(577\) −24.0567 20.1860i −1.00149 0.840352i −0.0143022 0.999898i \(-0.504553\pi\)
−0.987191 + 0.159545i \(0.948997\pi\)
\(578\) 4.02109 + 0.469998i 0.167255 + 0.0195493i
\(579\) 0 0
\(580\) −6.27087 20.9462i −0.260384 0.869743i
\(581\) −10.4446 + 11.0707i −0.433317 + 0.459289i
\(582\) 0 0
\(583\) −0.0174826 + 0.0234832i −0.000724054 + 0.000972573i
\(584\) −1.93340 + 10.9648i −0.0800045 + 0.453728i
\(585\) 0 0
\(586\) 1.25491 + 7.11695i 0.0518399 + 0.293999i
\(587\) 1.23033 + 0.617896i 0.0507812 + 0.0255033i 0.474009 0.880520i \(-0.342807\pi\)
−0.423227 + 0.906024i \(0.639103\pi\)
\(588\) 0 0
\(589\) 20.9811 2.45234i 0.864511 0.101047i
\(590\) −15.7957 10.3890i −0.650300 0.427709i
\(591\) 0 0
\(592\) −1.22872 + 4.10422i −0.0505002 + 0.168682i
\(593\) −15.4929 26.8346i −0.636219 1.10196i −0.986256 0.165227i \(-0.947164\pi\)
0.350037 0.936736i \(-0.386169\pi\)
\(594\) 0 0
\(595\) −17.0449 + 29.5226i −0.698771 + 1.21031i
\(596\) 0.952902 + 1.01002i 0.0390324 + 0.0413719i
\(597\) 0 0
\(598\) −0.311309 + 5.34497i −0.0127304 + 0.218572i
\(599\) 9.60548 22.2680i 0.392469 0.909846i −0.601365 0.798974i \(-0.705376\pi\)
0.993835 0.110872i \(-0.0353644\pi\)
\(600\) 0 0
\(601\) −0.441108 7.57353i −0.0179932 0.308931i −0.995282 0.0970208i \(-0.969069\pi\)
0.977289 0.211910i \(-0.0679684\pi\)
\(602\) 19.9784 + 7.27154i 0.814258 + 0.296366i
\(603\) 0 0
\(604\) −11.8328 + 4.30678i −0.481469 + 0.175241i
\(605\) −2.22492 5.15794i −0.0904558 0.209700i
\(606\) 0 0
\(607\) 29.1570 + 6.91033i 1.18345 + 0.280482i 0.774797 0.632210i \(-0.217852\pi\)
0.408649 + 0.912692i \(0.366000\pi\)
\(608\) −18.3975 4.36028i −0.746116 0.176833i
\(609\) 0 0
\(610\) 5.93366 + 13.7558i 0.240247 + 0.556955i
\(611\) 30.8413 11.2253i 1.24770 0.454127i
\(612\) 0 0
\(613\) 11.4606 + 4.17132i 0.462890 + 0.168478i 0.562929 0.826505i \(-0.309675\pi\)
−0.100039 + 0.994984i \(0.531897\pi\)
\(614\) −0.176849 3.03637i −0.00713703 0.122538i
\(615\) 0 0
\(616\) 11.3614 26.3386i 0.457762 1.06121i
\(617\) −0.923932 + 15.8633i −0.0371961 + 0.638632i 0.927265 + 0.374406i \(0.122153\pi\)
−0.964461 + 0.264226i \(0.914884\pi\)
\(618\) 0 0
\(619\) −15.9608 16.9174i −0.641518 0.679970i 0.322267 0.946649i \(-0.395555\pi\)
−0.963785 + 0.266679i \(0.914074\pi\)
\(620\) 12.6127 21.8459i 0.506539 0.877351i
\(621\) 0 0
\(622\) −5.76686 9.98849i −0.231230 0.400502i
\(623\) −14.7372 + 49.2258i −0.590435 + 1.97219i
\(624\) 0 0
\(625\) 24.9410 + 16.4040i 0.997641 + 0.656159i
\(626\) 10.3968 1.21521i 0.415540 0.0485696i
\(627\) 0 0
\(628\) 20.2064 + 10.1480i 0.806321 + 0.404950i
