Properties

Label 243.2.g.a.118.3
Level $243$
Weight $2$
Character 243.118
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 118.3
Character \(\chi\) \(=\) 243.118
Dual form 243.2.g.a.208.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.658400 + 0.156044i) q^{2} +(-1.37812 + 0.692120i) q^{4} +(-0.563225 - 0.756542i) q^{5} +(1.22035 - 0.802640i) q^{7} +(1.83603 - 1.54061i) q^{8} +(0.488880 + 0.410219i) q^{10} +(6.07936 + 0.710575i) q^{11} +(1.50478 + 5.02631i) q^{13} +(-0.678234 + 0.718886i) q^{14} +(0.873392 - 1.17317i) q^{16} +(0.00536485 - 0.0304256i) q^{17} +(0.634963 + 3.60105i) q^{19} +(1.29981 + 0.652790i) q^{20} +(-4.11353 + 0.480802i) q^{22} +(0.0873480 + 0.0574497i) q^{23} +(1.17888 - 3.93774i) q^{25} +(-1.77507 - 3.07451i) q^{26} +(-1.12628 + 1.95077i) q^{28} +(0.351839 + 0.372928i) q^{29} +(0.475004 - 8.15551i) q^{31} +(-2.29059 + 5.31019i) q^{32} +(0.00121550 + 0.0208694i) q^{34} +(-1.29456 - 0.471183i) q^{35} +(5.42328 - 1.97391i) q^{37} +(-0.979980 - 2.27185i) q^{38} +(-2.19963 - 0.521322i) q^{40} +(-4.26774 - 1.01147i) q^{41} +(0.545274 + 1.26409i) q^{43} +(-8.86991 + 3.22838i) q^{44} +(-0.0664745 - 0.0241947i) q^{46} +(0.326176 + 5.60023i) q^{47} +(-1.92752 + 4.46850i) q^{49} +(-0.161716 + 2.77656i) q^{50} +(-5.55259 - 5.88540i) q^{52} +(4.89106 - 8.47157i) q^{53} +(-2.88646 - 4.99950i) q^{55} +(1.00405 - 3.35376i) q^{56} +(-0.289844 - 0.190633i) q^{58} +(-5.61120 + 0.655856i) q^{59} +(1.53507 + 0.770942i) q^{61} +(0.959872 + 5.44370i) q^{62} +(0.171556 - 0.972942i) q^{64} +(2.95509 - 3.96937i) q^{65} +(-1.87870 + 1.99130i) q^{67} +(0.0136647 + 0.0456434i) q^{68} +(0.925866 + 0.108218i) q^{70} +(-1.66448 - 1.39666i) q^{71} +(-6.38204 + 5.35517i) q^{73} +(-3.26267 + 2.14589i) q^{74} +(-3.36742 - 4.52323i) q^{76} +(7.98930 - 4.01238i) q^{77} +(-12.2728 + 2.90871i) q^{79} -1.37947 q^{80} +2.96771 q^{82} +(-17.3440 + 4.11059i) q^{83} +(-0.0260399 + 0.0130777i) q^{85} +(-0.556260 - 0.747187i) q^{86} +(12.2566 - 8.06128i) q^{88} +(10.6853 - 8.96604i) q^{89} +(5.87068 + 4.92609i) q^{91} +(-0.160139 - 0.0187175i) q^{92} +(-1.08863 - 3.63629i) q^{94} +(2.36672 - 2.50858i) q^{95} +(-4.18690 + 5.62398i) q^{97} +(0.571800 - 3.24284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{25}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.658400 + 0.156044i −0.465559 + 0.110339i −0.456699 0.889621i \(-0.650968\pi\)
−0.00885983 + 0.999961i \(0.502820\pi\)
\(3\) 0 0
\(4\) −1.37812 + 0.692120i −0.689062 + 0.346060i
\(5\) −0.563225 0.756542i −0.251882 0.338336i 0.658141 0.752895i \(-0.271343\pi\)
−0.910022 + 0.414559i \(0.863936\pi\)
\(6\) 0 0
\(7\) 1.22035 0.802640i 0.461251 0.303369i −0.297534 0.954711i \(-0.596164\pi\)
0.758784 + 0.651342i \(0.225794\pi\)
\(8\) 1.83603 1.54061i 0.649133 0.544688i
\(9\) 0 0
\(10\) 0.488880 + 0.410219i 0.154598 + 0.129723i
\(11\) 6.07936 + 0.710575i 1.83299 + 0.214246i 0.961243 0.275702i \(-0.0889103\pi\)
0.871751 + 0.489948i \(0.162984\pi\)
\(12\) 0 0
\(13\) 1.50478 + 5.02631i 0.417351 + 1.39405i 0.865867 + 0.500274i \(0.166767\pi\)
−0.448516 + 0.893775i \(0.648047\pi\)
\(14\) −0.678234 + 0.718886i −0.181266 + 0.192130i
\(15\) 0 0
\(16\) 0.873392 1.17317i 0.218348 0.293292i
\(17\) 0.00536485 0.0304256i 0.00130117 0.00737929i −0.984150 0.177337i \(-0.943252\pi\)
0.985451 + 0.169957i \(0.0543630\pi\)
\(18\) 0 0
\(19\) 0.634963 + 3.60105i 0.145670 + 0.826138i 0.966826 + 0.255434i \(0.0822184\pi\)
−0.821156 + 0.570704i \(0.806670\pi\)
\(20\) 1.29981 + 0.652790i 0.290647 + 0.145968i
\(21\) 0 0
\(22\) −4.11353 + 0.480802i −0.877007 + 0.102507i
\(23\) 0.0873480 + 0.0574497i 0.0182133 + 0.0119791i 0.558583 0.829449i \(-0.311345\pi\)
−0.540370 + 0.841428i \(0.681716\pi\)
\(24\) 0 0
\(25\) 1.17888 3.93774i 0.235776 0.787548i
\(26\) −1.77507 3.07451i −0.348120 0.602961i
\(27\) 0 0
\(28\) −1.12628 + 1.95077i −0.212846 + 0.368661i
\(29\) 0.351839 + 0.372928i 0.0653349 + 0.0692509i 0.759216 0.650838i \(-0.225582\pi\)
−0.693882 + 0.720089i \(0.744101\pi\)
\(30\) 0 0
\(31\) 0.475004 8.15551i 0.0853133 1.46477i −0.635746 0.771898i \(-0.719307\pi\)
0.721059 0.692874i \(-0.243656\pi\)
\(32\) −2.29059 + 5.31019i −0.404924 + 0.938718i
\(33\) 0 0
\(34\) 0.00121550 + 0.0208694i 0.000208457 + 0.00357906i
\(35\) −1.29456 0.471183i −0.218821 0.0796444i
\(36\) 0 0
\(37\) 5.42328 1.97391i 0.891581 0.324509i 0.144707 0.989475i \(-0.453776\pi\)
0.746874 + 0.664965i \(0.231554\pi\)
\(38\) −0.979980 2.27185i −0.158974 0.368543i
\(39\) 0 0
\(40\) −2.19963 0.521322i −0.347792 0.0824282i
\(41\) −4.26774 1.01147i −0.666509 0.157966i −0.116586 0.993181i \(-0.537195\pi\)
−0.549924 + 0.835215i \(0.685343\pi\)
\(42\) 0 0
\(43\) 0.545274 + 1.26409i 0.0831534 + 0.192771i 0.954720 0.297506i \(-0.0961548\pi\)
−0.871567 + 0.490277i \(0.836896\pi\)
\(44\) −8.86991 + 3.22838i −1.33719 + 0.486697i
\(45\) 0 0
\(46\) −0.0664745 0.0241947i −0.00980113 0.00356732i
\(47\) 0.326176 + 5.60023i 0.0475777 + 0.816877i 0.934721 + 0.355383i \(0.115649\pi\)
−0.887143 + 0.461494i \(0.847313\pi\)
\(48\) 0 0
\(49\) −1.92752 + 4.46850i −0.275361 + 0.638358i
\(50\) −0.161716 + 2.77656i −0.0228702 + 0.392666i
\(51\) 0 0
\(52\) −5.55259 5.88540i −0.770005 0.816158i
\(53\) 4.89106 8.47157i 0.671839 1.16366i −0.305543 0.952178i \(-0.598838\pi\)
0.977382 0.211481i \(-0.0678288\pi\)
\(54\) 0 0
\(55\) −2.88646 4.99950i −0.389211 0.674132i
\(56\) 1.00405 3.35376i 0.134172 0.448165i
\(57\) 0 0
\(58\) −0.289844 0.190633i −0.0380583 0.0250314i
\(59\) −5.61120 + 0.655856i −0.730517 + 0.0853851i −0.473216 0.880946i \(-0.656907\pi\)
−0.257300 + 0.966331i \(0.582833\pi\)
\(60\) 0 0
\(61\) 1.53507 + 0.770942i 0.196546 + 0.0987090i 0.544350 0.838858i \(-0.316776\pi\)
−0.347804 + 0.937567i \(0.613073\pi\)
\(62\) 0.959872 + 5.44370i 0.121904 + 0.691351i
\(63\) 0 0
\(64\) 0.171556 0.972942i 0.0214445 0.121618i
\(65\) 2.95509 3.96937i 0.366534 0.492340i
\(66\) 0 0
\(67\) −1.87870 + 1.99130i −0.229520 + 0.243277i −0.831891 0.554940i \(-0.812741\pi\)
0.602371 + 0.798216i \(0.294223\pi\)
\(68\) 0.0136647 + 0.0456434i 0.00165709 + 0.00553508i
\(69\) 0 0
\(70\) 0.925866 + 0.108218i 0.110662 + 0.0129345i
\(71\) −1.66448 1.39666i −0.197537 0.165753i 0.538654 0.842527i \(-0.318933\pi\)
−0.736191 + 0.676774i \(0.763377\pi\)
\(72\) 0 0
\(73\) −6.38204 + 5.35517i −0.746961 + 0.626775i −0.934697 0.355445i \(-0.884329\pi\)
0.187736 + 0.982219i \(0.439885\pi\)
\(74\) −3.26267 + 2.14589i −0.379277 + 0.249455i
