Properties

Label 243.2.g.a.10.1
Level $243$
Weight $2$
Character 243.10
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 10.1
Character \(\chi\) \(=\) 243.10
Dual form 243.2.g.a.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.94437 - 0.976500i) q^{2} +(1.63271 + 2.19311i) q^{4} +(0.185416 + 0.619334i) q^{5} +(-0.724564 - 1.67973i) q^{7} +(-0.277373 - 1.57306i) q^{8} +(0.244261 - 1.38527i) q^{10} +(1.17723 - 0.279008i) q^{11} +(4.45604 + 2.93078i) q^{13} +(-0.231433 + 3.97355i) q^{14} +(0.571538 - 1.90907i) q^{16} +(6.43434 - 2.34191i) q^{17} +(-5.97823 - 2.17590i) q^{19} +(-1.05554 + 1.41783i) q^{20} +(-2.56142 - 0.607068i) q^{22} +(1.23445 - 2.86177i) q^{23} +(3.82824 - 2.51788i) q^{25} +(-5.80229 - 10.0499i) q^{26} +(2.50083 - 4.33156i) q^{28} +(-0.342261 - 5.87639i) q^{29} +(2.75457 - 0.321963i) q^{31} +(-5.16779 + 5.47754i) q^{32} +(-14.7976 - 1.72959i) q^{34} +(0.905967 - 0.760197i) q^{35} +(-1.09453 - 0.918418i) q^{37} +(9.49913 + 10.0685i) q^{38} +(0.922821 - 0.463458i) q^{40} +(-0.996758 + 0.500591i) q^{41} +(6.61155 + 7.00783i) q^{43} +(2.53397 + 2.12625i) q^{44} +(-5.19473 + 4.35890i) q^{46} +(6.06108 + 0.708439i) q^{47} +(2.50720 - 2.65747i) q^{49} +(-9.90223 + 1.15740i) q^{50} +(0.847890 + 14.5577i) q^{52} +(-4.26135 + 7.38088i) q^{53} +(0.391077 + 0.677365i) q^{55} +(-2.44134 + 1.60569i) q^{56} +(-5.07281 + 11.7601i) q^{58} +(-2.03183 - 0.481552i) q^{59} +(-2.14382 + 2.87965i) q^{61} +(-5.67029 - 2.06382i) q^{62} +(11.6517 - 4.24088i) q^{64} +(-0.988911 + 3.30319i) q^{65} +(-0.0709235 + 1.21771i) q^{67} +(15.6415 + 10.2876i) q^{68} +(-2.50387 + 0.593428i) q^{70} +(-1.41528 + 8.02646i) q^{71} +(1.11524 + 6.32482i) q^{73} +(1.23133 + 2.85455i) q^{74} +(-4.98873 - 16.6635i) q^{76} +(-1.32164 - 1.77527i) q^{77} +(-12.7417 - 6.39915i) q^{79} +1.28832 q^{80} +2.42689 q^{82} +(-6.00472 - 3.01569i) q^{83} +(2.64346 + 3.55078i) q^{85} +(-6.01216 - 20.0820i) q^{86} +(-0.765429 - 1.77446i) q^{88} +(2.70557 + 15.3441i) q^{89} +(1.69423 - 9.60848i) q^{91} +(8.29166 - 1.96516i) q^{92} +(-11.0932 - 7.29611i) q^{94} +(0.239145 - 4.10597i) q^{95} +(1.06957 - 3.57262i) q^{97} +(-7.46994 + 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94437 0.976500i −1.37488 0.690490i −0.400687 0.916215i \(-0.631229\pi\)
−0.974191 + 0.225725i \(0.927525\pi\)
\(3\) 0 0
\(4\) 1.63271 + 2.19311i 0.816355 + 1.09656i
\(5\) 0.185416 + 0.619334i 0.0829208 + 0.276975i 0.989387 0.145303i \(-0.0464158\pi\)
−0.906466 + 0.422278i \(0.861231\pi\)
\(6\) 0 0
\(7\) −0.724564 1.67973i −0.273860 0.634878i 0.724670 0.689097i \(-0.241992\pi\)
−0.998529 + 0.0542188i \(0.982733\pi\)
\(8\) −0.277373 1.57306i −0.0980662 0.556161i
\(9\) 0 0
\(10\) 0.244261 1.38527i 0.0772422 0.438062i
\(11\) 1.17723 0.279008i 0.354948 0.0841242i −0.0492736 0.998785i \(-0.515691\pi\)
0.404222 + 0.914661i \(0.367542\pi\)
\(12\) 0 0
\(13\) 4.45604 + 2.93078i 1.23588 + 0.812853i 0.987776 0.155879i \(-0.0498211\pi\)
0.248107 + 0.968733i \(0.420191\pi\)
\(14\) −0.231433 + 3.97355i −0.0618531 + 1.06198i
\(15\) 0 0
\(16\) 0.571538 1.90907i 0.142885 0.477268i
\(17\) 6.43434 2.34191i 1.56056 0.567996i 0.589693 0.807628i \(-0.299249\pi\)
0.970864 + 0.239631i \(0.0770266\pi\)
\(18\) 0 0
\(19\) −5.97823 2.17590i −1.37150 0.499185i −0.451909 0.892064i \(-0.649257\pi\)
−0.919590 + 0.392879i \(0.871479\pi\)
\(20\) −1.05554 + 1.41783i −0.236025 + 0.317037i
\(21\) 0 0
\(22\) −2.56142 0.607068i −0.546097 0.129427i
\(23\) 1.23445 2.86177i 0.257400 0.596719i −0.739691 0.672947i \(-0.765028\pi\)
0.997090 + 0.0762275i \(0.0242875\pi\)
\(24\) 0 0
\(25\) 3.82824 2.51788i 0.765649 0.503575i
\(26\) −5.80229 10.0499i −1.13792 1.97094i
\(27\) 0 0
\(28\) 2.50083 4.33156i 0.472612 0.818588i
\(29\) −0.342261 5.87639i −0.0635562 1.09122i −0.867799 0.496916i \(-0.834466\pi\)
0.804242 0.594301i \(-0.202571\pi\)
\(30\) 0 0
\(31\) 2.75457 0.321963i 0.494735 0.0578262i 0.134932 0.990855i \(-0.456918\pi\)
0.359802 + 0.933029i \(0.382844\pi\)
\(32\) −5.16779 + 5.47754i −0.913546 + 0.968302i
\(33\) 0 0
\(34\) −14.7976 1.72959i −2.53777 0.296623i
\(35\) 0.905967 0.760197i 0.153136 0.128497i
\(36\) 0 0
\(37\) −1.09453 0.918418i −0.179939 0.150987i 0.548369 0.836236i \(-0.315249\pi\)
−0.728309 + 0.685249i \(0.759693\pi\)
\(38\) 9.49913 + 10.0685i 1.54096 + 1.63332i
\(39\) 0 0
\(40\) 0.922821 0.463458i 0.145911 0.0732791i
\(41\) −0.996758 + 0.500591i −0.155667 + 0.0781791i −0.524927 0.851147i \(-0.675908\pi\)
0.369260 + 0.929326i \(0.379611\pi\)
\(42\) 0 0
\(43\) 6.61155 + 7.00783i 1.00825 + 1.06868i 0.997635 + 0.0687407i \(0.0218981\pi\)