\(629\) 1.56603 + 8.88139i 0.0624417 + 0.354124i
\(630\) 0 0
\(631\) 2.13182 12.0902i 0.0848665 0.481302i −0.912519 0.409035i \(-0.865866\pi\)
0.997385 0.0722670i \(-0.0230234\pi\)
\(632\) −12.6660 + 17.0134i −0.503828 + 0.676758i
\(633\) 0 0
\(634\) 8.89684 9.43010i 0.353339 0.374517i
\(635\) −8.67352 28.9716i −0.344198 1.14970i
\(636\) 0 0
\(637\) 31.9188 + 3.73077i 1.26467 + 0.147818i
\(638\) 8.35027 + 7.00671i 0.330590 + 0.277398i
\(639\) 0 0
\(640\) −21.2865 + 17.8615i −0.841422 + 0.706037i
\(641\) −7.82391 + 5.14587i −0.309026 + 0.203249i −0.694543 0.719451i \(-0.744393\pi\)
0.385517 + 0.922701i \(0.374023\pi\)
\(642\) 0 0
\(643\) −11.7429 15.7734i −0.463094 0.622043i 0.507823 0.861462i \(-0.330451\pi\)
−0.970916 + 0.239419i \(0.923043\pi\)
\(644\) 14.3326 7.19812i 0.564785 0.283646i
\(645\) 0 0
\(646\) −6.98112 + 1.65456i −0.274668 + 0.0650976i
\(647\) 14.2593 0.560591 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) −2.75011 + 0.651788i −0.107868 + 0.0255652i
\(651\) 0 0
\(652\) −11.2478 + 5.64884i −0.440496 + 0.221225i
\(653\) −24.3576 32.7179i −0.953185 1.28035i −0.959891 0.280372i \(-0.909542\pi\)
0.00670674 0.999978i \(-0.497865\pi\)
\(654\) 0 0
\(655\) −10.7861 + 7.09414i −0.421448 + 0.277191i
\(656\) 10.8608 9.11326i 0.424042 0.355813i
\(657\) 0 0
\(658\) 21.0831 + 17.6908i 0.821905 + 0.689660i
\(659\) 2.57161 + 0.300578i 0.100176 + 0.0117089i 0.166033 0.986120i \(-0.446904\pi\)
−0.0658573 + 0.997829i \(0.520978\pi\)
\(660\) 0 0
\(661\) −8.61351 28.7711i −0.335027 1.11907i −0.945116 0.326735i \(-0.894052\pi\)
0.610089 0.792333i \(-0.291134\pi\)
\(662\) 9.92980 10.5250i 0.385933 0.409065i
\(663\) 0 0
\(664\) −5.20787 + 6.99538i −0.202105 + 0.271473i
\(665\) −5.90288 + 33.4769i −0.228904 + 1.29818i
\(666\) 0 0
\(667\) 2.41300 + 13.6848i 0.0934318 + 0.529878i
\(668\) 23.5742 + 11.8394i 0.912112 + 0.458080i
\(669\) 0 0
\(670\) −9.65120 + 1.12806i −0.372858 + 0.0435809i
\(671\) 22.2913 + 14.6612i 0.860546 + 0.565990i
\(672\) 0 0
\(673\) −3.97739 + 13.2854i −0.153317 + 0.512115i −0.999794 0.0203111i \(-0.993534\pi\)
0.846477 + 0.532426i \(0.178720\pi\)
\(674\) 2.96391 + 5.13365i 0.114166 + 0.197741i
\(675\) 0 0
\(676\) −1.93907 + 3.35858i −0.0745798 + 0.129176i
\(677\) 13.7507 + 14.5749i 0.528482 + 0.560158i 0.935529 0.353249i \(-0.114923\pi\)
−0.407048 + 0.913407i \(0.633442\pi\)
\(678\) 0 0
\(679\) 1.70998 29.3593i 0.0656231 1.12670i
\(680\) −7.73678 + 17.9359i −0.296692 + 0.687809i
\(681\) 0 0
\(682\) 0.731227 + 12.5547i 0.0280001 + 0.480743i
\(683\) 29.9877 + 10.9146i 1.14745 + 0.417636i 0.844597 0.535402i \(-0.179840\pi\)