\(75\) 0 0
\(76\) −3.36742 4.52323i −0.386269 0.518850i
\(77\) 7.98930 4.01238i 0.910466 0.457253i
\(78\) 0 0
\(79\) −12.2728 + 2.90871i −1.38080 + 0.327256i −0.852911 0.522056i \(-0.825165\pi\)
−0.527891 + 0.849312i \(0.677017\pi\)
\(80\) −1.37947 −0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) −17.3440 + 4.11059i −1.90375 + 0.451196i −0.904029 + 0.427471i \(0.859404\pi\)
−0.999719 + 0.0237250i \(0.992447\pi\)
\(84\) 0 0
\(85\) −0.0260399 + 0.0130777i −0.00282442 + 0.00141848i
\(86\) −0.556260 0.747187i −0.0599831 0.0805713i
\(87\) 0 0
\(88\) 12.2566 8.06128i 1.30656 0.859335i
\(89\) 10.6853 8.96604i 1.13264 0.950399i 0.133468 0.991053i \(-0.457389\pi\)
0.999173 + 0.0406545i \(0.0129443\pi\)
\(90\) 0 0
\(91\) 5.87068 + 4.92609i 0.615415 + 0.516394i
\(92\) −0.160139 0.0187175i −0.0166956 0.00195143i
\(93\) 0 0
\(94\) −1.08863 3.63629i −0.112284 0.375055i
\(95\) 2.36672 2.50858i 0.242820 0.257375i
\(96\) 0 0
\(97\) −4.18690 + 5.62398i −0.425115 + 0.571029i −0.962146 0.272534i \(-0.912138\pi\)
0.537031 + 0.843562i \(0.319546\pi\)
\(98\) 0.571800 3.24284i 0.0577605 0.327576i
\(99\) 0 0
\(100\) 1.10074 + 6.24263i 0.110074 + 0.624263i
\(101\) 7.76637 + 3.90042i 0.772782 + 0.388106i 0.791069 0.611727i \(-0.209525\pi\)
−0.0182867 + 0.999833i \(0.505821\pi\)
\(102\) 0 0
\(103\) 5.09302 0.595289i 0.501830 0.0586556i 0.138588 0.990350i \(-0.455744\pi\)
0.363243 + 0.931695i \(0.381670\pi\)
\(104\) 10.5064 + 6.91017i 1.03024 + 0.677598i
\(105\) 0 0
\(106\) −1.89834 + 6.34090i −0.184383 + 0.615882i
\(107\) 4.97642 + 8.61941i 0.481089 + 0.833270i 0.999765 0.0217011i \(-0.00690820\pi\)
−0.518676 + 0.854971i \(0.673575\pi\)
\(108\) 0 0
\(109\) 6.36856 11.0307i 0.609997 1.05655i −0.381243 0.924475i \(-0.624504\pi\)
0.991240 0.132071i \(-0.0421627\pi\)
\(110\) 2.68059 + 2.84126i 0.255584 + 0.270903i
\(111\) 0 0
\(112\) 0.124216 2.13270i 0.0117373 0.201521i
\(113\) −2.27623 + 5.27688i −0.214129 + 0.496408i −0.991098 0.133131i \(-0.957497\pi\)
0.776969 + 0.629539i \(0.216756\pi\)
\(114\) 0 0
\(115\) −0.00573345 0.0984395i −0.000534647 0.00917953i
\(116\) −0.742989 0.270426i −0.0689848 0.0251084i
\(117\) 0 0
\(118\) 3.59207 1.30741i 0.330677 0.120357i
\(119\) −0.0178738 0.0414361i −0.00163849 0.00379844i
\(120\) 0 0
\(121\) 25.7502 + 6.10290i 2.34092 + 0.554809i
\(122\) −1.13099 0.268050i −0.102395 0.0242681i
\(123\) 0 0
\(124\) 4.98998 + 11.5681i 0.448113 + 1.03884i
\(125\) −8.07451 + 2.93888i −0.722206 + 0.262862i
\(126\) 0 0
\(127\) −9.96192 3.62584i −0.883977 0.321741i −0.140163 0.990128i \(-0.544763\pi\)
−0.743814 + 0.668387i \(0.766985\pi\)
\(128\) −0.633653 10.8794i −0.0560075 0.961612i
\(129\) 0 0
\(130\) −1.32623 + 3.07456i −0.116318 + 0.269656i
\(131\) 0.829365 14.2396i 0.0724619 1.24412i −0.744575 0.667538i \(-0.767348\pi\)
0.817037 0.576585i \(-0.195615\pi\)
\(132\) 0 0
\(133\) 3.66523 + 3.88491i 0.317815 + 0.336865i
\(134\) 0.926205 1.60423i 0.0800119 0.138585i
\(135\) 0 0
\(136\) −0.0370239 0.0641273i −0.00317478 0.00549887i
\(137\) 1.53043 5.11200i 0.130754 0.436748i −0.867391 0.497626i \(-0.834205\pi\)
0.998145 + 0.0608786i \(0.0193902\pi\)
\(138\) 0 0
\(139\) 3.42061 + 2.24977i 0.290133 + 0.190823i 0.686229 0.727386i \(-0.259265\pi\)
−0.396096 + 0.918209i \(0.629635\pi\)
\(140\) 2.11019 0.246645i 0.178343 0.0208453i
\(141\) 0 0
\(142\) 1.31383 + 0.659830i 0.110254 + 0.0553717i
\(143\) 5.57652 + 31.6260i 0.466332 + 2.64470i
\(144\) 0 0
\(145\) 0.0839709 0.476223i 0.00697341 0.0395482i
\(146\) 3.36629 4.52172i 0.278596 0.374220i
\(147\) 0 0
\(148\) −6.10777 + 6.47386i −0.502056 + 0.532148i
\(149\) −5.41385 18.0835i −0.443520 1.48146i −0.829266 0.558855i \(-0.811241\pi\)
0.385746 0.922605i \(-0.373944\pi\)
\(150\) 0 0
\(151\) 3.05960 + 0.357617i 0.248987 + 0.0291024i 0.239671 0.970854i \(-0.422960\pi\)
0.00931618 + 0.999957i \(0.497035\pi\)
\(152\) 6.71362 + 5.63340i 0.544547 + 0.456929i
\(153\) 0 0
\(154\) −4.63405 + 3.88843i −0.373422 + 0.313338i
\(155\) −6.43752 + 4.23402i −0.517074 + 0.340085i
\(156\) 0 0
\(157\) −2.04742 2.75017i −0.163402 0.219487i 0.712879 0.701287i \(-0.247391\pi\)
−0.876281 + 0.481800i \(0.839983\pi\)
\(158\) 7.62654 3.83019i 0.606735 0.304714i
\(159\) 0 0
\(160\) 5.30750 1.25790i 0.419595 0.0994458i
\(161\) 0.152707 0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) 6.58154 1.55985i 0.513932 0.121804i
\(165\) 0 0
\(166\) 10.7778 5.41283i 0.836522 0.420117i
\(167\) 11.5505 + 15.5151i 0.893808 + 1.20059i 0.978925 + 0.204222i \(0.0654664\pi\)
−0.0851164 + 0.996371i \(0.527126\pi\)
\(168\) 0 0
\(169\) −12.1381 + 7.98337i −0.933702 + 0.614106i
\(170\) 0.0151039 0.0126737i 0.00115842 0.000972029i
\(171\) 0 0
\(172\) −1.62635 1.36467i −0.124008 0.104055i
\(173\) −6.12562 0.715983i −0.465723 0.0544352i −0.120004 0.992773i \(-0.538291\pi\)
−0.345719 + 0.938338i \(0.612365\pi\)
\(174\) 0 0
\(175\) −1.72193 5.75166i −0.130166 0.434784i
\(176\) 6.14328 6.51150i 0.463067 0.490823i
\(177\) 0 0
\(178\) −5.63611 + 7.57061i −0.422445 + 0.567441i
\(179\) 0.601129 3.40917i 0.0449305 0.254814i −0.954066 0.299596i \(-0.903148\pi\)
0.998997 + 0.0447821i \(0.0142593\pi\)
\(180\) 0 0
\(181\) −3.31327 18.7905i −0.246273 1.39668i −0.817517 0.575904i \(-0.804650\pi\)
0.571244 0.820780i \(-0.306461\pi\)
\(182\) −4.63394 2.32725i −0.343490 0.172507i
\(183\) 0 0
\(184\) 0.248881 0.0290900i 0.0183477 0.00214454i
\(185\) −4.54787 2.99118i −0.334366 0.219916i
\(186\) 0 0
\(187\) 0.0542345 0.181156i 0.00396602 0.0132474i
\(188\) −4.32554 7.49206i −0.315473 0.546415i
\(189\) 0 0
\(190\) −1.16680 + 2.02096i −0.0846486 + 0.146616i
\(191\) −13.6753 14.4949i −0.989508 1.04882i −0.998806 0.0488602i \(-0.984441\pi\)
0.00929782 0.999957i \(-0.497040\pi\)
\(192\) 0 0
\(193\) 0.623160 10.6992i 0.0448561 0.770149i −0.898624 0.438720i \(-0.855432\pi\)
0.943480 0.331429i \(-0.107531\pi\)
\(194\) 1.87907 4.35616i 0.134909 0.312754i
\(195\) 0 0
\(196\) −0.436373 7.49223i −0.0311695 0.535160i
\(197\) −22.2725 8.10651i −1.58685 0.577565i −0.610169 0.792272i \(-0.708898\pi\)
−0.976679 + 0.214707i \(0.931120\pi\)
\(198\) 0 0
\(199\) −8.20833 + 2.98759i −0.581873 + 0.211785i −0.616151 0.787628i \(-0.711309\pi\)
0.0342781 + 0.999412i \(0.489087\pi\)
\(200\) −3.90206 9.04599i −0.275917 0.639648i
\(201\) 0 0
\(202\) −5.72201 1.35614i −0.402599 0.0954177i
\(203\) 0.728695 + 0.172704i 0.0511443 + 0.0121214i
\(204\) 0 0
\(205\) 1.63848 + 3.79841i 0.114436 + 0.265293i