0.0106171 + 0.999944i \(0.496620\pi\)
\(44\) 2.53397 + 2.12625i 0.382010 + 0.320545i
\(45\) 0 0
\(46\) −5.19473 + 4.35890i −0.765922 + 0.642685i
\(47\) 6.06108 + 0.708439i 0.884099 + 0.103336i 0.546011 0.837778i \(-0.316146\pi\)
0.338088 + 0.941114i \(0.390220\pi\)
\(48\) 0 0
\(49\) 2.50720 2.65747i 0.358171 0.379639i
\(50\) −9.90223 + 1.15740i −1.40039 + 0.163682i
\(51\) 0 0
\(52\) 0.847890 + 14.5577i 0.117581 + 2.01879i
\(53\) −4.26135 + 7.38088i −0.585342 + 1.01384i 0.409491 + 0.912314i \(0.365706\pi\)
−0.994833 + 0.101528i \(0.967627\pi\)
\(54\) 0 0
\(55\) 0.391077 + 0.677365i 0.0527328 + 0.0913359i
\(56\) −2.44134 + 1.60569i −0.326238 + 0.214570i
\(57\) 0 0
\(58\) −5.07281 + 11.7601i −0.666093 + 1.54418i
\(59\) −2.03183 0.481552i −0.264521 0.0626927i 0.0962148 0.995361i \(-0.469326\pi\)
−0.360736 + 0.932668i \(0.617475\pi\)
\(60\) 0 0
\(61\) −2.14382 + 2.87965i −0.274488 + 0.368702i −0.917895 0.396822i \(-0.870113\pi\)
0.643407 + 0.765524i \(0.277520\pi\)
\(62\) −5.67029 2.06382i −0.720128 0.262105i
\(63\) 0 0
\(64\) 11.6517 4.24088i 1.45646 0.530110i
\(65\) −0.988911 + 3.30319i −0.122659 + 0.409711i
\(66\) 0 0
\(67\) −0.0709235 + 1.21771i −0.00866469 + 0.148767i 0.991201 + 0.132367i \(0.0422576\pi\)
−0.999866 + 0.0164003i \(0.994779\pi\)
\(68\) 15.6415 + 10.2876i 1.89681 + 1.24755i
\(69\) 0 0
\(70\) −2.50387 + 0.593428i −0.299270 + 0.0709282i
\(71\) −1.41528 + 8.02646i −0.167963 + 0.952565i 0.777994 + 0.628272i \(0.216237\pi\)
−0.945957 + 0.324293i \(0.894874\pi\)
\(72\) 0 0
\(73\) 1.11524 + 6.32482i 0.130529 + 0.740264i 0.977870 + 0.209215i \(0.0670909\pi\)
−0.847341 + 0.531049i \(0.821798\pi\)
\(74\) 1.23133 + 2.85455i 0.143140 + 0.331835i
\(75\) 0 0
\(76\) −4.98873 16.6635i −0.572247 1.91144i
\(77\) −1.32164 1.77527i −0.150614 0.202310i
\(78\) 0 0
\(79\) −12.7417 6.39915i −1.43356 0.719960i −0.448759 0.893653i \(-0.648134\pi\)
−0.984800 + 0.173693i \(0.944430\pi\)
\(80\) 1.28832 0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) −6.00472 3.01569i −0.659104 0.331015i 0.0876146 0.996154i \(-0.472076\pi\)
−0.746719 + 0.665140i \(0.768372\pi\)
\(84\) 0 0
\(85\) 2.64346 + 3.55078i 0.286723 + 0.385136i
\(86\) −6.01216 20.0820i −0.648308 2.16550i
\(87\) 0 0
\(88\) −0.765429 1.77446i −0.0815950 0.189158i
\(89\) 2.70557 + 15.3441i 0.286790 + 1.62647i 0.698820 + 0.715297i \(0.253709\pi\)
−0.412030 + 0.911170i \(0.635180\pi\)
\(90\) 0 0
\(91\) 1.69423 9.60848i 0.177604 1.00724i
\(92\) 8.29166 1.96516i 0.864465 0.204882i
\(93\) 0 0
\(94\) −11.0932 7.29611i −1.14418 0.752536i
\(95\) 0.239145 4.10597i 0.0245358 0.421263i
\(96\) 0 0
\(97\) 1.06957 3.57262i 0.108599 0.362745i −0.886364 0.462989i \(-0.846777\pi\)
0.994963 + 0.100244i \(0.0319622\pi\)
\(98\) −7.46994 + 2.71884i −0.754578 + 0.274644i
\(99\) 0 0
\(100\) 11.7724 + 4.28480i 1.17724 + 0.428480i
\(101\) 2.77713 3.73034i 0.276335 0.371182i −0.642190 0.766546i \(-0.721974\pi\)
0.918525 + 0.395363i \(0.129381\pi\)
\(102\) 0 0
\(103\) 5.02919 + 1.19194i 0.495541 + 0.117445i 0.470785 0.882248i \(-0.343971\pi\)
0.0247562 + 0.999694i \(0.492119\pi\)
\(104\) 3.37432 7.82254i 0.330879 0.767063i
\(105\) 0 0
\(106\) 15.4931 10.1900i 1.50482 0.989737i
\(107\) −6.49528 11.2502i −0.627922 1.08759i −0.987968 0.154659i \(-0.950572\pi\)
0.360046 0.932935i \(-0.382761\pi\)
\(108\) 0 0
\(109\) −0.888686 + 1.53925i −0.0851207 + 0.147433i −0.905443 0.424469i \(-0.860461\pi\)
0.820322 + 0.571902i \(0.193794\pi\)
\(110\) −0.0989518 1.69894i −0.00943468 0.161987i
\(111\) 0 0
\(112\) −3.62084 + 0.423215i −0.342137 + 0.0399901i
\(113\) 9.53060 10.1018i 0.896563 0.950302i −0.102449 0.994738i \(-0.532668\pi\)
0.999012 + 0.0444366i \(0.0141493\pi\)
\(114\) 0 0
\(115\) 2.00128 + 0.233916i 0.186620 + 0.0218127i
\(116\) 12.3288 10.3451i 1.14470 0.960514i
\(117\) 0 0
\(118\) 3.48039 + 2.92040i 0.320396 + 0.268844i
\(119\) −8.59586 9.11108i −0.787982 0.835212i
\(120\) 0 0
\(121\) −8.52194 + 4.27988i −0.774722 + 0.389080i
\(122\) 6.98037 3.50567i 0.631973 0.317389i
\(123\) 0 0
\(124\) 5.20351 + 5.51539i 0.467289 + 0.495297i
\(125\) 4.74544 + 3.98190i 0.424445 + 0.356152i
\(126\) 0 0
\(127\) −8.72949 + 7.32491i −0.774617 + 0.649981i −0.941887 0.335930i \(-0.890949\pi\)
0.167270 + 0.985911i \(0.446505\pi\)
\(128\) −11.8372 1.38357i −1.04627 0.122291i
\(129\) 0 0
\(130\) 5.14838 5.45696i 0.451543 0.478607i
\(131\) −14.4822 + 1.69272i −1.26531 + 0.147894i −0.722151 0.691735i \(-0.756847\pi\)
−0.543160 + 0.839629i \(0.682772\pi\)
\(132\) 0 0
\(133\) 0.676693 + 11.6184i 0.0586768 + 1.00744i
\(134\) 1.32700 2.29842i 0.114635 0.198554i