0.302849 + 0.953039i \(0.402062\pi\)
\(684\) 0 0
\(685\) 4.49011 1.63426i 0.171558 0.0624421i
\(686\) 3.13334 + 7.26391i 0.119632 + 0.277337i
\(687\) 0 0
\(688\) −11.9188 2.82481i −0.454401 0.107695i
\(689\) −0.0312060 0.00739596i −0.00118885 0.000281764i
\(690\) 0 0
\(691\) 14.8306 + 34.3813i 0.564184 + 1.30793i 0.926649 + 0.375929i \(0.122676\pi\)
−0.362464 + 0.931998i \(0.618064\pi\)
\(692\) −9.87198 + 3.59311i −0.375276 + 0.136589i
\(693\) 0 0
\(694\) 11.9523 + 4.35029i 0.453704 + 0.165135i
\(695\) −1.36762 23.4810i −0.0518766 0.890687i
\(696\) 0 0
\(697\) 11.8209 27.4038i 0.447747 1.03799i
\(698\) −0.821179 + 14.0991i −0.0310821 + 0.533659i
\(699\) 0 0
\(700\) 5.81006 + 6.15831i 0.219600 + 0.232762i
\(701\) −11.5923 + 20.0785i −0.437836 + 0.758355i −0.997522 0.0703498i \(-0.977588\pi\)
0.559686 + 0.828705i \(0.310922\pi\)
\(702\) 0 0
\(703\) 4.49645 + 7.78807i 0.169587 + 0.293733i
\(704\) 0.567456 1.89544i 0.0213868 0.0714369i
\(705\) 0 0
\(706\) −8.12951 5.34686i −0.305958 0.201232i
\(707\) −8.60182 + 1.00541i −0.323505 + 0.0378123i
\(708\) 0 0
\(709\) 4.45037 + 2.23506i 0.167137 + 0.0839393i 0.530401 0.847747i \(-0.322041\pi\)
−0.363264 + 0.931686i \(0.618338\pi\)
\(710\) 0.685132 + 3.88558i 0.0257126 + 0.145823i
\(711\) 0 0
\(712\) −5.11277 + 28.9960i −0.191609 + 1.08667i
\(713\) −9.57352 + 12.8595i −0.358531 + 0.481591i
\(714\) 0 0
\(715\) −16.5616 + 17.5543i −0.619370 + 0.656494i
\(716\) 6.81449 + 22.7620i 0.254669 + 0.850655i
\(717\) 0 0
\(718\) 7.03511 + 0.822287i 0.262548 + 0.0306875i
\(719\) −13.4111 11.2533i −0.500151 0.419677i 0.357497 0.933914i \(-0.383630\pi\)
−0.857648 + 0.514238i \(0.828075\pi\)
\(720\) 0 0
\(721\) −6.50583 + 5.45904i −0.242290 + 0.203305i
\(722\) 4.52153 2.97386i 0.168274 0.110676i
\(723\) 0 0
\(724\) 5.23009 + 7.02523i 0.194375 + 0.261091i
\(725\) −6.55516 + 3.29212i −0.243452 + 0.122266i
\(726\) 0 0
\(727\) 7.81381 1.85191i 0.289798 0.0686834i −0.0831456 0.996537i \(-0.526497\pi\)
0.372944 + 0.927854i \(0.378348\pi\)
\(728\) 31.4223 1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) −25.0896 + 5.94633i −0.927971 + 0.219933i
\(732\) 0 0
\(733\) −26.8789 + 13.4991i −0.992794 + 0.498600i −0.869586 0.493781i \(-0.835614\pi\)
−0.123207 + 0.992381i \(0.539318\pi\)
\(734\) −1.56622 2.10379i −0.0578101 0.0776524i
\(735\) 0 0
\(736\) 11.9887 7.88510i 0.441910 0.290649i
\(737\) −13.2568 + 11.1237i −0.488319 + 0.409748i
\(738\) 0 0
\(739\) 1.84741 + 1.55016i 0.0679580 + 0.0570236i 0.676134 0.736779i \(-0.263654\pi\)
−0.608176 + 0.793802i \(0.708098\pi\)