\(206\) −3.26035 + 1.18667i −0.227160 + 0.0826793i
\(207\) 0 0
\(208\) 7.21098 + 2.62458i 0.499991 + 0.181982i
\(209\) 1.30135 + 22.3433i 0.0900161 + 1.54552i
\(210\) 0 0
\(211\) −2.88269 + 6.68284i −0.198453 + 0.460065i −0.988162 0.153416i \(-0.950972\pi\)
0.789709 + 0.613482i \(0.210232\pi\)
\(212\) −0.877150 + 15.0601i −0.0602429 + 1.03433i
\(213\) 0 0
\(214\) −4.62148 4.89848i −0.315918 0.334853i
\(215\) 0.649223 1.12449i 0.0442766 0.0766894i
\(216\) 0 0
\(217\) −5.96626 10.3339i −0.405016 0.701508i
\(218\) −2.47179 + 8.25636i −0.167411 + 0.559191i
\(219\) 0 0
\(220\) 7.43816 + 4.89216i 0.501481 + 0.329829i
\(221\) 0.161002 0.0188184i 0.0108301 0.00126586i
\(222\) 0 0
\(223\) 0.668861 + 0.335914i 0.0447902 + 0.0224945i 0.471053 0.882105i \(-0.343874\pi\)
−0.426263 + 0.904599i \(0.640170\pi\)
\(224\) 1.46684 + 8.31884i 0.0980071 + 0.555826i
\(225\) 0 0
\(226\) 0.675242 3.82949i 0.0449164 0.254734i
\(227\) −4.54197 + 6.10092i −0.301461 + 0.404932i −0.926881 0.375356i \(-0.877520\pi\)
0.625420 + 0.780288i \(0.284928\pi\)
\(228\) 0 0
\(229\) 10.7066 11.3484i 0.707514 0.749921i −0.269522 0.962994i \(-0.586866\pi\)
0.977036 + 0.213073i \(0.0683472\pi\)
\(230\) 0.0191357 + 0.0639178i 0.00126177 + 0.00421462i
\(231\) 0 0
\(232\) 1.22052 + 0.142658i 0.0801311 + 0.00936599i
\(233\) 12.6227 + 10.5917i 0.826940 + 0.693885i 0.954586 0.297935i \(-0.0962979\pi\)
−0.127647 + 0.991820i \(0.540742\pi\)
\(234\) 0 0
\(235\) 4.05310 3.40095i 0.264395 0.221854i
\(236\) 7.27901 4.78748i 0.473823 0.311638i
\(237\) 0 0
\(238\) 0.0182339 + 0.0244924i 0.00118193 + 0.00158761i
\(239\) −17.2890 + 8.68288i −1.11834 + 0.561649i −0.909251 0.416249i \(-0.863345\pi\)
−0.209084 + 0.977898i \(0.567048\pi\)
\(240\) 0 0
\(241\) 5.60951 1.32948i 0.361340 0.0856392i −0.0459358 0.998944i \(-0.514627\pi\)
0.407276 + 0.913305i \(0.366479\pi\)
\(242\) −17.9062 −1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) 4.46624 1.05852i 0.285338 0.0676262i
\(246\) 0 0
\(247\) −17.1445 + 8.61031i −1.09088 + 0.547861i
\(248\) −11.6923 15.7055i −0.742463 0.997301i
\(249\) 0 0
\(250\) 4.85766 3.19493i 0.307225 0.202065i
\(251\) 14.4752 12.1462i 0.913668 0.766659i −0.0591449 0.998249i \(-0.518837\pi\)
0.972813 + 0.231591i \(0.0743930\pi\)
\(252\) 0 0
\(253\) 0.490197 + 0.411324i 0.0308184 + 0.0258597i
\(254\) 7.12471 + 0.832759i 0.447044 + 0.0522520i
\(255\) 0 0
\(256\) 2.68155 + 8.95701i 0.167597 + 0.559813i
\(257\) −12.4352 + 13.1805i −0.775685 + 0.822178i −0.987908 0.155043i \(-0.950448\pi\)
0.212222 + 0.977221i \(0.431930\pi\)
\(258\) 0 0
\(259\) 5.03398 6.76181i 0.312796 0.420158i
\(260\) −1.32520 + 7.51557i −0.0821853 + 0.466096i
\(261\) 0 0
\(262\) 1.67595 + 9.50479i 0.103541 + 0.587208i
\(263\) −7.74703 3.89071i −0.477703 0.239911i 0.193620 0.981077i \(-0.437977\pi\)
−0.671323 + 0.741165i \(0.734273\pi\)
\(264\) 0 0
\(265\) −9.16387 + 1.07110i −0.562932 + 0.0657973i
\(266\) −3.01940 1.98589i −0.185131 0.121763i
\(267\) 0 0
\(268\) 1.21086 4.04455i 0.0739650 0.247060i
\(269\) 5.59305 + 9.68745i 0.341014 + 0.590654i 0.984621 0.174702i \(-0.0558962\pi\)
−0.643607 + 0.765356i \(0.722563\pi\)
\(270\) 0 0
\(271\) 5.08705 8.81103i 0.309016 0.535232i −0.669131 0.743144i \(-0.733334\pi\)
0.978147 + 0.207912i \(0.0666669\pi\)
\(272\) −0.0310087 0.0328673i −0.00188018 0.00199288i
\(273\) 0 0
\(274\) −0.209941 + 3.60456i −0.0126830 + 0.217759i
\(275\) 9.96490 23.1012i 0.600906 1.39306i
\(276\) 0 0
\(277\) 0.0757068 + 1.29984i 0.00454878 + 0.0780996i 0.999819 0.0190505i \(-0.00606434\pi\)
−0.995270 + 0.0971501i \(0.969027\pi\)
\(278\) −2.60319 0.947485i −0.156129 0.0568264i
\(279\) 0 0
\(280\) −3.10276 + 1.12931i −0.185425 + 0.0674894i
\(281\) 2.53880 + 5.88560i 0.151452 + 0.351105i 0.977004 0.213221i \(-0.0683953\pi\)
−0.825552 + 0.564326i \(0.809136\pi\)
\(282\) 0 0
\(283\) −18.6018 4.40871i −1.10576 0.262071i −0.363110 0.931746i \(-0.618285\pi\)
−0.742654 + 0.669675i \(0.766433\pi\)
\(284\) 3.26051 + 0.772756i 0.193476 + 0.0458546i
\(285\) 0 0
\(286\) −8.60661 19.9524i −0.508920 1.17981i
\(287\) −6.02001 + 2.19110i −0.355350 + 0.129337i
\(288\) 0 0
\(289\) 15.9739 + 5.81402i 0.939640 + 0.342001i
\(290\) 0.0190251 + 0.326648i 0.00111719 + 0.0191814i
\(291\) 0 0
\(292\) 5.08883 11.7972i 0.297801 0.690380i
\(293\) −0.106176 + 1.82297i −0.00620287 + 0.106499i −0.999988 0.00481246i \(-0.998468\pi\)
0.993786 + 0.111312i \(0.0355052\pi\)
\(294\) 0 0
\(295\) 3.65655 + 3.87572i 0.212893 + 0.225653i
\(296\) 6.91625 11.9793i 0.401999 0.696283i
\(297\) 0 0
\(298\) 6.38629 + 11.0614i 0.369948 + 0.640769i
\(299\) −0.157321 + 0.525488i −0.00909809 + 0.0303897i
\(300\) 0 0
\(301\) 1.68003 + 1.10497i 0.0968355 + 0.0636897i
\(302\) −2.07025 + 0.241977i −0.119129 + 0.0139242i
\(303\) 0 0
\(304\) 4.77921 + 2.40021i 0.274107 + 0.137662i
\(305\) −0.281340 1.59556i −0.0161095 0.0913614i
\(306\) 0 0
\(307\) −2.60207 + 14.7571i −0.148508 + 0.842232i 0.815975 + 0.578087i \(0.196201\pi\)
−0.964483 + 0.264145i \(0.914910\pi\)
\(308\) −8.23321 + 11.0591i −0.469131 + 0.630152i
\(309\) 0 0
\(310\) 3.57777 3.79221i 0.203203 0.215383i
\(311\) 5.92528 + 19.7918i 0.335992 + 1.12229i 0.944436 + 0.328695i \(0.106609\pi\)
−0.608444 + 0.793597i \(0.708206\pi\)
\(312\) 0 0
\(313\) −22.1725 2.59159i −1.25326 0.146486i −0.536559 0.843863i \(-0.680276\pi\)
−0.716704 + 0.697377i \(0.754350\pi\)
\(314\) 1.77717 + 1.49122i 0.100291 + 0.0841545i
\(315\) 0 0
\(316\) 14.9003 12.5028i 0.838208 0.703340i
\(317\) 9.49125 6.24250i 0.533082 0.350614i −0.254254 0.967137i \(-0.581830\pi\)
0.787336 + 0.616524i \(0.211460\pi\)
\(318\) 0 0
\(319\) 1.87396 + 2.51717i 0.104922 + 0.140934i
\(320\) −0.832696 + 0.418196i −0.0465491 + 0.0233778i
\(321\) 0 0
\(322\) −0.100542 + 0.0238289i −0.00560299 + 0.00132793i
\(323\) 0.112971 0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) 12.9804 3.07641i 0.718917 0.170386i
\(327\) 0 0
\(328\) −9.39397 + 4.71783i −0.518695 + 0.260499i
\(329\) 4.89302 + 6.57246i 0.269761 + 0.362351i
\(330\) 0 0
\(331\) −12.0371 + 7.91690i −0.661617 + 0.435152i −0.835408 0.549630i \(-0.814769\pi\)
0.173791 + 0.984783i \(0.444398\pi\)
\(332\) 21.0571 17.6690i 1.15566 0.969714i
\(333\) 0 0
\(334\) −10.0259 8.41273i −0.548593 0.460324i
\(335\) 2.56464 + 0.299763i 0.140121 + 0.0163778i
\(336\) 0 0
\(337\) 2.84153 + 9.49138i 0.154788 + 0.517029i 0.999844 0.0176492i \(-0.00561820\pi\)
−0.845056 + 0.534678i \(0.820433\pi\)
\(338\) 6.74599 7.15033i 0.366933 0.388927i