\(135\) 0 0
\(136\) −5.46868 9.47202i −0.468935 0.812219i
\(137\) −0.309806 + 0.203762i −0.0264685 + 0.0174086i −0.562674 0.826679i \(-0.690227\pi\)
0.536206 + 0.844087i \(0.319857\pi\)
\(138\) 0 0
\(139\) 5.93229 13.7526i 0.503170 1.16648i −0.457606 0.889155i \(-0.651293\pi\)
0.960776 0.277325i \(-0.0894479\pi\)
\(140\) 3.14638 + 0.745705i 0.265917 + 0.0630236i
\(141\) 0 0
\(142\) 10.5897 14.2244i 0.888665 1.19368i
\(143\) 6.06349 + 2.20693i 0.507055 + 0.184553i
\(144\) 0 0
\(145\) 3.57599 1.30155i 0.296970 0.108088i
\(146\) 4.00775 13.3868i 0.331684 1.10790i
\(147\) 0 0
\(148\) 0.227145 3.89993i 0.0186712 0.320572i
\(149\) −0.835701 0.549649i −0.0684633 0.0450290i 0.514816 0.857301i \(-0.327860\pi\)
−0.583279 + 0.812272i \(0.698231\pi\)
\(150\) 0 0
\(151\) 0.0191032 0.00452754i 0.00155460 0.000368446i −0.229838 0.973229i \(-0.573820\pi\)
0.231393 + 0.972860i \(0.425672\pi\)
\(152\) −1.76462 + 10.0076i −0.143129 + 0.811727i
\(153\) 0 0
\(154\) 0.836205 + 4.74235i 0.0673833 + 0.382150i
\(155\) 0.710144 + 1.64630i 0.0570402 + 0.132234i
\(156\) 0 0
\(157\) 2.23838 + 7.47669i 0.178642 + 0.596705i 0.999667 + 0.0258129i \(0.00821741\pi\)
−0.821025 + 0.570892i \(0.806597\pi\)
\(158\) 18.5259 + 24.8846i 1.47384 + 1.97972i
\(159\) 0 0
\(160\) −4.35062 2.18497i −0.343947 0.172737i
\(161\) −5.70142 −0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) −2.72527 1.36868i −0.212808 0.106876i
\(165\) 0 0
\(166\) 8.73060 + 11.7272i 0.677626 + 0.910209i
\(167\) 1.04821 + 3.50128i 0.0811132 + 0.270937i 0.988919 0.148453i \(-0.0474293\pi\)
−0.907806 + 0.419390i \(0.862244\pi\)
\(168\) 0 0
\(169\) 6.11777 + 14.1826i 0.470597 + 1.09097i
\(170\) −1.67253 9.48537i −0.128277 0.727494i
\(171\) 0 0
\(172\) −4.57421 + 25.9416i −0.348780 + 1.97803i
\(173\) −12.9245 + 3.06317i −0.982635 + 0.232889i −0.690376 0.723450i \(-0.742555\pi\)
−0.292259 + 0.956339i \(0.594407\pi\)
\(174\) 0 0
\(175\) −7.00316 4.60605i −0.529389 0.348185i
\(176\) 0.140185 2.40688i 0.0105668 0.181425i
\(177\) 0 0
\(178\) 9.72284 32.4765i 0.728758 2.43422i
\(179\) 0.392738 0.142945i 0.0293546 0.0106842i −0.327301 0.944920i \(-0.606139\pi\)
0.356656 + 0.934236i \(0.383917\pi\)
\(180\) 0 0
\(181\) −19.5881 7.12947i −1.45597 0.529929i −0.511717 0.859154i \(-0.670990\pi\)
−0.944252 + 0.329225i \(0.893213\pi\)
\(182\) −12.6769 + 17.0280i −0.939675 + 1.26220i
\(183\) 0 0
\(184\) −4.84413 1.14808i −0.357114 0.0846376i
\(185\) 0.365864 0.848169i 0.0268989 0.0623586i
\(186\) 0 0
\(187\) 6.92128 4.55220i 0.506134 0.332890i
\(188\) 8.34230 + 14.4493i 0.608425 + 1.05382i
\(189\) 0 0
\(190\) −4.47446 + 7.75000i −0.324612 + 0.562244i
\(191\) 0.400574 + 6.87758i 0.0289845 + 0.497645i 0.981295 + 0.192512i \(0.0616636\pi\)
−0.952310 + 0.305132i \(0.901299\pi\)
\(192\) 0 0
\(193\) 8.68725 1.01539i 0.625322 0.0730897i 0.202470 0.979288i \(-0.435103\pi\)
0.422852 + 0.906199i \(0.361029\pi\)
\(194\) −5.56831 + 5.90207i −0.399782 + 0.423744i
\(195\) 0 0
\(196\) 9.92166 + 1.15968i 0.708690 + 0.0828339i
\(197\) 6.47094 5.42976i 0.461035 0.386855i −0.382476 0.923965i \(-0.624929\pi\)
0.843512 + 0.537111i \(0.180484\pi\)
\(198\) 0 0
\(199\) 9.66790 + 8.11233i 0.685339 + 0.575068i 0.917561 0.397595i \(-0.130155\pi\)
−0.232222 + 0.972663i \(0.574599\pi\)
\(200\) −5.02262 5.32367i −0.355153 0.376440i
\(201\) 0 0
\(202\) −9.04245 + 4.54129i −0.636225 + 0.319524i
\(203\) −9.62275 + 4.83272i −0.675384 + 0.339191i
\(204\) 0 0
\(205\) −0.494848 0.524508i −0.0345617 0.0366333i
\(206\) −8.61468 7.22858i −0.600213 0.503639i
\(207\) 0 0
\(208\) 8.14187 6.83184i 0.564537 0.473703i
\(209\) −7.64484 0.893553i −0.528804 0.0618084i
\(210\) 0 0
\(211\) 3.89505 4.12851i 0.268146 0.284218i −0.579283 0.815126i \(-0.696668\pi\)
0.847429 + 0.530908i \(0.178149\pi\)
\(212\) −23.1446 + 2.70522i −1.58958 + 0.185795i
\(213\) 0 0
\(214\) 1.64346 + 28.2171i 0.112345 + 1.92888i
\(215\) −3.11430 + 5.39413i −0.212393 + 0.367876i
\(216\) 0 0
\(217\) −2.53667 4.39364i −0.172200 0.298260i
\(218\) 3.23101 2.12507i 0.218832 0.143928i
\(219\) 0 0
\(220\) −0.847021 + 1.96362i −0.0571062 + 0.132387i
\(221\) 35.5353 + 8.42202i 2.39036 + 0.566527i
\(222\) 0 0
\(223\) 4.49831 6.04228i 0.301229 0.404621i −0.625576 0.780163i \(-0.715136\pi\)
0.926805 + 0.375542i \(0.122543\pi\)
\(224\) 12.9452 + 4.71166i 0.864936 + 0.314811i
\(225\) 0 0
\(226\) −28.3955 + 10.3351i −1.88884 + 0.687481i
\(227\) −3.91290 + 13.0700i −0.259708 + 0.867485i 0.724319 + 0.689465i \(0.242154\pi\)
−0.984027 + 0.178020i \(0.943031\pi\)
\(228\) 0 0