\(740\) 10.6664 + 1.24672i 0.392104 + 0.0458304i
\(741\) 0 0
\(742\) −0.00771300 0.0257632i −0.000283153 0.000945797i
\(743\) 13.4927 14.3015i 0.495000 0.524670i −0.430919 0.902391i \(-0.641811\pi\)
0.925920 + 0.377721i \(0.123292\pi\)
\(744\) 0 0
\(745\) 1.33381 1.79162i 0.0488671 0.0656399i
\(746\) −2.72448 + 15.4513i −0.0997503 + 0.565712i
\(747\) 0 0
\(748\) 2.64961 + 15.0267i 0.0968793 + 0.549430i
\(749\) −52.4137 26.3231i −1.91515 0.961827i
\(750\) 0 0
\(751\) 6.82312 0.797508i 0.248979 0.0291015i 0.00931213 0.999957i \(-0.497036\pi\)
0.239667 + 0.970855i \(0.422962\pi\)
\(752\) −13.2479 8.71326i −0.483100 0.317740i
\(753\) 0 0
\(754\) −3.42468 + 11.4392i −0.124720 + 0.416593i
\(755\) 10.1276 + 17.5415i 0.368580 + 0.638399i
\(756\) 0 0
\(757\) −6.50209 + 11.2620i −0.236323 + 0.409323i −0.959656 0.281176i \(-0.909276\pi\)
0.723334 + 0.690499i \(0.242609\pi\)
\(758\) 11.8089 + 12.5167i 0.428920 + 0.454628i
\(759\) 0 0
\(760\) −1.13255 + 19.4452i −0.0410820 + 0.705351i
\(761\) −6.89394 + 15.9819i −0.249905 + 0.579345i −0.996279 0.0861814i \(-0.972534\pi\)
0.746375 + 0.665526i \(0.231793\pi\)
\(762\) 0 0
\(763\) −3.20499 55.0275i −0.116028 1.99213i
\(764\) 6.30756 + 2.29576i 0.228200 + 0.0830578i
\(765\) 0 0
\(766\) −18.2874 + 6.65607i −0.660751 + 0.240494i
\(767\) −14.6093 33.8681i −0.527510 1.22290i
\(768\) 0 0
\(769\) −18.1275 4.29629i −0.653693 0.154928i −0.109630 0.993972i \(-0.534967\pi\)
−0.544063 + 0.839044i \(0.683115\pi\)
\(770\) −19.6921 4.66712i −0.709655 0.168191i
\(771\) 0 0
\(772\) −1.75379 4.06574i −0.0631203 0.146329i
\(773\) 27.2264 9.90961i 0.979267 0.356424i 0.197712 0.980260i \(-0.436649\pi\)
0.781555 + 0.623836i \(0.214427\pi\)
\(774\) 0 0
\(775\) −7.95251 2.89448i −0.285663 0.103973i
\(776\) −0.979818 16.8228i −0.0351734 0.603904i
\(777\) 0 0
\(778\) 6.94285 16.0953i 0.248913 0.577046i
\(779\) 1.73040 29.7099i 0.0619981 1.06447i
\(780\) 0 0
\(781\) 4.82210 + 5.11113i 0.172548 + 0.182891i
\(782\) 2.72251 4.71553i 0.0973568 0.168627i
\(783\) 0 0
\(784\) −7.76286 13.4457i −0.277245 0.480203i
\(785\) 10.4315 34.8436i 0.372316 1.24362i
\(786\) 0 0
\(787\) 12.3774 + 8.14073i 0.441206 + 0.290186i 0.750611 0.660745i \(-0.229759\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(788\) 32.9776 3.85452i 1.17478 0.137312i
\(789\) 0 0
\(790\) 13.3728 + 6.71607i 0.475783 + 0.238947i
\(791\) 2.11382 + 11.9881i 0.0751588 + 0.426247i
\(792\) 0 0
\(793\) −5.07523 + 28.7830i −0.180227 + 1.02212i
\(794\) −11.2403 + 15.0984i −0.398904 + 0.535821i
\(795\) 0 0
\(796\) 10.4360 11.0615i 0.369894 0.392064i