\(339\) 0 0
\(340\) 0.0268348 0.0360454i 0.00145532 0.00195484i
\(341\) 8.68281 49.2427i 0.470201 2.66664i
\(342\) 0 0
\(343\) 3.00981 + 17.0695i 0.162514 + 0.921665i
\(344\) 2.94860 + 1.48084i 0.158978 + 0.0798417i
\(345\) 0 0
\(346\) 4.14483 0.484462i 0.222828 0.0260448i
\(347\) −2.82247 1.85637i −0.151518 0.0996552i 0.471486 0.881874i \(-0.343718\pi\)
−0.623004 + 0.782218i \(0.714088\pi\)
\(348\) 0 0
\(349\) 0.381429 1.27406i 0.0204174 0.0681990i −0.947174 0.320721i \(-0.896075\pi\)
0.967591 + 0.252522i \(0.0812600\pi\)
\(350\) 2.03123 + 3.51819i 0.108574 + 0.188055i
\(351\) 0 0
\(352\) −17.6986 + 30.6549i −0.943340 + 1.63391i
\(353\) 8.09324 + 8.57833i 0.430760 + 0.456579i 0.906000 0.423277i \(-0.139120\pi\)
−0.475240 + 0.879856i \(0.657639\pi\)
\(354\) 0 0
\(355\) −0.119159 + 2.04588i −0.00632430 + 0.108584i
\(356\) −8.52012 + 19.7518i −0.451565 + 1.04685i
\(357\) 0 0
\(358\) 0.136196 + 2.33840i 0.00719820 + 0.123588i
\(359\) −27.9195 10.1619i −1.47353 0.536323i −0.524477 0.851425i \(-0.675739\pi\)
−0.949058 + 0.315102i \(0.897961\pi\)
\(360\) 0 0
\(361\) 5.28976 1.92531i 0.278408 0.101332i
\(362\) 5.11358 + 11.8546i 0.268764 + 0.623065i
\(363\) 0 0
\(364\) −11.5000 2.72555i −0.602763 0.142857i
\(365\) 7.64593 + 1.81212i 0.400206 + 0.0948506i
\(366\) 0 0
\(367\) −3.17934 7.37053i −0.165960 0.384738i 0.814859 0.579659i \(-0.196814\pi\)
−0.980819 + 0.194921i \(0.937555\pi\)
\(368\) 0.143687 0.0522978i 0.00749021 0.00272621i
\(369\) 0 0
\(370\) 3.46107 + 1.25973i 0.179933 + 0.0654901i
\(371\) −0.830788 14.2641i −0.0431324 0.740554i
\(372\) 0 0
\(373\) −1.18579 + 2.74898i −0.0613980 + 0.142337i −0.946153 0.323720i \(-0.895066\pi\)
0.884755 + 0.466057i \(0.154326\pi\)
\(374\) −0.00743977 + 0.127736i −0.000384701 + 0.00660507i
\(375\) 0 0
\(376\) 9.22663 + 9.77966i 0.475827 + 0.504347i
\(377\) −1.34501 + 2.32963i −0.0692716 + 0.119982i
\(378\) 0 0
\(379\) 11.0537 + 19.1456i 0.567792 + 0.983444i 0.996784 + 0.0801362i \(0.0255355\pi\)
−0.428992 + 0.903308i \(0.641131\pi\)
\(380\) −1.52540 + 5.09519i −0.0782513 + 0.261378i
\(381\) 0 0
\(382\) 11.2656 + 7.40952i 0.576400 + 0.379104i
\(383\) 14.2605 1.66682i 0.728680 0.0851705i 0.256340 0.966587i \(-0.417483\pi\)
0.472340 + 0.881416i \(0.343409\pi\)
\(384\) 0 0
\(385\) −7.53530 3.78437i −0.384035 0.192869i
\(386\) 1.25926 + 7.14162i 0.0640947 + 0.363499i
\(387\) 0 0
\(388\) 1.87760 10.6484i 0.0953206 0.540590i
\(389\) 10.8862 14.6227i 0.551953 0.741401i −0.435348 0.900262i \(-0.643375\pi\)
0.987301 + 0.158861i \(0.0507821\pi\)
\(390\) 0 0
\(391\) 0.00221655 0.00234941i 0.000112096 0.000118815i
\(392\) 3.34523 + 11.1739i 0.168960 + 0.564365i
\(393\) 0 0
\(394\) 15.9291 + 1.86185i 0.802499 + 0.0937987i
\(395\) 9.11293 + 7.64665i 0.458521 + 0.384745i
\(396\) 0 0
\(397\) 1.06250 0.891545i 0.0533255 0.0447454i −0.615735 0.787953i \(-0.711141\pi\)
0.669061 + 0.743208i \(0.266697\pi\)
\(398\) 4.93817 3.24788i 0.247528 0.162802i
\(399\) 0 0
\(400\) −3.59001 4.82222i −0.179500 0.241111i
\(401\) −19.7370 + 9.91231i −0.985620 + 0.494997i −0.867197 0.497966i \(-0.834080\pi\)
−0.118424 + 0.992963i \(0.537784\pi\)
\(402\) 0 0
\(403\) 41.7069 9.88472i 2.07757 0.492393i
\(404\) −13.4026 −0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) 34.3726 8.14647i 1.70379 0.403805i
\(408\) 0 0
\(409\) 0.515967 0.259128i 0.0255129 0.0128131i −0.435997 0.899948i \(-0.643604\pi\)
0.461510 + 0.887135i \(0.347308\pi\)
\(410\) −1.67149 2.24520i −0.0825490 0.110883i
\(411\) 0 0
\(412\) −6.60681 + 4.34537i −0.325494 + 0.214081i
\(413\) −6.32124 + 5.30415i −0.311048 + 0.261000i
\(414\) 0 0
\(415\) 12.8784 + 10.8062i 0.632175 + 0.530458i
\(416\) −30.1375 3.52257i −1.47761 0.172708i
\(417\) 0 0
\(418\) −4.34333 14.5077i −0.212439 0.709596i
\(419\) −8.66829 + 9.18785i −0.423474 + 0.448856i −0.903622 0.428332i \(-0.859101\pi\)
0.480148 + 0.877187i \(0.340583\pi\)
\(420\) 0 0
\(421\) 12.7947 17.1863i 0.623577 0.837610i −0.372319 0.928105i \(-0.621437\pi\)
0.995897 + 0.0904947i \(0.0288448\pi\)
\(422\) 0.855151 4.84980i 0.0416281 0.236085i
\(423\) 0 0
\(424\) −4.07126 23.0892i −0.197718 1.12131i
\(425\) −0.113484 0.0569936i −0.00550476 0.00276460i
\(426\) 0 0
\(427\) 2.49212 0.291287i 0.120602 0.0140964i
\(428\) −12.8238 8.43434i −0.619862 0.407689i
\(429\) 0 0
\(430\) −0.251979 + 0.841669i −0.0121515 + 0.0405889i
\(431\) 2.23566 + 3.87227i 0.107688 + 0.186521i 0.914833 0.403832i \(-0.132322\pi\)
−0.807145 + 0.590353i \(0.798989\pi\)
\(432\) 0 0
\(433\) −4.56671 + 7.90977i −0.219462 + 0.380119i −0.954644 0.297751i \(-0.903763\pi\)
0.735182 + 0.677870i \(0.237097\pi\)
\(434\) 5.54072 + 5.87281i 0.265963 + 0.281904i
\(435\) 0 0
\(436\) −1.14212 + 19.6094i −0.0546976 + 0.939122i
\(437\) −0.151417 + 0.351023i −0.00724324 + 0.0167917i
\(438\) 0 0
\(439\) −0.165633 2.84382i −0.00790525 0.135728i −0.999951 0.00985365i \(-0.996863\pi\)
0.992046 0.125874i \(-0.0401736\pi\)
\(440\) −13.0019 4.73230i −0.619841 0.225604i
\(441\) 0 0
\(442\) −0.103067 + 0.0375133i −0.00490239 + 0.00178432i
\(443\) 4.90013 + 11.3598i 0.232812 + 0.539719i 0.994071 0.108729i \(-0.0346779\pi\)
−0.761260 + 0.648447i \(0.775419\pi\)
\(444\) 0 0
\(445\) −12.8014 3.03399i −0.606845 0.143825i
\(446\) −0.492795 0.116795i −0.0233345 0.00553038i
\(447\) 0 0
\(448\) −0.571563 1.32503i −0.0270038 0.0626019i
\(449\) 16.1389 5.87407i 0.761640 0.277214i 0.0681449 0.997675i \(-0.478292\pi\)
0.693495 + 0.720461i \(0.256070\pi\)
\(450\) 0 0
\(451\) −25.2264 9.18166i −1.18786 0.432347i
\(452\) −0.515316 8.84763i −0.0242384 0.416157i
\(453\) 0 0
\(454\) 2.03842 4.72559i 0.0956678 0.221783i
\(455\) 0.420279 7.21591i 0.0197030 0.338287i
\(456\) 0 0
\(457\) −0.607162 0.643554i −0.0284018 0.0301042i 0.713017 0.701147i \(-0.247328\pi\)
−0.741419 + 0.671043i \(0.765847\pi\)
\(458\) −5.27840 + 9.14246i −0.246644 + 0.427199i
\(459\) 0 0
\(460\) 0.0760334 + 0.131694i 0.00354507 + 0.00614025i
\(461\) −4.36853 + 14.5919i −0.203463 + 0.679614i 0.793967 + 0.607961i \(0.208012\pi\)
−0.997430 + 0.0716523i \(0.977173\pi\)
\(462\) 0 0
\(463\) −28.1033 18.4838i −1.30607 0.859016i −0.310277 0.950646i \(-0.600422\pi\)
−0.995793 + 0.0916304i \(0.970792\pi\)
\(464\) 0.744800 0.0870547i 0.0345765 0.00404141i
\(465\) 0 0
\(466\) −9.96354 5.00388i −0.461552 0.231800i
\(467\) −1.91520 10.8616i −0.0886249 0.502617i −0.996515 0.0834093i \(-0.973419\pi\)
0.907890 0.419207i \(-0.137692\pi\)
\(468\) 0 0