\(229\) −0.929998 + 15.9675i −0.0614560 + 1.05516i 0.816785 + 0.576942i \(0.195754\pi\)
−0.878241 + 0.478218i \(0.841283\pi\)
\(230\) −3.66280 2.40906i −0.241518 0.158849i
\(231\) 0 0
\(232\) −9.14898 + 2.16835i −0.600660 + 0.142359i
\(233\) 0.930605 5.27772i 0.0609660 0.345755i −0.939032 0.343829i \(-0.888276\pi\)
0.999998 0.00192589i \(-0.000613031\pi\)
\(234\) 0 0
\(235\) 0.685064 + 3.88519i 0.0446886 + 0.253442i
\(236\) −2.26129 5.24226i −0.147197 0.341242i
\(237\) 0 0
\(238\) 7.81658 + 26.1092i 0.506673 + 1.69241i
\(239\) 9.64028 + 12.9491i 0.623578 + 0.837611i 0.995897 0.0904942i \(-0.0288447\pi\)
−0.372319 + 0.928105i \(0.621437\pi\)
\(240\) 0 0
\(241\) −20.9003 10.4965i −1.34630 0.676139i −0.377975 0.925816i \(-0.623379\pi\)
−0.968329 + 0.249677i \(0.919676\pi\)
\(242\) 20.7491 1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) 2.11074 + 1.06005i 0.134850 + 0.0677243i
\(246\) 0 0
\(247\) −20.2621 27.2168i −1.28925 1.73176i
\(248\) −1.27051 4.24380i −0.0806774 0.269481i
\(249\) 0 0
\(250\) −5.33858 12.3762i −0.337641 0.782740i
\(251\) −4.21745 23.9183i −0.266203 1.50971i −0.765588 0.643331i \(-0.777552\pi\)
0.499385 0.866380i \(-0.333559\pi\)
\(252\) 0 0
\(253\) 0.654768 3.71337i 0.0411649 0.233458i
\(254\) 24.1261 5.71800i 1.51381 0.358779i
\(255\) 0 0
\(256\) 0.945527 + 0.621883i 0.0590954 + 0.0388677i
\(257\) 0.560163 9.61763i 0.0349420 0.599931i −0.934705 0.355423i \(-0.884337\pi\)
0.969647 0.244508i \(-0.0786263\pi\)
\(258\) 0 0
\(259\) −0.749638 + 2.50396i −0.0465802 + 0.155589i
\(260\) −8.85887 + 3.22437i −0.549404 + 0.199967i
\(261\) 0 0
\(262\) 29.8116 + 10.8505i 1.84177 + 0.670349i
\(263\) −3.96621 + 5.32754i −0.244567 + 0.328510i −0.907409 0.420249i \(-0.861943\pi\)
0.662842 + 0.748759i \(0.269350\pi\)
\(264\) 0 0
\(265\) −5.36136 1.27067i −0.329346 0.0780564i
\(266\) 10.0296 23.2512i 0.614954 1.42562i
\(267\) 0 0
\(268\) −2.78637 + 1.83262i −0.170205 + 0.111945i
\(269\) 14.6832 + 25.4321i 0.895251 + 1.55062i 0.833494 + 0.552529i \(0.186337\pi\)
0.0617568 + 0.998091i \(0.480330\pi\)
\(270\) 0 0
\(271\) 9.43957 16.3498i 0.573413 0.993180i −0.422799 0.906223i \(-0.638952\pi\)
0.996212 0.0869568i \(-0.0277142\pi\)
\(272\) −0.793397 13.6221i −0.0481067 0.825961i
\(273\) 0 0
\(274\) 0.801351 0.0936645i 0.0484114 0.00565848i
\(275\) 3.80421 4.03223i 0.229403 0.243152i
\(276\) 0 0
\(277\) −13.9438 1.62979i −0.837801 0.0979249i −0.313638 0.949543i \(-0.601548\pi\)
−0.524163 + 0.851618i \(0.675622\pi\)
\(278\) −24.9640 + 20.9473i −1.49724 + 1.25633i
\(279\) 0 0
\(280\) −1.44713 1.21428i −0.0864824 0.0725673i
\(281\) −15.1525 16.0607i −0.903924 0.958103i 0.0953791 0.995441i \(-0.469594\pi\)
−0.999303 + 0.0373380i \(0.988112\pi\)
\(282\) 0 0
\(283\) 3.53563 1.77566i 0.210172 0.105552i −0.340599 0.940208i \(-0.610630\pi\)
0.550771 + 0.834656i \(0.314334\pi\)
\(284\) −19.9136 + 10.0010i −1.18166 + 0.593451i
\(285\) 0 0
\(286\) −9.63461 10.2121i −0.569707 0.603854i
\(287\) 1.56307 + 1.31157i 0.0922652 + 0.0774197i
\(288\) 0 0
\(289\) 22.8934 19.2099i 1.34667 1.12999i
\(290\) −8.22401 0.961249i −0.482931 0.0564465i
\(291\) 0 0
\(292\) −12.0502 + 12.7724i −0.705183 + 0.747450i
\(293\) 7.92333 0.926104i 0.462886 0.0541036i 0.118546 0.992949i \(-0.462177\pi\)
0.344340 + 0.938845i \(0.388103\pi\)
\(294\) 0 0
\(295\) −0.0784927 1.34767i −0.00457002 0.0784643i
\(296\) −1.14114 + 1.97650i −0.0663271 + 0.114882i
\(297\) 0 0
\(298\) 1.08818 + 1.88478i 0.0630366 + 0.109183i
\(299\) 13.8880 9.13425i 0.803161 0.528247i
\(300\) 0 0
\(301\) 6.98076 16.1832i 0.402365 0.932786i
\(302\) −0.0415649 0.00985106i −0.00239179 0.000566865i
\(303\) 0 0
\(304\) −7.57072 + 10.1692i −0.434211 + 0.583246i
\(305\) −2.18097 0.793808i −0.124882 0.0454533i
\(306\) 0 0
\(307\) 1.95823 0.712736i 0.111762 0.0406780i −0.285534 0.958369i \(-0.592171\pi\)
0.397296 + 0.917691i \(0.369949\pi\)
\(308\) 1.73550 5.79699i 0.0988895 0.330314i
\(309\) 0 0
\(310\) 0.226827 3.89447i 0.0128829 0.221191i
\(311\) −12.5444 8.25056i −0.711326 0.467846i 0.141570 0.989928i \(-0.454785\pi\)
−0.852895 + 0.522082i \(0.825155\pi\)
\(312\) 0 0
\(313\) 4.95368 1.17404i 0.279998 0.0663608i −0.0882173 0.996101i \(-0.528117\pi\)
0.368216 + 0.929740i \(0.379969\pi\)
\(314\) 2.94876 16.7232i 0.166408 0.943747i
\(315\) 0 0
\(316\) −6.76955 38.3920i −0.380817 2.15972i
\(317\) 10.9746 + 25.4420i 0.616396 + 1.42897i 0.884943 + 0.465700i \(0.154197\pi\)
−0.268547 + 0.963267i \(0.586543\pi\)
\(318\) 0 0
\(319\) −2.04248 6.82236i −0.114357 0.381979i
\(320\) 4.78694 + 6.42998i 0.267598 + 0.359447i
\(321\) 0 0
\(322\) 11.0857 + 5.56744i 0.617781 + 0.310261i