\(797\) 5.04957 + 16.8667i 0.178865 + 0.597450i 0.999656 + 0.0262221i \(0.00834772\pi\)
−0.820791 + 0.571228i \(0.806467\pi\)
\(798\) 0 0
\(799\) −33.1527 3.87500i −1.17286 0.137088i
\(800\) 5.80261 + 4.86896i 0.205153 + 0.172144i
\(801\) 0 0
\(802\) 7.20573 6.04632i 0.254443 0.213503i
\(803\) 11.6885 7.68764i 0.412478 0.271291i
\(804\) 0 0
\(805\) −15.4060 20.6939i −0.542991 0.729364i
\(806\) −12.3109 + 6.18277i −0.433633 + 0.217779i
\(807\) 0 0
\(808\) −4.82863 + 1.14441i −0.169871 + 0.0402601i
\(809\) 13.3577 0.469632 0.234816 0.972040i \(-0.424551\pi\)
0.234816 + 0.972040i \(0.424551\pi\)
\(810\) 0 0
\(811\) 13.6700 0.480017 0.240009 0.970771i \(-0.422850\pi\)
0.240009 + 0.970771i \(0.422850\pi\)
\(812\) 34.8062 8.24921i 1.22146 0.289491i
\(813\) 0 0
\(814\) −4.78437 + 2.40280i −0.167692 + 0.0842182i
\(815\) 12.0901 + 16.2398i 0.423498 + 0.568857i
\(816\) 0 0
\(817\) −21.4818 + 14.1288i −0.751552 + 0.494304i
\(818\) 1.57767 1.32382i 0.0551619 0.0462863i
\(819\) 0 0
\(820\) −27.2241 22.8438i −0.950708 0.797739i
\(821\) 9.97247 + 1.16561i 0.348041 + 0.0406802i 0.288318 0.957535i \(-0.406904\pi\)
0.0597236 + 0.998215i \(0.480978\pi\)
\(822\) 0 0
\(823\) 8.67546 + 28.9781i 0.302408 + 1.01011i 0.965245 + 0.261348i \(0.0841670\pi\)
−0.662837 + 0.748764i \(0.730648\pi\)
\(824\) −3.33949 + 3.53965i −0.116337 + 0.123310i
\(825\) 0 0
\(826\) 18.4701 24.8096i 0.642656 0.863237i
\(827\) 8.16805 46.3233i 0.284031 1.61082i −0.424695 0.905336i \(-0.639619\pi\)
0.708726 0.705483i \(-0.249270\pi\)
\(828\) 0 0
\(829\) −0.608907 3.45328i −0.0211482 0.119938i 0.972406 0.233295i \(-0.0749507\pi\)
−0.993554 + 0.113357i \(0.963840\pi\)
\(830\) 5.49847 + 2.76144i 0.190855 + 0.0958508i
\(831\) 0 0
\(832\) 2.15274 0.251619i 0.0746329 0.00872333i
\(833\) −27.3056 17.9592i −0.946084 0.622249i
\(834\) 0 0
\(835\) 12.1701 40.6511i 0.421165 1.40679i
\(836\) 7.60767 + 13.1769i 0.263117 + 0.455731i
\(837\) 0 0
\(838\) −2.26555 + 3.92405i −0.0782622 + 0.135554i
\(839\) 25.2637 + 26.7780i 0.872201 + 0.924479i 0.997712 0.0676133i \(-0.0215384\pi\)
−0.125511 + 0.992092i \(0.540057\pi\)
\(840\) 0 0
\(841\) −0.115799 + 1.98820i −0.00399308 + 0.0685585i
\(842\) −3.91165 + 9.06823i −0.134804 + 0.312512i
\(843\) 0 0
\(844\) 1.77880 + 30.5409i 0.0612289 + 1.05126i
\(845\) 5.86198 + 2.13359i 0.201658 + 0.0733976i
\(846\) 0 0
\(847\) 8.63568 3.14313i 0.296725 0.107999i
\(848\) 0.00613688 + 0.0142269i 0.000210741 + 0.000488553i
\(849\) 0 0
\(850\) 2.79685 + 0.662866i 0.0959312 + 0.0227361i
\(851\) −6.64110 1.57397i −0.227654 0.0539550i
\(852\) 0 0