\(469\) −0.694378 + 3.93802i −0.0320634 + 0.181841i
\(470\) −2.13786 + 2.87165i −0.0986122 + 0.132459i
\(471\) 0 0
\(472\) −9.29190 + 9.84884i −0.427694 + 0.453330i
\(473\) 2.41668 + 8.07229i 0.111119 + 0.371164i
\(474\) 0 0
\(475\) 14.9286 + 1.74490i 0.684969 + 0.0800614i
\(476\) 0.0533110 + 0.0447333i 0.00244351 + 0.00205035i
\(477\) 0 0
\(478\) 10.0282 8.41465i 0.458679 0.384877i
\(479\) −9.96137 + 6.55170i −0.455147 + 0.299355i −0.756305 0.654220i \(-0.772997\pi\)
0.301158 + 0.953574i \(0.402627\pi\)
\(480\) 0 0
\(481\) 18.0823 + 24.2888i 0.824484 + 1.10747i
\(482\) −3.48584 + 1.75065i −0.158776 + 0.0797401i
\(483\) 0 0
\(484\) −39.7109 + 9.41165i −1.80504 + 0.427802i
\(485\) 6.61294 0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) 4.00615 0.949475i 0.181350 0.0429807i
\(489\) 0 0
\(490\) −2.77540 + 1.39386i −0.125380 + 0.0629680i
\(491\) −2.53169 3.40065i −0.114254 0.153469i 0.741318 0.671154i \(-0.234201\pi\)
−0.855571 + 0.517685i \(0.826794\pi\)
\(492\) 0 0
\(493\) 0.0132341 0.00870421i 0.000596034 0.000392018i
\(494\) 9.94438 8.34432i 0.447419 0.375429i
\(495\) 0 0
\(496\) −9.15292 7.68021i −0.410978 0.344852i
\(497\) −3.15227 0.368447i −0.141398 0.0165271i
\(498\) 0 0
\(499\) −10.7276 35.8326i −0.480232 1.60409i −0.764014 0.645199i \(-0.776774\pi\)
0.283782 0.958889i \(-0.408411\pi\)
\(500\) 9.09362 9.63868i 0.406679 0.431055i
\(501\) 0 0
\(502\) −7.63516 + 10.2558i −0.340774 + 0.457738i
\(503\) −0.0594062 + 0.336909i −0.00264879 + 0.0150220i −0.986104 0.166132i \(-0.946872\pi\)
0.983455 + 0.181154i \(0.0579833\pi\)
\(504\) 0 0
\(505\) −1.42338 8.07239i −0.0633396 0.359217i
\(506\) −0.386930 0.194324i −0.0172011 0.00863874i
\(507\) 0 0
\(508\) 16.2383 1.89798i 0.720457 0.0842094i
\(509\) −5.22506 3.43658i −0.231597 0.152324i 0.428407 0.903586i \(-0.359075\pi\)
−0.660004 + 0.751262i \(0.729445\pi\)
\(510\) 0 0
\(511\) −3.49008 + 11.6577i −0.154392 + 0.515705i
\(512\) 7.73462 + 13.3968i 0.341825 + 0.592059i
\(513\) 0 0
\(514\) 6.13058 10.6185i 0.270408 0.468361i
\(515\) −3.31888 3.51780i −0.146247 0.155013i
\(516\) 0 0
\(517\) −1.99644 + 34.2775i −0.0878033 + 1.50752i
\(518\) −2.25923 + 5.23749i −0.0992650 + 0.230122i
\(519\) 0 0
\(520\) −0.689631 11.8405i −0.0302423 0.519241i
\(521\) −29.5418 10.7523i −1.29425 0.471068i −0.399129 0.916895i \(-0.630687\pi\)
−0.895119 + 0.445827i \(0.852910\pi\)
\(522\) 0 0
\(523\) −20.1279 + 7.32597i −0.880134 + 0.320342i −0.742264 0.670108i \(-0.766248\pi\)
−0.137870 + 0.990450i \(0.544026\pi\)
\(524\) 8.71258 + 20.1980i 0.380611 + 0.882355i
\(525\) 0 0
\(526\) 5.70776 + 1.35276i 0.248870 + 0.0589834i
\(527\) −0.245588 0.0582054i −0.0106980 0.00253547i
\(528\) 0 0
\(529\) −9.10551 21.1089i −0.395892 0.917780i
\(530\) 5.86635 2.13518i 0.254818 0.0927461i
\(531\) 0 0
\(532\) −7.73997 2.81712i −0.335570 0.122138i
\(533\) −1.33803 22.9731i −0.0579564 0.995074i
\(534\) 0 0
\(535\) 3.71810 8.61953i 0.160748 0.372655i
\(536\) −0.381519 + 6.55043i −0.0164791 + 0.282935i
\(537\) 0 0
\(538\) −5.19413 5.50545i −0.223935 0.237357i
\(539\) −14.8933 + 25.7960i −0.641500 + 1.11111i
\(540\) 0 0
\(541\) 0.188033 + 0.325682i 0.00808416 + 0.0140022i 0.870039 0.492983i \(-0.164093\pi\)
−0.861955 + 0.506985i \(0.830760\pi\)
\(542\) −1.97441 + 6.59498i −0.0848081 + 0.283279i
\(543\) 0 0
\(544\) 0.149277 + 0.0981811i 0.00640020 + 0.00420948i
\(545\) −11.9321 + 1.39466i −0.511114 + 0.0597407i
\(546\) 0 0
\(547\) −5.96696 2.99672i −0.255129 0.128131i 0.316639 0.948546i \(-0.397446\pi\)
−0.571767 + 0.820416i \(0.693742\pi\)
\(548\) 1.42899 + 8.10422i 0.0610436 + 0.346195i
\(549\) 0 0
\(550\) −2.95609 + 16.7648i −0.126048 + 0.714854i
\(551\) −1.11953 + 1.50379i −0.0476935 + 0.0640634i
\(552\) 0 0
\(553\) −12.6426 + 13.4003i −0.537616 + 0.569840i
\(554\) −0.252676 0.843998i −0.0107352 0.0358580i
\(555\) 0 0
\(556\) −6.27115 0.732992i −0.265956 0.0310858i
\(557\) −2.30382 1.93313i −0.0976160 0.0819095i 0.592674 0.805443i \(-0.298072\pi\)
−0.690290 + 0.723533i \(0.742517\pi\)
\(558\) 0 0
\(559\) −5.53318 + 4.64289i −0.234028 + 0.196373i
\(560\) −1.68344 + 1.10721i −0.0711383 + 0.0467884i
\(561\) 0 0
\(562\) −2.58995 3.47891i −0.109251 0.146749i
\(563\) 29.3209 14.7255i 1.23573 0.620607i 0.293623 0.955921i \(-0.405139\pi\)
0.942106 + 0.335315i \(0.108843\pi\)
\(564\) 0 0
\(565\) 5.27421 1.25001i 0.221888 0.0525884i
\(566\) 12.9354 0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) −25.4422 + 6.02992i −1.06659 + 0.252787i −0.726191 0.687493i \(-0.758711\pi\)
−0.340402 + 0.940280i \(0.610563\pi\)
\(570\) 0 0
\(571\) −0.715579 + 0.359377i −0.0299461 + 0.0150395i −0.463709 0.885987i \(-0.653482\pi\)
0.433763 + 0.901027i \(0.357185\pi\)
\(572\) −29.5741 39.7250i −1.23656 1.66098i
\(573\) 0 0
\(574\) 3.62166 2.38200i 0.151165 0.0994230i
\(575\) 0.329195 0.276227i 0.0137284 0.0115195i
\(576\) 0 0
\(577\) −32.3968 27.1841i −1.34869 1.13169i −0.979300 0.202416i \(-0.935121\pi\)
−0.369395 0.929273i \(-0.620435\pi\)
\(578\) −11.4244 1.33532i −0.475194 0.0555422i
\(579\) 0 0
\(580\) 0.213881 + 0.714413i 0.00888093 + 0.0296644i
\(581\) −17.8665 + 18.9373i −0.741225 + 0.785653i
\(582\) 0 0
\(583\) 35.7542 48.0262i 1.48079 1.98904i
\(584\) −3.46737 + 19.6644i −0.143481 + 0.813721i
\(585\) 0 0
\(586\) −0.214557 1.21681i −0.00886326 0.0502661i
\(587\) −11.9254 5.98914i −0.492212 0.247198i 0.185338 0.982675i \(-0.440662\pi\)
−0.677550 + 0.735476i \(0.736958\pi\)
\(588\) 0 0
\(589\) 29.6700 3.46793i 1.22253 0.142893i
\(590\) −3.01225 1.98119i −0.124012 0.0815643i
\(591\) 0 0
\(592\) 2.42091 8.08642i 0.0994990 0.332350i
\(593\) 17.2045 + 29.7990i 0.706503 + 1.22370i 0.966147 + 0.257994i \(0.0830615\pi\)
−0.259644 + 0.965704i \(0.583605\pi\)
\(594\) 0 0
\(595\) −0.0212812 + 0.0368601i −0.000872443 + 0.00151112i
\(596\) 19.9769 + 21.1743i 0.818287 + 0.867334i
\(597\) 0 0
\(598\) 0.0215809 0.370530i 0.000882508 0.0151521i
\(599\) 15.8671 36.7842i 0.648314 1.50296i −0.203478 0.979080i \(-0.565224\pi\)
0.851792 0.523881i \(-0.175516\pi\)
\(600\) 0 0
\(601\) 2.51105 + 43.1130i 0.102428 + 1.75862i 0.523905 + 0.851777i \(0.324475\pi\)
−0.421477 + 0.906839i \(0.638488\pi\)
\(602\) −1.27856 0.465357i −0.0521101 0.0189665i
\(603\) 0 0
\(604\) −4.46403 + 1.62477i −0.181639 + 0.0661111i
\(605\) −9.88602 22.9184i −0.401924 0.931764i
\(606\) 0 0
\(607\) 17.1451 + 4.06345i 0.695896 + 0.164930i 0.563316 0.826242i \(-0.309526\pi\)
0.132581 + 0.991172i \(0.457674\pi\)