\(323\) −43.5617 −2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) 29.9331 + 15.0330i 1.65784 + 0.832599i
\(327\) 0 0
\(328\) 1.06393 + 1.42911i 0.0587459 + 0.0789094i
\(329\) −3.20166 10.6943i −0.176513 0.589595i
\(330\) 0 0
\(331\) 10.8007 + 25.0389i 0.593663 + 1.37626i 0.904774 + 0.425891i \(0.140039\pi\)
−0.311112 + 0.950373i \(0.600701\pi\)
\(332\) −3.19024 18.0928i −0.175087 0.992969i
\(333\) 0 0
\(334\) 1.38088 7.83136i 0.0755584 0.428513i
\(335\) −0.767320 + 0.181858i −0.0419232 + 0.00993597i
\(336\) 0 0
\(337\) 10.6262 + 6.98897i 0.578846 + 0.380713i 0.804908 0.593400i \(-0.202215\pi\)
−0.226062 + 0.974113i \(0.572585\pi\)
\(338\) 1.95408 33.5502i 0.106288 1.82489i
\(339\) 0 0
\(340\) −3.47125 + 11.5948i −0.188255 + 0.628815i
\(341\) 3.15292 1.14757i 0.170740 0.0621444i
\(342\) 0 0
\(343\) −18.3136 6.66560i −0.988840 0.359908i
\(344\) 9.18988 12.3441i 0.495485 0.665552i
\(345\) 0 0
\(346\) 28.1213 + 6.66487i 1.51181 + 0.358306i
\(347\) −3.33227 + 7.72507i −0.178886 + 0.414703i −0.983940 0.178497i \(-0.942877\pi\)
0.805055 + 0.593200i \(0.202136\pi\)
\(348\) 0 0
\(349\) −25.1843 + 16.5640i −1.34808 + 0.886649i −0.998732 0.0503430i \(-0.983969\pi\)
−0.349352 + 0.936992i \(0.613598\pi\)
\(350\) 9.11893 + 15.7944i 0.487427 + 0.844249i
\(351\) 0 0
\(352\) −4.55540 + 7.89018i −0.242803 + 0.420548i
\(353\) 1.35078 + 23.1921i 0.0718950 + 1.23439i 0.820606 + 0.571494i \(0.193636\pi\)
−0.748711 + 0.662896i \(0.769327\pi\)
\(354\) 0 0
\(355\) −5.23347 + 0.611705i −0.277764 + 0.0324660i
\(356\) −29.2338 + 30.9860i −1.54939 + 1.64226i
\(357\) 0 0
\(358\) −0.903214 0.105571i −0.0477364 0.00557958i
\(359\) −3.19290 + 2.67916i −0.168515 + 0.141401i −0.723145 0.690696i \(-0.757304\pi\)
0.554630 + 0.832097i \(0.312860\pi\)
\(360\) 0 0
\(361\) 16.4498 + 13.8030i 0.865780 + 0.726476i
\(362\) 31.1245 + 32.9901i 1.63587 + 1.73392i
\(363\) 0 0
\(364\) 23.8387 11.9722i 1.24948 0.627515i
\(365\) −3.71039 + 1.86343i −0.194211 + 0.0975364i
\(366\) 0 0
\(367\) 8.04346 + 8.52557i 0.419865 + 0.445031i 0.902435 0.430826i \(-0.141778\pi\)
−0.482569 + 0.875858i \(0.660296\pi\)
\(368\) −4.75778 3.99225i −0.248016 0.208110i
\(369\) 0 0
\(370\) −1.53961 + 1.29189i −0.0800407 + 0.0671621i
\(371\) 15.4855 + 1.81000i 0.803967 + 0.0939703i
\(372\) 0 0
\(373\) −24.9598 + 26.4559i −1.29237 + 1.36983i −0.401313 + 0.915941i \(0.631446\pi\)
−0.891057 + 0.453891i \(0.850036\pi\)
\(374\) −17.9028 + 2.09253i −0.925729 + 0.108202i
\(375\) 0 0
\(376\) −0.566763 9.73095i −0.0292286 0.501835i
\(377\) 15.6973 27.1885i 0.808452 1.40028i
\(378\) 0 0
\(379\) 5.02516 + 8.70383i 0.258125 + 0.447086i 0.965740 0.259513i \(-0.0835620\pi\)
−0.707615 + 0.706599i \(0.750229\pi\)
\(380\) 9.39529 6.17938i 0.481968 0.316996i
\(381\) 0 0
\(382\) 5.93710 13.7637i 0.303768 0.704214i
\(383\) 0.294453 + 0.0697866i 0.0150458 + 0.00356593i 0.238132 0.971233i \(-0.423465\pi\)
−0.223086 + 0.974799i \(0.571613\pi\)
\(384\) 0 0
\(385\) 0.854430 1.14770i 0.0435458 0.0584921i
\(386\) −17.8828 6.50880i −0.910209 0.331289i
\(387\) 0 0
\(388\) 9.58146 3.48737i 0.486425 0.177044i
\(389\) 2.15663 7.20364i 0.109345 0.365239i −0.885750 0.464164i \(-0.846355\pi\)
0.995095 + 0.0989244i \(0.0315402\pi\)
\(390\) 0 0
\(391\) 1.24085 21.3045i 0.0627524 1.07742i
\(392\) −4.87579 3.20686i −0.246265 0.161971i
\(393\) 0 0
\(394\) −17.8841 + 4.23860i −0.900987 + 0.213538i
\(395\) 1.60068 9.07791i 0.0805390 0.456759i
\(396\) 0 0
\(397\) 2.95983 + 16.7860i 0.148549 + 0.842466i 0.964448 + 0.264271i \(0.0851314\pi\)
−0.815899 + 0.578195i \(0.803757\pi\)
\(398\) −10.8763 25.2141i −0.545180 1.26387i
\(399\) 0 0
\(400\) −2.61881 8.74745i −0.130941 0.437372i
\(401\) −8.10789 10.8908i −0.404889 0.543860i 0.552179 0.833726i \(-0.313797\pi\)
−0.957067 + 0.289866i \(0.906389\pi\)
\(402\) 0 0
\(403\) 13.2181 + 6.63836i 0.658438 + 0.330680i
\(404\) 12.7153 0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) −1.54476 0.775806i −0.0765708 0.0384553i
\(408\) 0 0
\(409\) −0.401500 0.539308i −0.0198529 0.0266671i 0.792086 0.610410i \(-0.208995\pi\)
−0.811939 + 0.583743i \(0.801588\pi\)
\(410\) 0.449986 + 1.50306i 0.0222232 + 0.0742308i
\(411\) 0 0
\(412\) 5.59715 + 12.9757i 0.275752 + 0.639265i
\(413\) 0.663313 + 3.76184i 0.0326395 + 0.185108i
\(414\) 0 0
\(415\) 0.754343 4.27809i 0.0370292 0.210003i
\(416\) −39.0814 + 9.26246i −1.91612 + 0.454130i
\(417\) 0 0
\(418\) 13.9918 + 9.20258i 0.684363 + 0.450113i
\(419\) −1.15627 + 19.8524i −0.0564876 + 0.969855i 0.844376 + 0.535752i \(0.179972\pi\)
−0.900863 + 0.434103i \(0.857065\pi\)