\(853\) −14.6197 33.8923i −0.500569 1.16045i −0.961945 0.273244i \(-0.911903\pi\)
0.461376 0.887205i \(-0.347356\pi\)
\(854\) −23.0306 + 8.38245i −0.788090 + 0.286841i
\(855\) 0 0
\(856\) −31.5810 11.4945i −1.07942 0.392875i
\(857\) 1.75026 + 30.0508i 0.0597877 + 1.02652i 0.886156 + 0.463386i \(0.153366\pi\)
−0.826369 + 0.563129i \(0.809597\pi\)
\(858\) 0 0
\(859\) −7.70264 + 17.8567i −0.262811 + 0.609264i −0.997616 0.0690147i \(-0.978014\pi\)
0.734805 + 0.678279i \(0.237274\pi\)
\(860\) −1.78528 + 30.6520i −0.0608774 + 1.04522i
\(861\) 0 0
\(862\) 14.0092 + 14.8489i 0.477155 + 0.505755i
\(863\) −14.3566 + 24.8664i −0.488706 + 0.846463i −0.999916 0.0129930i \(-0.995864\pi\)
0.511210 + 0.859456i \(0.329197\pi\)
\(864\) 0 0
\(865\) 8.44932 + 14.6347i 0.287286 + 0.497593i
\(866\) 5.45716 18.2282i 0.185442 0.619419i
\(867\) 0 0
\(868\) 34.4792 + 22.6774i 1.17030 + 0.769720i
\(869\) 26.4711 3.09403i 0.897971 0.104958i
\(870\) 0 0
\(871\) −16.9407 8.50796i −0.574015 0.288281i
\(872\) −5.48453 31.1043i −0.185730 1.05333i
\(873\) 0 0
\(874\) 0.942844 5.34714i 0.0318922 0.180870i
\(875\) −22.7274 + 30.5282i −0.768325 + 1.03204i
\(876\) 0 0
\(877\) 13.1238 13.9104i 0.443158 0.469720i −0.466835 0.884345i \(-0.654606\pi\)
0.909992 + 0.414625i \(0.136087\pi\)
\(878\) 0.839125 + 2.80287i 0.0283191 + 0.0945924i
\(879\) 0 0
\(880\) 11.5808 + 1.35360i 0.390389 + 0.0456299i
\(881\) −35.7695 30.0142i −1.20510 1.01120i −0.999469 0.0325741i \(-0.989630\pi\)
−0.205635 0.978629i \(-0.565926\pi\)
\(882\) 0 0
\(883\) −10.7311 + 9.00449i −0.361131 + 0.303025i −0.805241 0.592947i \(-0.797964\pi\)
0.444110 + 0.895972i \(0.353520\pi\)
\(884\) −13.9650 + 9.18494i −0.469695 + 0.308923i
\(885\) 0 0
\(886\) 1.05355 + 1.41516i 0.0353945 + 0.0475431i
\(887\) 9.26435 4.65273i 0.311066 0.156223i −0.286416 0.958105i \(-0.592464\pi\)
0.597483 + 0.801882i \(0.296168\pi\)
\(888\) 0 0
\(889\) 48.1419 11.4098i 1.61463 0.382674i
\(890\) 20.7730 0.696312
\(891\) 0 0
\(892\) 25.2612 0.845809
\(893\) −32.3868 + 7.67582i −1.08378 + 0.256862i
\(894\) 0 0
\(895\) 34.1540 17.1528i 1.14164 0.573355i
\(896\) −27.1468 36.4645i −0.906911 1.21819i
\(897\) 0 0
\(898\) −23.0070 + 15.1320i −0.767755 + 0.504960i
\(899\) −27.3900 + 22.9829i −0.913508 + 0.766524i
\(900\) 0 0
\(901\) 0.0249850 + 0.0209649i 0.000832370 + 0.000698441i
\(902\) 17.5977 + 2.05688i 0.585940 + 0.0684865i
\(903\) 0 0
\(904\) 2.00049 + 6.68209i 0.0665352 + 0.222243i
\(905\) 9.66786 10.2473i 0.321371 0.340633i
\(906\) 0 0
\(907\) −21.4775 + 28.8493i −0.713149 + 0.957926i −1.00000 4.96814e-5i \(-0.999984\pi\)
0.286851 + 0.957975i \(0.407392\pi\)