\(608\) −20.5767 4.87677i −0.834496 0.197779i
\(609\) 0 0
\(610\) 0.434211 + 1.00661i 0.0175807 + 0.0407566i
\(611\) −27.6577 + 10.0666i −1.11891 + 0.407250i
\(612\) 0 0
\(613\) 25.9691 + 9.45198i 1.04888 + 0.381762i 0.808241 0.588852i \(-0.200420\pi\)
0.240641 + 0.970614i \(0.422642\pi\)
\(614\) −0.589545 10.1221i −0.0237921 0.408495i
\(615\) 0 0
\(616\) 8.48706 19.6752i 0.341954 0.792737i
\(617\) 0.256394 4.40211i 0.0103220 0.177222i −0.989207 0.146526i \(-0.953191\pi\)
0.999529 0.0306958i \(-0.00977232\pi\)
\(618\) 0 0
\(619\) 17.1670 + 18.1960i 0.690001 + 0.731358i 0.973770 0.227535i \(-0.0730665\pi\)
−0.283769 + 0.958893i \(0.591585\pi\)
\(620\) 5.94125 10.2905i 0.238606 0.413278i
\(621\) 0 0
\(622\) −6.98959 12.1063i −0.280257 0.485420i
\(623\) 5.84337 19.5182i 0.234110 0.781980i
\(624\) 0 0
\(625\) −10.3999 6.84011i −0.415996 0.273605i
\(626\) 15.0028 1.75357i 0.599631 0.0700868i
\(627\) 0 0
\(628\) 4.72505 + 2.37301i 0.188550 + 0.0946934i
\(629\) −0.0309624 0.175596i −0.00123455 0.00700148i
\(630\) 0 0
\(631\) 2.45133 13.9022i 0.0975857 0.553436i −0.896339 0.443370i \(-0.853783\pi\)
0.993924 0.110066i \(-0.0351062\pi\)
\(632\) −18.0521 + 24.2481i −0.718072 + 0.964538i
\(633\) 0 0
\(634\) −5.27494 + 5.59111i −0.209495 + 0.222051i
\(635\) 2.86770 + 9.57877i 0.113801 + 0.380122i
\(636\) 0 0
\(637\) −25.3606 2.96423i −1.00482 0.117447i
\(638\) −1.62660 1.36488i −0.0643978 0.0540362i
\(639\) 0 0
\(640\) −7.87383 + 6.60693i −0.311241 + 0.261162i
\(641\) 28.5813 18.7982i 1.12889 0.742484i 0.159304 0.987230i \(-0.449075\pi\)
0.969587 + 0.244746i \(0.0787045\pi\)
\(642\) 0 0
\(643\) −8.05359 10.8178i −0.317603 0.426614i 0.614440 0.788964i \(-0.289382\pi\)
−0.932042 + 0.362349i \(0.881975\pi\)
\(644\) −0.210449 + 0.105692i −0.00829286 + 0.00416483i
\(645\) 0 0
\(646\) −0.0743798 + 0.0176283i −0.00292644 + 0.000693578i
\(647\) −3.19249 −0.125510 −0.0627548 0.998029i \(-0.519989\pi\)
−0.0627548 + 0.998029i \(0.519989\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) −14.1992 + 3.36528i −0.556940 + 0.131997i
\(651\) 0 0
\(652\) 27.1698 13.6452i 1.06405 0.534387i
\(653\) 19.2091 + 25.8023i 0.751710 + 1.00972i 0.999166 + 0.0408223i \(0.0129978\pi\)
−0.247457 + 0.968899i \(0.579595\pi\)
\(654\) 0 0
\(655\) −11.2400 + 7.39267i −0.439183 + 0.288855i
\(656\) −4.91404 + 4.12337i −0.191861 + 0.160991i
\(657\) 0 0
\(658\) −4.24715 3.56378i −0.165571 0.138931i
\(659\) 14.4955 + 1.69428i 0.564666 + 0.0659999i 0.393637 0.919266i \(-0.371217\pi\)
0.171029 + 0.985266i \(0.445291\pi\)
\(660\) 0 0
\(661\) 2.23469 + 7.46440i 0.0869195 + 0.290331i 0.990387 0.138326i \(-0.0441721\pi\)
−0.903467 + 0.428657i \(0.858987\pi\)
\(662\) 6.68982 7.09079i 0.260007 0.275592i
\(663\) 0 0
\(664\) −25.5112 + 34.2674i −0.990025 + 1.32983i
\(665\) 0.874754 4.96098i 0.0339215 0.192378i
\(666\) 0 0
\(667\) 0.00930786 + 0.0527875i 0.000360402 + 0.00204394i
\(668\) −26.6564 13.3873i −1.03137 0.517972i
\(669\) 0 0
\(670\) −1.73533 + 0.202831i −0.0670417 + 0.00783605i
\(671\) 8.78443 + 5.77761i 0.339119 + 0.223042i
\(672\) 0 0
\(673\) −2.29949 + 7.68083i −0.0886388 + 0.296074i −0.990802 0.135321i \(-0.956793\pi\)
0.902163 + 0.431395i \(0.141979\pi\)
\(674\) −3.35193 5.80572i −0.129112 0.223628i
\(675\) 0 0
\(676\) 11.2024 19.4031i 0.430862 0.746274i
\(677\) 5.84612 + 6.19652i 0.224685 + 0.238152i 0.829903 0.557908i \(-0.188396\pi\)
−0.605218 + 0.796059i \(0.706914\pi\)
\(678\) 0 0
\(679\) −0.595470 + 10.2238i −0.0228520 + 0.392354i
\(680\) −0.0276622 + 0.0641283i −0.00106080 + 0.00245921i
\(681\) 0 0
\(682\) 1.96724 + 33.7763i 0.0753296 + 1.29336i
\(683\) 13.5460 + 4.93034i 0.518323 + 0.188654i 0.587917 0.808921i \(-0.299948\pi\)
−0.0695940 + 0.997575i \(0.522170\pi\)
\(684\) 0 0
\(685\) −4.72942 + 1.72137i −0.180702 + 0.0657701i
\(686\) −4.64524 10.7689i −0.177356 0.411157i
\(687\) 0 0
\(688\) 1.95922 + 0.464345i 0.0746947 + 0.0177030i
\(689\) 49.9408 + 11.8362i 1.90259 + 0.450922i
\(690\) 0 0
\(691\) 14.4448 + 33.4868i 0.549506 + 1.27390i 0.936128 + 0.351659i \(0.114382\pi\)
−0.386622 + 0.922238i \(0.626358\pi\)
\(692\) 8.93742 3.25296i 0.339750 0.123659i
\(693\) 0 0
\(694\) 2.14799 + 0.781805i 0.0815366 + 0.0296769i
\(695\) −0.224526 3.85496i −0.00851676 0.146227i
\(696\) 0 0
\(697\) −0.0536705 + 0.124422i −0.00203292 + 0.00471283i
\(698\) −0.0523236 + 0.898362i −0.00198048 + 0.0340035i
\(699\) 0 0
\(700\) 6.35388 + 6.73472i 0.240154 + 0.254548i
\(701\) 4.76010 8.24474i 0.179787 0.311399i −0.762021 0.647553i \(-0.775793\pi\)
0.941807 + 0.336153i \(0.109126\pi\)
\(702\) 0 0
\(703\) 10.5517 + 18.2761i 0.397966 + 0.689298i
\(704\) 1.73430 5.79296i 0.0653638 0.218330i
\(705\) 0 0
\(706\) −6.66718 4.38507i −0.250923 0.165034i
\(707\) 12.6083 1.47370i 0.474186 0.0554244i
\(708\) 0 0
\(709\) 10.6876 + 5.36752i 0.401382 + 0.201581i 0.638026 0.770015i \(-0.279751\pi\)
−0.236644 + 0.971596i \(0.576048\pi\)
\(710\) −0.240792 1.36560i −0.00903677 0.0512501i
\(711\) 0 0
\(712\) 5.80535 32.9238i 0.217565 1.23387i
\(713\) 0.510022 0.685078i 0.0191005 0.0256564i
\(714\) 0 0
\(715\) 20.7856 22.0314i 0.777336 0.823928i
\(716\) 1.53113 + 5.11432i 0.0572209 + 0.191131i
\(717\) 0 0
\(718\) 19.9679 + 2.33391i 0.745195 + 0.0871008i
\(719\) 16.3766 + 13.7416i 0.610743 + 0.512474i 0.894879 0.446310i \(-0.147262\pi\)
−0.284135 + 0.958784i \(0.591706\pi\)
\(720\) 0 0
\(721\) 5.73749 4.81433i 0.213675 0.179295i
\(722\) −3.18234 + 2.09306i −0.118435 + 0.0778956i
\(723\) 0 0
\(724\) 17.5714 + 23.6024i 0.653034 + 0.877177i
\(725\) 1.88327 0.945813i 0.0699429 0.0351266i
\(726\) 0 0
\(727\) −7.66871 + 1.81752i −0.284417 + 0.0674080i −0.370348 0.928893i \(-0.620762\pi\)
0.0859313 + 0.996301i \(0.472613\pi\)
\(728\) 18.3679 0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) 0.0413859 0.00980864i 0.00153071 0.000362786i
\(732\) 0 0
\(733\) 31.1192 15.6287i 1.14942 0.577258i 0.231030 0.972947i \(-0.425790\pi\)
0.918385 + 0.395689i \(0.129494\pi\)
\(734\) 3.24340 + 4.35664i 0.119716 + 0.160806i
\(735\) 0 0
\(736\) −0.505147 + 0.332241i −0.0186200 + 0.0122466i
\(737\) −12.8363 + 10.7709i −0.472829 + 0.396751i
\(738\) 0 0
\(739\) 33.5899 + 28.1853i 1.23563 + 1.03681i 0.997853 + 0.0654916i \(0.0208615\pi\)
0.237772 + 0.971321i \(0.423583\pi\)
\(740\) 8.33779 + 0.974548i 0.306503 + 0.0358251i
\(741\) 0 0
\(742\) 2.77281 + 9.26183i 0.101793 + 0.340012i
\(743\) 14.6529 15.5312i 0.537563 0.569784i −0.400478 0.916306i \(-0.631156\pi\)