\(420\) 0 0
\(421\) −3.60098 + 12.0281i −0.175501 + 0.586214i 0.824298 + 0.566156i \(0.191570\pi\)
−0.999799 + 0.0200574i \(0.993615\pi\)
\(422\) −11.6049 + 4.22384i −0.564918 + 0.205613i
\(423\) 0 0
\(424\) 12.7926 + 4.65611i 0.621262 + 0.226121i
\(425\) 18.7356 25.1663i 0.908809 1.22074i
\(426\) 0 0
\(427\) 6.39038 + 1.51455i 0.309252 + 0.0732941i
\(428\) 14.0679 32.6131i 0.679999 1.57641i
\(429\) 0 0
\(430\) 11.3227 7.44707i 0.546030 0.359130i
\(431\) −10.8013 18.7084i −0.520281 0.901153i −0.999722 0.0235787i \(-0.992494\pi\)
0.479441 0.877574i \(-0.340839\pi\)
\(432\) 0 0
\(433\) −1.99970 + 3.46358i −0.0960993 + 0.166449i −0.910067 0.414461i \(-0.863970\pi\)
0.813968 + 0.580910i \(0.197303\pi\)
\(434\) 0.641838 + 11.0199i 0.0308092 + 0.528973i
\(435\) 0 0
\(436\) −4.82671 + 0.564162i −0.231158 + 0.0270184i
\(437\) −13.6067 + 14.4223i −0.650897 + 0.689910i
\(438\) 0 0
\(439\) 31.0001 + 3.62339i 1.47955 + 0.172935i 0.817243 0.576293i \(-0.195501\pi\)
0.662312 + 0.749228i \(0.269575\pi\)
\(440\) 0.957063 0.803071i 0.0456262 0.0382849i
\(441\) 0 0
\(442\) −60.8697 51.0758i −2.89528 2.42943i
\(443\) 1.09948 + 1.16538i 0.0522379 + 0.0553689i 0.752966 0.658060i \(-0.228623\pi\)
−0.700728 + 0.713429i \(0.747141\pi\)
\(444\) 0 0
\(445\) −9.00144 + 4.52070i −0.426709 + 0.214302i
\(446\) −14.6467 + 7.35584i −0.693540 + 0.348309i
\(447\) 0 0
\(448\) −15.5659 16.4989i −0.735421 0.779501i
\(449\) −8.04720 6.75241i −0.379771 0.318666i 0.432841 0.901470i \(-0.357511\pi\)
−0.812613 + 0.582804i \(0.801955\pi\)
\(450\) 0 0
\(451\) −1.03374 + 0.867414i −0.0486771 + 0.0408449i
\(452\) 37.7152 + 4.40827i 1.77397 + 0.207348i
\(453\) 0 0
\(454\) 20.3710 21.5920i 0.956057 1.01336i
\(455\) 6.26500 0.732273i 0.293708 0.0343295i
\(456\) 0 0
\(457\) −2.39213 41.0713i −0.111899 1.92123i −0.327676 0.944790i \(-0.606265\pi\)
0.215777 0.976443i \(-0.430772\pi\)
\(458\) 17.4005 30.1385i 0.813071 1.40828i
\(459\) 0 0
\(460\) 2.75450 + 4.77093i 0.128429 + 0.222446i
\(461\) −28.6563 + 18.8476i −1.33466 + 0.877819i −0.997963 0.0637944i \(-0.979680\pi\)
−0.336696 + 0.941613i \(0.609309\pi\)
\(462\) 0 0
\(463\) −13.2025 + 30.6068i −0.613572 + 1.42242i 0.273990 + 0.961732i \(0.411656\pi\)
−0.887562 + 0.460688i \(0.847603\pi\)
\(464\) −11.4140 2.70518i −0.529884 0.125585i
\(465\) 0 0
\(466\) −6.96314 + 9.35312i −0.322561 + 0.433275i
\(467\) 9.76380 + 3.55373i 0.451815 + 0.164447i 0.557897 0.829910i \(-0.311608\pi\)
−0.106082 + 0.994357i \(0.533831\pi\)
\(468\) 0 0
\(469\) 2.09681 0.763177i 0.0968218 0.0352402i
\(470\) 2.46187 8.22322i 0.113558 0.379309i
\(471\) 0 0
\(472\) −0.193936 + 3.32976i −0.00892664 + 0.153265i
\(473\) 9.73855 + 6.40515i 0.447779 + 0.294509i
\(474\) 0 0
\(475\) −28.3647 + 6.72257i −1.30146 + 0.308453i
\(476\) 5.94706 33.7274i 0.272583 1.54589i
\(477\) 0 0
\(478\) −6.09945 34.5917i −0.278982 1.58219i
\(479\) −8.03903 18.6366i −0.367313 0.851526i −0.997196 0.0748364i \(-0.976157\pi\)
0.629883 0.776690i \(-0.283103\pi\)
\(480\) 0 0
\(481\) −2.18558 7.30034i −0.0996538 0.332867i
\(482\) 30.3880 + 40.8182i 1.38414 + 1.85922i
\(483\) 0 0
\(484\) −23.3001 11.7017i −1.05910 0.531898i
\(485\) 2.41096 0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) 5.12451 + 2.57363i 0.231976 + 0.116503i
\(489\) 0 0
\(490\) −3.06892 4.12227i −0.138640 0.186225i
\(491\) 2.93035 + 9.78804i 0.132245 + 0.441728i 0.998304 0.0582128i \(-0.0185402\pi\)
−0.866059 + 0.499941i \(0.833355\pi\)
\(492\) 0 0
\(493\) −15.9642 37.0091i −0.718991 1.66681i
\(494\) 12.8199 + 72.7055i 0.576796 + 3.27117i
\(495\) 0 0
\(496\) 0.959690 5.44267i 0.0430914 0.244383i
\(497\) 14.5077 3.43840i 0.650761 0.154233i
\(498\) 0 0
\(499\) 7.30520 + 4.80470i 0.327026 + 0.215088i 0.702395 0.711787i \(-0.252114\pi\)
−0.375370 + 0.926875i \(0.622484\pi\)
\(500\) −0.984811 + 16.9086i −0.0440421 + 0.756174i
\(501\) 0 0
\(502\) −15.1560 + 50.6244i −0.676444 + 2.25948i
\(503\) 12.2947 4.47489i 0.548192 0.199526i −0.0530509 0.998592i \(-0.516895\pi\)
0.601243 + 0.799066i \(0.294672\pi\)
\(504\) 0 0
\(505\) 2.82525 + 1.02831i 0.125722 + 0.0457591i
\(506\) −4.89922 + 6.58080i −0.217797 + 0.292552i
\(507\) 0 0
\(508\) −30.3171 7.18528i −1.34510 0.318795i
\(509\) 12.0492 27.9331i 0.534070 1.23811i −0.411117 0.911583i \(-0.634861\pi\)
0.945187 0.326530i \(-0.105880\pi\)
\(510\) 0 0
\(511\) 9.81592 6.45603i 0.434231 0.285598i
\(512\) 10.6866 + 18.5097i 0.472284 + 0.818019i
\(513\) 0 0
\(514\) −10.4808 + 18.1532i −0.462287 + 0.800705i
\(515\) 0.194286 + 3.33575i 0.00856124 + 0.146991i
\(516\) 0 0