\(908\) 5.76067 32.6704i 0.191174 1.08420i
\(909\) 0 0
\(910\) −3.84964 21.8324i −0.127614 0.723737i
\(911\) 5.68443 + 2.85483i 0.188334 + 0.0945846i 0.540467 0.841365i \(-0.318247\pi\)
−0.352134 + 0.935950i \(0.614544\pi\)
\(912\) 0 0
\(913\) 10.8841 1.27217i 0.360210 0.0421026i
\(914\) −4.23536 2.78564i −0.140093 0.0921408i
\(915\) 0 0
\(916\) −3.86735 + 12.9178i −0.127781 + 0.426818i
\(917\) −10.5602 18.2909i −0.348730 0.604018i
\(918\) 0 0
\(919\) 23.2884 40.3367i 0.768213 1.33058i −0.170318 0.985389i \(-0.554480\pi\)
0.938531 0.345194i \(-0.112187\pi\)
\(920\) −10.1445 10.7526i −0.334455 0.354502i
\(921\) 0 0
\(922\) 0.847673 14.5540i 0.0279166 0.479310i
\(923\) −3.04882 + 7.06797i −0.100353 + 0.232645i
\(924\) 0 0
\(925\) −0.209486 3.59673i −0.00688785 0.118260i
\(926\) −23.0942 8.40558i −0.758921 0.276225i
\(927\) 0 0
\(928\) 30.0728 10.9456i 0.987189 0.359307i
\(929\) 17.7858 + 41.2322i 0.583535 + 1.35279i 0.912745 + 0.408529i \(0.133958\pi\)
−0.329210 + 0.944257i \(0.606783\pi\)
\(930\) 0 0
\(931\) −31.7113 7.51573i −1.03930 0.246318i
\(932\) −22.7528 5.39251i −0.745293 0.176638i
\(933\) 0 0
\(934\) −2.17811 5.04943i −0.0712700 0.165222i
\(935\) 23.0638 8.39454i 0.754267 0.274531i
\(936\) 0 0
\(937\) −48.3251 17.5889i −1.57871 0.574605i −0.603790 0.797144i \(-0.706343\pi\)
−0.974924 + 0.222539i \(0.928565\pi\)
\(938\) −0.924311 15.8698i −0.0301798 0.518168i
\(939\) 0 0
\(940\) −15.7428 + 36.4960i −0.513474 + 1.19037i
\(941\) 0.606271 10.4093i 0.0197639 0.339333i −0.973903 0.226965i \(-0.927120\pi\)
0.993667 0.112367i \(-0.0358434\pi\)
\(942\) 0 0
\(943\) 15.4996 + 16.4286i 0.504737 + 0.534990i
\(944\) −8.90994 + 15.4325i −0.289994 + 0.502284i
\(945\) 0 0
\(946\) −7.65361 13.2564i −0.248840 0.431004i
\(947\) 12.9484 43.2508i 0.420767 1.40546i −0.440703 0.897653i \(-0.645271\pi\)
0.861470 0.507808i \(-0.169544\pi\)
\(948\) 0 0
\(949\) 12.8041 + 8.42138i 0.415638 + 0.273370i
\(950\) 2.84682 0.332745i 0.0923630 0.0107957i
\(951\) 0 0
\(952\) −28.5572 14.3420i −0.925544 0.464826i
\(953\) −5.08752 28.8527i −0.164801 0.934632i −0.949270 0.314463i \(-0.898175\pi\)
0.784469 0.620168i \(-0.212936\pi\)
\(954\) 0 0
\(955\) 1.87491 10.6331i 0.0606705 0.344080i
\(956\) −3.36901 + 4.52537i −0.108962 + 0.146361i
\(957\) 0 0
\(958\) 1.15869 1.22814i 0.0374356 0.0396794i
\(959\) 2.24199 + 7.48877i 0.0723977 + 0.241825i
\(960\) 0 0
\(961\) −10.1815 1.19005i −0.328435 0.0383886i
\(962\) −4.49273 3.76985i −0.144851 0.121545i
\(963\) 0 0
\(964\) 27.4013 22.9924i 0.882536 0.740536i
\(965\) −5.95071 + 3.91384i −0.191560 + 0.125991i