0.938042 + 0.346522i \(0.112638\pi\)
\(744\) 0 0
\(745\) −10.6317 + 14.2809i −0.389516 + 0.523211i
\(746\) 0.351765 1.99496i 0.0128790 0.0730407i
\(747\) 0 0
\(748\) 0.0506397 + 0.287192i 0.00185157 + 0.0105008i
\(749\) 12.9913 + 6.52446i 0.474691 + 0.238399i
\(750\) 0 0
\(751\) −4.49756 + 0.525689i −0.164118 + 0.0191827i −0.197755 0.980251i \(-0.563365\pi\)
0.0336369 + 0.999434i \(0.489291\pi\)
\(752\) 6.85489 + 4.50853i 0.249972 + 0.164409i
\(753\) 0 0
\(754\) 0.522031 1.74371i 0.0190113 0.0635020i
\(755\) −1.45269 2.51614i −0.0528689 0.0915716i
\(756\) 0 0
\(757\) −15.3969 + 26.6682i −0.559610 + 0.969273i 0.437919 + 0.899014i \(0.355716\pi\)
−0.997529 + 0.0702583i \(0.977618\pi\)
\(758\) −10.2653 10.8806i −0.372853 0.395201i
\(759\) 0 0
\(760\) 0.480625 8.25200i 0.0174341 0.299332i
\(761\) 1.41749 3.28612i 0.0513841 0.119122i −0.890590 0.454806i \(-0.849708\pi\)
0.941974 + 0.335685i \(0.108968\pi\)
\(762\) 0 0
\(763\) −1.08175 18.5730i −0.0391621 0.672387i
\(764\) 28.8785 + 10.5109i 1.04479 + 0.380271i
\(765\) 0 0
\(766\) −9.12904 + 3.32270i −0.329846 + 0.120054i
\(767\) −11.7402 27.2168i −0.423913 0.982740i
\(768\) 0 0
\(769\) −14.2113 3.36814i −0.512473 0.121458i −0.0337603 0.999430i \(-0.510748\pi\)
−0.478713 + 0.877972i \(0.658896\pi\)
\(770\) 5.55177 + 1.31579i 0.200072 + 0.0474179i
\(771\) 0 0
\(772\) 6.54637 + 15.1762i 0.235609 + 0.546203i
\(773\) 18.7983 6.84203i 0.676129 0.246091i 0.0189442 0.999821i \(-0.493970\pi\)
0.657184 + 0.753730i \(0.271747\pi\)
\(774\) 0 0
\(775\) −31.5543 11.4848i −1.13346 0.412547i
\(776\) 0.977099 + 16.7761i 0.0350758 + 0.602229i
\(777\) 0 0
\(778\) −4.88570 + 11.3263i −0.175161 + 0.406068i
\(779\) 0.932512 16.0106i 0.0334107 0.573640i
\(780\) 0 0
\(781\) −9.12651 9.67353i −0.326572 0.346146i
\(782\) −0.00109277 + 0.00189273i −3.90772e−5 + 6.76838e-5i
\(783\) 0 0
\(784\) 3.55882 + 6.16407i 0.127101 + 0.220145i
\(785\) −0.927457 + 3.09792i −0.0331024 + 0.110570i
\(786\) 0 0
\(787\) 11.3167 + 7.44313i 0.403398 + 0.265319i 0.734955 0.678116i \(-0.237203\pi\)
−0.331557 + 0.943435i \(0.607574\pi\)
\(788\) 36.3049 4.24344i 1.29331 0.151166i
\(789\) 0 0
\(790\) −7.19316 3.61254i −0.255921 0.128528i
\(791\) 1.45763 + 8.26666i 0.0518275 + 0.293929i
\(792\) 0 0
\(793\) −1.56505 + 8.87585i −0.0555766 + 0.315191i
\(794\) −0.560431 + 0.752790i −0.0198890 + 0.0267155i
\(795\) 0 0
\(796\) 9.24434 9.79842i 0.327657 0.347296i
\(797\) −8.60409 28.7397i −0.304772 1.01801i −0.963963 0.266035i \(-0.914286\pi\)
0.659191 0.751976i \(-0.270899\pi\)
\(798\) 0 0
\(799\) 0.172140 + 0.0201203i 0.00608988 + 0.000711805i
\(800\) 18.2098 + 15.2799i 0.643814 + 0.540225i
\(801\) 0 0
\(802\) 11.4481 9.60610i 0.404247 0.339203i
\(803\) −42.6039 + 28.0210i −1.50346 + 0.988841i
\(804\) 0 0
\(805\) −0.0860083 0.115529i −0.00303139 0.00407187i
\(806\) −25.9174 + 13.0162i −0.912900 + 0.458476i
\(807\) 0 0
\(808\) 20.2683 4.80367i 0.713035 0.168992i
\(809\) −48.8577 −1.71774 −0.858872 0.512190i \(-0.828834\pi\)
−0.858872 + 0.512190i \(0.828834\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) −1.12376 + 0.266337i −0.0394364 + 0.00934659i
\(813\) 0 0
\(814\) −21.3597 + 10.7273i −0.748658 + 0.375990i
\(815\) 11.1040 + 14.9153i 0.388956 + 0.522459i
\(816\) 0 0
\(817\) −4.20581 + 2.76621i −0.147143 + 0.0967773i
\(818\) −0.299277 + 0.251123i −0.0104640 + 0.00878032i
\(819\) 0 0
\(820\) −4.88698 4.10067i −0.170661 0.143201i
\(821\) 32.0276 + 3.74348i 1.11777 + 0.130648i 0.654855 0.755755i \(-0.272730\pi\)
0.462914 + 0.886403i \(0.346804\pi\)
\(822\) 0 0
\(823\) 9.48786 + 31.6917i 0.330726 + 1.10470i 0.948084 + 0.318020i \(0.103018\pi\)
−0.617358 + 0.786682i \(0.711797\pi\)
\(824\) 8.43382 8.93932i 0.293806 0.311416i
\(825\) 0 0
\(826\) 3.33422 4.47864i 0.116012 0.155832i
\(827\) −6.93056 + 39.3051i −0.240999 + 1.36677i 0.588605 + 0.808421i \(0.299677\pi\)
−0.829604 + 0.558352i \(0.811434\pi\)
\(828\) 0 0
\(829\) −3.03189 17.1947i −0.105302 0.597198i −0.991099 0.133125i \(-0.957499\pi\)
0.885797 0.464073i \(-0.153612\pi\)
\(830\) −10.1654 5.10524i −0.352845 0.177205i
\(831\) 0 0
\(832\) 5.14847 0.601769i 0.178491 0.0208626i
\(833\) 0.125616 + 0.0826190i 0.00435234 + 0.00286258i
\(834\) 0 0
\(835\) 5.23225 17.4769i 0.181070 0.604815i
\(836\) −17.2576 29.8911i −0.596868 1.03381i
\(837\) 0 0
\(838\) 4.27349 7.40191i 0.147625 0.255695i
\(839\) −27.0966 28.7207i −0.935478 0.991549i 0.0645018 0.997918i \(-0.479454\pi\)
−0.999980 + 0.00636894i \(0.997973\pi\)
\(840\) 0 0
\(841\) 1.67092 28.6885i 0.0576178 0.989259i
\(842\) −5.74224 + 13.3120i −0.197891 + 0.458762i
\(843\) 0 0
\(844\) −0.652614 11.2050i −0.0224639 0.385690i
\(845\) 12.8763 + 4.68657i 0.442957 + 0.161223i
\(846\) 0 0
\(847\) 36.3227 13.2204i 1.24806 0.454258i
\(848\) −5.66677 13.1370i −0.194598 0.451128i
\(849\) 0 0
\(850\) 0.0836111 + 0.0198162i 0.00286784 + 0.000679690i
\(851\) 0.587113 + 0.139148i 0.0201260 + 0.00476994i
\(852\) 0 0
\(853\) −12.4048 28.7576i −0.424733 0.984643i −0.987441 0.157987i \(-0.949500\pi\)
0.562708 0.826656i \(-0.309760\pi\)
\(854\) −1.59536 + 0.580662i −0.0545920 + 0.0198699i
\(855\) 0 0
\(856\) 22.4160 + 8.15875i 0.766162 + 0.278860i
\(857\) 2.05526 + 35.2874i 0.0702062 + 1.20539i 0.830952 + 0.556344i \(0.187796\pi\)
−0.760746 + 0.649050i \(0.775167\pi\)
\(858\) 0 0
\(859\) 11.1903 25.9420i 0.381808 0.885131i −0.613619 0.789603i \(-0.710287\pi\)
0.995427 0.0955282i \(-0.0304540\pi\)
\(860\) −0.116430 + 1.99902i −0.00397022 + 0.0681661i
\(861\) 0 0
\(862\) −2.07620 2.20064i −0.0707156 0.0749542i
\(863\) 1.91089 3.30976i 0.0650475 0.112666i −0.831668 0.555274i \(-0.812613\pi\)
0.896715 + 0.442608i \(0.145947\pi\)
\(864\) 0 0
\(865\) 2.90843 + 5.03755i 0.0988896 + 0.171282i
\(866\) 1.77245 5.92039i 0.0602303 0.201183i
\(867\) 0 0
\(868\) 15.3745 + 10.1120i 0.521845 + 0.343223i
\(869\) −76.6778 + 8.96235i −2.60112 + 0.304027i
\(870\) 0 0
\(871\) −12.8360 6.44646i −0.434930 0.218430i
\(872\) −5.30110 30.0640i −0.179518 1.01810i
\(873\) 0 0
\(874\) 0.0449177 0.254741i 0.00151936 0.00861674i
\(875\) −7.49490 + 10.0674i −0.253374 + 0.340340i
\(876\) 0 0
\(877\) 23.5311 24.9415i 0.794588 0.842214i −0.195784 0.980647i \(-0.562725\pi\)
0.990372 + 0.138433i \(0.0442065\pi\)
\(878\) 0.552812 + 1.84652i 0.0186565 + 0.0623171i
\(879\) 0 0
\(880\) −8.38627 0.980214i −0.282701 0.0330430i
\(881\) −39.1151 32.8215i −1.31782 1.10578i −0.986762 0.162173i \(-0.948150\pi\)