\(517\) 7.33294 0.857098i 0.322502 0.0376951i
\(518\) 3.90269 4.13661i 0.171475 0.181752i
\(519\) 0 0
\(520\) 5.47042 + 0.639401i 0.239894 + 0.0280396i
\(521\) −8.25925 + 6.93034i −0.361845 + 0.303624i −0.805525 0.592561i \(-0.798117\pi\)
0.443681 + 0.896185i \(0.353672\pi\)
\(522\) 0 0
\(523\) 9.44644 + 7.92650i 0.413064 + 0.346602i 0.825517 0.564377i \(-0.190884\pi\)
−0.412453 + 0.910979i \(0.635328\pi\)
\(524\) −27.3575 28.9972i −1.19512 1.26675i
\(525\) 0 0
\(526\) 12.9141 6.48572i 0.563083 0.282791i
\(527\) 16.9698 8.52256i 0.739216 0.371248i
\(528\) 0 0
\(529\) 9.11771 + 9.66421i 0.396422 + 0.420183i
\(530\) 9.18367 + 7.70601i 0.398913 + 0.334728i
\(531\) 0 0
\(532\) −24.3755 + 20.4535i −1.05681 + 0.886772i
\(533\) −5.90872 0.690630i −0.255935 0.0299145i
\(534\) 0 0
\(535\) 5.76327 6.10871i 0.249168 0.264103i
\(536\) 1.93520 0.226193i 0.0835881 0.00977005i
\(537\) 0 0
\(538\) −3.71520 63.7875i −0.160174 2.75007i
\(539\) 2.21009 3.82798i 0.0951952 0.164883i
\(540\) 0 0
\(541\) 7.99279 + 13.8439i 0.343637 + 0.595196i 0.985105 0.171953i \(-0.0550078\pi\)
−0.641468 + 0.767149i \(0.721674\pi\)
\(542\) −34.3196 + 22.5724i −1.47415 + 0.969566i
\(543\) 0 0
\(544\) −20.4234 + 47.3469i −0.875648 + 2.02998i
\(545\) −1.11809 0.264991i −0.0478936 0.0113510i
\(546\) 0 0
\(547\) 0.738452 0.991913i 0.0315739 0.0424111i −0.786056 0.618155i \(-0.787880\pi\)
0.817630 + 0.575744i \(0.195288\pi\)
\(548\) −0.952696 0.346753i −0.0406972 0.0148126i
\(549\) 0 0
\(550\) −11.3343 + 4.12534i −0.483295 + 0.175905i
\(551\) −10.7403 + 35.8751i −0.457552 + 1.52833i
\(552\) 0 0
\(553\) −1.51662 + 26.0393i −0.0644930 + 1.10730i
\(554\) 25.5204 + 16.7850i 1.08426 + 0.713128i
\(555\) 0 0
\(556\) 39.8467 9.44384i 1.68988 0.400508i
\(557\) −2.28246 + 12.9445i −0.0967109 + 0.548475i 0.897499 + 0.441017i \(0.145382\pi\)
−0.994210 + 0.107458i \(0.965729\pi\)
\(558\) 0 0
\(559\) 8.92289 + 50.6042i 0.377398 + 2.14033i
\(560\) −0.933474 2.16404i −0.0394465 0.0914472i
\(561\) 0 0
\(562\) 13.7788 + 46.0245i 0.581224 + 1.94142i
\(563\) −3.63605 4.88406i −0.153241 0.205838i 0.718873 0.695142i \(-0.244658\pi\)
−0.872114 + 0.489303i \(0.837251\pi\)
\(564\) 0 0
\(565\) 8.02355 + 4.02958i 0.337553 + 0.169526i
\(566\) −8.60852 −0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) −14.8144 7.44006i −0.621051 0.311904i 0.110307 0.993898i \(-0.464817\pi\)
−0.731358 + 0.681994i \(0.761113\pi\)
\(570\) 0 0
\(571\) 20.8094 + 27.9518i 0.870844 + 1.16975i 0.984353 + 0.176210i \(0.0563838\pi\)
−0.113508 + 0.993537i \(0.536209\pi\)
\(572\) 5.05988 + 16.9012i 0.211564 + 0.706674i
\(573\) 0 0
\(574\) −1.75844 4.07652i −0.0733959 0.170151i
\(575\) −2.47981 14.0637i −0.103415 0.586497i
\(576\) 0 0
\(577\) 5.38675 30.5498i 0.224254 1.27180i −0.639854 0.768497i \(-0.721005\pi\)
0.864107 0.503308i \(-0.167884\pi\)
\(578\) −63.2718 + 14.9957i −2.63176 + 0.623739i
\(579\) 0 0
\(580\) 8.69300 + 5.71747i 0.360957 + 0.237405i
\(581\) −0.714726 + 12.2714i −0.0296518 + 0.509102i
\(582\) 0 0
\(583\) −2.95726 + 9.87794i −0.122477 + 0.409103i
\(584\) 9.63999 3.50867i 0.398906 0.145190i
\(585\) 0 0
\(586\) −16.3102 5.93644i −0.673769 0.245232i
\(587\) 26.6000 35.7300i 1.09790 1.47474i 0.233214 0.972425i \(-0.425076\pi\)
0.864687 0.502311i \(-0.167517\pi\)
\(588\) 0 0
\(589\) −17.1680 4.06889i −0.707394 0.167655i
\(590\) −1.16338 + 2.69702i −0.0478956 + 0.111034i
\(591\) 0 0
\(592\) −2.37889 + 1.56462i −0.0977718 + 0.0643055i
\(593\) −9.90549 17.1568i −0.406770 0.704546i 0.587756 0.809038i \(-0.300011\pi\)
−0.994526 + 0.104493i \(0.966678\pi\)
\(594\) 0 0
\(595\) 4.04899 7.01306i 0.165992 0.287507i
\(596\) −0.159016 2.73020i −0.00651356 0.111833i
\(597\) 0 0
\(598\) −35.9229 + 4.19879i −1.46900 + 0.171701i
\(599\) −19.1656 + 20.3143i −0.783084 + 0.830020i −0.988902 0.148570i \(-0.952533\pi\)
0.205818 + 0.978590i \(0.434014\pi\)
\(600\) 0 0
\(601\) 10.0762 + 1.17774i 0.411015 + 0.0480408i 0.319088 0.947725i \(-0.396623\pi\)
0.0919270 + 0.995766i \(0.470697\pi\)
\(602\) −29.3761 + 24.6495i −1.19728 + 1.00464i
\(603\) 0 0
\(604\) 0.0411194 + 0.0345033i 0.00167313 + 0.00140392i
\(605\) −4.23078 4.48437i −0.172006 0.182315i
\(606\) 0 0
\(607\) 9.66590 4.85440i 0.392327 0.197034i −0.241690 0.970354i \(-0.577702\pi\)
0.634016 + 0.773320i \(0.281405\pi\)
\(608\) 42.8128 21.5014i 1.73629 0.871997i
\(609\) 0 0
\(610\) 3.46546 + 3.67317i 0.140312 + 0.148722i
\(611\) 24.9321 + 20.9205i 1.00865 + 0.846355i
\(612\) 0 0
\(613\) 4.13859 3.47269i 0.167156 0.140261i −0.555372 0.831602i \(-0.687424\pi\)
0.722528 + 0.691341i \(0.242980\pi\)