\(966\) 0 0
\(967\) 27.9986 + 37.6086i 0.900374 + 1.20941i 0.977190 + 0.212367i \(0.0681172\pi\)
−0.0768159 + 0.997045i \(0.524475\pi\)
\(968\) 4.70569 2.36329i 0.151247 0.0759590i
\(969\) 0 0
\(970\) −11.5686 + 2.74180i −0.371444 + 0.0880340i
\(971\) −45.6691 −1.46559 −0.732795 0.680449i \(-0.761785\pi\)
−0.732795 + 0.680449i \(0.761785\pi\)
\(972\) 0 0
\(973\) 38.4797 1.23360
\(974\) 10.5302 2.49570i 0.337409 0.0799673i
\(975\) 0 0
\(976\) 12.6184 6.33719i 0.403905 0.202848i
\(977\) 0.740310 + 0.994408i 0.0236846 + 0.0318139i 0.813808 0.581134i \(-0.197391\pi\)
−0.790123 + 0.612948i \(0.789983\pi\)
\(978\) 0 0
\(979\) 30.9096 20.3296i 0.987877 0.649737i
\(980\) −29.8126 + 25.0157i −0.952329 + 0.799099i
\(981\) 0 0
\(982\) 18.4847 + 15.5105i 0.589869 + 0.494959i
\(983\) −36.3380 4.24731i −1.15900 0.135468i −0.485217 0.874394i \(-0.661259\pi\)
−0.673787 + 0.738926i \(0.735333\pi\)
\(984\) 0 0
\(985\) −15.3173 51.1634i −0.488050 1.63020i
\(986\) 8.33360 8.83310i 0.265396 0.281303i
\(987\) 0 0
\(988\) −9.95317 + 13.3694i −0.316652 + 0.425338i
\(989\) 3.38850 19.2172i 0.107748 0.611070i
\(990\) 0 0
\(991\) −7.21791 40.9348i −0.229285 1.30034i −0.854323 0.519743i \(-0.826028\pi\)
0.625038 0.780594i \(-0.285083\pi\)
\(992\) 32.9945 + 16.5705i 1.04758 + 0.526113i
\(993\) 0 0
\(994\) −6.41116 + 0.749358i −0.203350 + 0.0237682i
\(995\) −20.4376 13.4420i −0.647916 0.426141i
\(996\) 0 0
\(997\) −6.06973 + 20.2743i −0.192230 + 0.642094i 0.806477 + 0.591265i \(0.201371\pi\)
−0.998707 + 0.0508285i \(0.983814\pi\)
\(998\) 10.4952 + 18.1782i 0.332220 + 0.575421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.118.5 144
3.2 odd 2 81.2.g.a.76.4 yes 144
9.2 odd 6 729.2.g.d.109.5 144
9.4 even 3 729.2.g.b.352.4 144
9.5 odd 6 729.2.g.c.352.5 144
9.7 even 3 729.2.g.a.109.4 144
81.4 even 27 6561.2.a.d.1.42 72
81.11 odd 54 729.2.g.c.379.5 144
81.16 even 27 inner 243.2.g.a.208.5 144
81.38 odd 54 729.2.g.d.622.5 144
81.43 even 27 729.2.g.a.622.4 144
81.65 odd 54 81.2.g.a.16.4 144
81.70 even 27 729.2.g.b.379.4 144
81.77 odd 54 6561.2.a.c.1.31 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.4 144 81.65 odd 54
81.2.g.a.76.4 yes 144 3.2 odd 2
243.2.g.a.118.5 144 1.1 even 1 trivial
243.2.g.a.208.5 144 81.16 even 27 inner
729.2.g.a.109.4 144 9.7 even 3
729.2.g.a.622.4 144 81.43 even 27
729.2.g.b.352.4 144 9.4 even 3
729.2.g.b.379.4 144 81.70 even 27
729.2.g.c.352.5 144 9.5 odd 6
729.2.g.c.379.5 144 81.11 odd 54
729.2.g.d.109.5 144 9.2 odd 6
729.2.g.d.622.5 144 81.38 odd 54
6561.2.a.c.1.31 72 81.77 odd 54
6561.2.a.d.1.42 72 81.4 even 27