−0.331059 0.943610i \(-0.607406\pi\)
\(882\) 0 0
\(883\) −30.6669 + 25.7326i −1.03202 + 0.865972i −0.991091 0.133190i \(-0.957478\pi\)
−0.0409344 + 0.999162i \(0.513033\pi\)
\(884\) −0.208856 + 0.137367i −0.00702458 + 0.00462014i
\(885\) 0 0
\(886\) −4.99886 6.71463i −0.167940 0.225583i
\(887\) −20.4630 + 10.2769i −0.687079 + 0.345064i −0.757850 0.652429i \(-0.773750\pi\)
0.0707713 + 0.997493i \(0.477454\pi\)
\(888\) 0 0
\(889\) −15.0673 + 3.57102i −0.505341 + 0.119768i
\(890\) 8.90188 0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) −19.9596 + 4.73051i −0.667923 + 0.158301i
\(894\) 0 0
\(895\) −2.91775 + 1.46535i −0.0975297 + 0.0489813i
\(896\) −9.50552 12.7681i −0.317557 0.426553i
\(897\) 0 0
\(898\) −9.70921 + 6.38585i −0.324001 + 0.213099i
\(899\) 3.20854 2.69228i 0.107011 0.0897927i
\(900\) 0 0
\(901\) −0.231513 0.194262i −0.00771281 0.00647182i
\(902\) 18.0418 + 2.10878i 0.600726 + 0.0702148i
\(903\) 0 0
\(904\) 3.95041 + 13.1953i 0.131389 + 0.438868i
\(905\) −12.3497 + 13.0899i −0.410517 + 0.435122i
\(906\) 0 0
\(907\) −14.2978 + 19.2053i −0.474752 + 0.637702i −0.973403 0.229100i \(-0.926422\pi\)
0.498651 + 0.866803i \(0.333829\pi\)
\(908\) 2.03683 11.5514i 0.0675944 0.383347i
\(909\) 0 0
\(910\) 0.849285 + 4.81654i 0.0281535 + 0.159667i
\(911\) 27.5089 + 13.8155i 0.911411 + 0.457728i 0.841765 0.539844i \(-0.181517\pi\)
0.0696462 + 0.997572i \(0.477813\pi\)
\(912\) 0 0
\(913\) −108.361 + 12.6656i −3.58623 + 0.419170i
\(914\) 0.500177 + 0.328972i 0.0165444 + 0.0108814i
\(915\) 0 0
\(916\) −6.90064 + 23.0497i −0.228004 + 0.761585i
\(917\) −10.4172 18.0431i −0.344006 0.595835i
\(918\) 0 0
\(919\) 21.9894 38.0868i 0.725365 1.25637i −0.233459 0.972367i \(-0.575004\pi\)
0.958824 0.284002i \(-0.0916623\pi\)
\(920\) −0.162183 0.171904i −0.00534703 0.00566752i
\(921\) 0 0
\(922\) 0.599266 10.2890i 0.0197358 0.338850i
\(923\) 4.51539 10.4678i 0.148626 0.344553i
\(924\) 0 0
\(925\) −1.37935 23.6825i −0.0453527 0.778675i
\(926\) 21.3875 + 7.78440i 0.702836 + 0.255811i
\(927\) 0 0
\(928\) −2.78624 + 1.01411i −0.0914627 + 0.0332897i
\(929\) 11.2233 + 26.0185i 0.368224 + 0.853640i 0.997098 + 0.0761324i \(0.0242572\pi\)
−0.628873 + 0.777508i \(0.716484\pi\)
\(930\) 0 0
\(931\) −17.3152 4.10378i −0.567483 0.134496i
\(932\) −24.7264 5.86025i −0.809939 0.191959i
\(933\) 0 0
\(934\) 2.95586 + 6.85245i 0.0967186 + 0.224219i
\(935\) −0.167598 + 0.0610008i −0.00548105 + 0.00199494i
\(936\) 0 0
\(937\) 12.4825 + 4.54327i 0.407787 + 0.148422i 0.537765 0.843095i \(-0.319269\pi\)
−0.129979 + 0.991517i \(0.541491\pi\)
\(938\) −0.157324 2.70114i −0.00513680 0.0881954i
\(939\) 0 0
\(940\) −3.23181 + 7.49217i −0.105410 + 0.244368i
\(941\) −0.819975 + 14.0784i −0.0267304 + 0.458944i 0.958212 + 0.286060i \(0.0923456\pi\)
−0.984942 + 0.172884i \(0.944691\pi\)
\(942\) 0 0
\(943\) −0.314670 0.333531i −0.0102471 0.0108613i
\(944\) −4.13135 + 7.15571i −0.134464 + 0.232898i
\(945\) 0 0
\(946\) −2.85077 4.93768i −0.0926866 0.160538i
\(947\) 6.94085 23.1841i 0.225547 0.753381i −0.768049 0.640391i \(-0.778772\pi\)
0.993596 0.112990i \(-0.0360427\pi\)
\(948\) 0 0
\(949\) −36.5203 24.0198i −1.18550 0.779715i
\(950\) −10.1012 + 1.18067i −0.327727 + 0.0383058i
\(951\) 0 0
\(952\) −0.0966535 0.0485412i −0.00313256 0.00157323i
\(953\) 0.315523 + 1.78942i 0.0102208 + 0.0579650i 0.989492 0.144590i \(-0.0461865\pi\)
−0.979271 + 0.202555i \(0.935075\pi\)
\(954\) 0 0
\(955\) −3.26378 + 18.5098i −0.105613 + 0.598964i
\(956\) 17.8169 23.9322i 0.576238 0.774022i
\(957\) 0 0
\(958\) 5.53621 5.86804i 0.178867 0.189588i
\(959\) −2.23543 7.46684i −0.0721857 0.241117i
\(960\) 0 0
\(961\) −35.4962 4.14892i −1.14504 0.133836i
\(962\) −15.6955 13.1701i −0.506044 0.424621i
\(963\) 0 0
\(964\) −6.81044 + 5.71464i −0.219350 + 0.184056i
\(965\) −8.44541 + 5.55463i −0.271867 + 0.178810i
\(966\) 0 0
\(967\) −1.13266 1.52143i −0.0364240 0.0489259i 0.783538 0.621344i \(-0.213413\pi\)
−0.819962 + 0.572418i \(0.806006\pi\)
\(968\) 56.6801 28.4658i 1.82177 0.914926i
\(969\) 0 0
\(970\) −4.35396 + 1.03191i −0.139797 + 0.0331325i
\(971\) 27.1629 0.871698 0.435849 0.900020i \(-0.356448\pi\)
0.435849 + 0.900020i \(0.356448\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) −25.1795 + 5.96765i −0.806803 + 0.191216i
\(975\) 0 0
\(976\) 2.24516 1.12756i 0.0718659 0.0360924i
\(977\) 15.2926 + 20.5416i 0.489255 + 0.657183i 0.976358 0.216162i \(-0.0693538\pi\)
−0.487103 + 0.873345i \(0.661946\pi\)
\(978\) 0 0
\(979\) 71.3309 46.9150i 2.27974 1.49941i
\(980\) −5.42241 + 4.54994i −0.173213 + 0.145343i
\(981\) 0 0
\(982\) 2.19751 + 1.84393i 0.0701255 + 0.0588423i
\(983\) −28.8465 3.37167i −0.920061 0.107540i −0.357140 0.934051i \(-0.616248\pi\)
−0.562921 + 0.826511i \(0.690322\pi\)
\(984\) 0 0
\(985\) 6.41148 + 21.4158i 0.204287 + 0.682365i
\(986\) −0.00735510 + 0.00779595i −0.000234234 + 0.000248274i
\(987\) 0 0
\(988\) 17.6679 23.7322i 0.562092 0.755021i
\(989\) −0.0249928 + 0.141741i −0.000794725 + 0.00450711i
\(990\) 0 0
\(991\) 6.28903 + 35.6669i 0.199778 + 1.13300i 0.905449 + 0.424456i \(0.139534\pi\)
−0.705671 + 0.708539i \(0.749354\pi\)
\(992\) 42.2193 + 21.2033i 1.34046 + 0.673206i
\(993\) 0 0
\(994\) 2.13294 0.249305i 0.0676529 0.00790749i
\(995\) 6.88337 + 4.52726i 0.218218 + 0.143524i
\(996\) 0 0
\(997\) 4.35195 14.5365i 0.137828 0.460376i −0.861009 0.508589i \(-0.830167\pi\)
0.998837 + 0.0482126i \(0.0153525\pi\)
\(998\) 12.6545 + 21.9182i 0.400571 + 0.693809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.118.3 144
3.2 odd 2 81.2.g.a.76.6 yes 144
9.2 odd 6 729.2.g.d.109.3 144
9.4 even 3 729.2.g.b.352.6 144
9.5 odd 6 729.2.g.c.352.3 144
9.7 even 3 729.2.g.a.109.6 144
81.4 even 27 6561.2.a.d.1.27 72
81.11 odd 54 729.2.g.c.379.3 144
81.16 even 27 inner 243.2.g.a.208.3 144
81.38 odd 54 729.2.g.d.622.3 144
81.43 even 27 729.2.g.a.622.6 144
81.65 odd 54 81.2.g.a.16.6 144
81.70 even 27 729.2.g.b.379.6 144
81.77 odd 54 6561.2.a.c.1.46 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 81.65 odd 54
81.2.g.a.76.6 yes 144 3.2 odd 2
243.2.g.a.118.3 144 1.1 even 1 trivial
243.2.g.a.208.3 144 81.16 even 27 inner
729.2.g.a.109.6 144 9.7 even 3
729.2.g.a.622.6 144 81.43 even 27
729.2.g.b.352.6 144 9.4 even 3
729.2.g.b.379.6 144 81.70 even 27
729.2.g.c.352.3 144 9.5 odd 6
729.2.g.c.379.3 144 81.11 odd 54
729.2.g.d.109.3 144 9.2 odd 6
729.2.g.d.622.3 144 81.38 odd 54
6561.2.a.c.1.46 72 81.77 odd 54
6561.2.a.d.1.27 72 81.4 even 27