\(614\) −4.50351 0.526385i −0.181747 0.0212432i
\(615\) 0 0
\(616\) −2.42601 + 2.57143i −0.0977469 + 0.103606i
\(617\) −24.8710 + 2.90700i −1.00127 + 0.117031i −0.600901 0.799324i \(-0.705191\pi\)
−0.400367 + 0.916355i \(0.631117\pi\)
\(618\) 0 0
\(619\) −1.48183 25.4420i −0.0595596 1.02260i −0.887213 0.461360i \(-0.847362\pi\)
0.827654 0.561239i \(-0.189675\pi\)
\(620\) −2.45106 + 4.24535i −0.0984368 + 0.170498i
\(621\) 0 0
\(622\) 16.3342 + 28.2917i 0.654943 + 1.13439i
\(623\) 23.8135 15.6624i 0.954068 0.627500i
\(624\) 0 0
\(625\) 7.48804 17.3592i 0.299521 0.694369i
\(626\) −10.7782 2.55449i −0.430785 0.102098i
\(627\) 0 0
\(628\) −12.7426 + 17.1163i −0.508485 + 0.683014i
\(629\) −9.19342 3.34613i −0.366566 0.133419i
\(630\) 0 0
\(631\) −18.7709 + 6.83203i −0.747256 + 0.271979i −0.687451 0.726231i \(-0.741270\pi\)
−0.0598054 + 0.998210i \(0.519048\pi\)
\(632\) −6.53203 + 21.8185i −0.259830 + 0.867893i
\(633\) 0 0
\(634\) 3.50540 60.1854i 0.139217 2.39027i
\(635\) −6.15516 4.04831i −0.244260 0.160652i
\(636\) 0 0
\(637\) 18.9606 4.49376i 0.751248 0.178049i
\(638\) −2.69069 + 15.2597i −0.106526 + 0.604137i
\(639\) 0 0
\(640\) −1.33792 7.58769i −0.0528857 0.299930i
\(641\) 3.53682 + 8.19927i 0.139696 + 0.323852i 0.973674 0.227947i \(-0.0732011\pi\)
−0.833978 + 0.551798i \(0.813942\pi\)
\(642\) 0 0
\(643\) −3.84314 12.8370i −0.151559 0.506241i 0.848165 0.529731i \(-0.177707\pi\)
−0.999724 + 0.0234904i \(0.992522\pi\)
\(644\) −9.30877 12.5039i −0.366817 0.492721i
\(645\) 0 0
\(646\) 84.7001 + 42.5380i 3.33248 + 1.67363i
\(647\) 48.7223 1.91547 0.957736 0.287649i \(-0.0928736\pi\)
0.957736 + 0.287649i \(0.0928736\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) −47.5169 23.8639i −1.86376 0.936018i
\(651\) 0 0
\(652\) −25.1351 33.7624i −0.984368 1.32224i
\(653\) 1.37807 + 4.60307i 0.0539280 + 0.180132i 0.980710 0.195467i \(-0.0626222\pi\)
−0.926782 + 0.375599i \(0.877437\pi\)
\(654\) 0 0
\(655\) −3.73359 8.65544i −0.145883 0.338196i
\(656\) 0.385978 + 2.18899i 0.0150699 + 0.0854656i
\(657\) 0 0
\(658\) −4.21775 + 23.9201i −0.164425 + 0.932501i
\(659\) 24.6111 5.83293i 0.958712 0.227219i 0.278666 0.960388i \(-0.410108\pi\)
0.680046 + 0.733169i \(0.261960\pi\)
\(660\) 0 0
\(661\) 11.8107 + 7.76805i 0.459385 + 0.302142i 0.758027 0.652223i \(-0.226163\pi\)
−0.298642 + 0.954365i \(0.596534\pi\)
\(662\) 3.44987 59.2319i 0.134083 2.30211i
\(663\) 0 0
\(664\) −3.07831 + 10.2823i −0.119462 + 0.399029i
\(665\) −7.07019 + 2.57334i −0.274170 + 0.0997898i
\(666\) 0 0
\(667\) −17.2393 6.27461i −0.667510 0.242954i
\(668\) −5.96725 + 8.01541i −0.230880 + 0.310126i
\(669\) 0 0
\(670\) 1.66954 + 0.395688i 0.0644999 + 0.0152868i
\(671\) −1.72032 + 3.98816i −0.0664123 + 0.153961i
\(672\) 0 0
\(673\) −2.22854 + 1.46573i −0.0859039 + 0.0564999i −0.591734 0.806133i \(-0.701557\pi\)
0.505830 + 0.862633i \(0.331186\pi\)
\(674\) −13.8366 23.9656i −0.532965 0.923122i
\(675\) 0 0
\(676\) −21.1154 + 36.5730i −0.812131 + 1.40665i
\(677\) −0.858366 14.7376i −0.0329897 0.566411i −0.973790 0.227449i \(-0.926961\pi\)
0.940800 0.338962i \(-0.110076\pi\)
\(678\) 0 0
\(679\) −6.77601 + 0.792002i −0.260040 + 0.0303943i
\(680\) 4.85237 5.14321i 0.186080 0.197233i
\(681\) 0 0
\(682\) −7.25106 0.847527i −0.277657 0.0324535i
\(683\) 16.0712 13.4854i 0.614948 0.516003i −0.281263 0.959631i \(-0.590753\pi\)
0.896211 + 0.443628i \(0.146309\pi\)
\(684\) 0 0
\(685\) −0.183640 0.154092i −0.00701653 0.00588756i
\(686\) 29.0994 + 30.8436i 1.11102 + 1.17761i
\(687\) 0 0
\(688\) 17.1572 8.61667i 0.654112 0.328507i
\(689\) −40.6205 + 20.4004i −1.54752 + 0.777194i
\(690\) 0 0
\(691\) −23.9044 25.3372i −0.909366 0.963872i 0.0901196 0.995931i \(-0.471275\pi\)
−0.999486 + 0.0320589i \(0.989794\pi\)
\(692\) −27.8199 23.3437i −1.05755 0.887394i
\(693\) 0 0
\(694\) 14.0227 11.7664i 0.532294 0.446648i
\(695\) 9.61740 + 1.12411i 0.364809 + 0.0426400i
\(696\) 0 0
\(697\) −5.24114 + 5.55529i −0.198522 + 0.210421i
\(698\) 65.1423 7.61404i 2.46567 0.288196i
\(699\) 0 0
\(700\) −1.33255 22.8790i −0.0503657 0.864746i
\(701\) −21.8053 + 37.7679i −0.823576 + 1.42647i 0.0794276 + 0.996841i \(0.474691\pi\)
−0.903003 + 0.429634i \(0.858643\pi\)
\(702\) 0 0
\(703\) 4.54496 + 7.87209i 0.171416 + 0.296902i
\(704\) 12.5335 8.24341i 0.472374 0.310685i
\(705\) 0 0
\(706\) 20.0206 46.4130i 0.753487 1.74678i
\(707\) −8.27816 1.96196i −0.311332 0.0737871i
\(708\) 0 0
\(709\) 10.9085 14.6527i 0.409677 0.550292i −0.548617 0.836074i \(-0.684846\pi\)
0.958295 + 0.285781i \(0.0922530\pi\)
\(710\) 10.7731 + 3.92111i 0.404309 + 0.147156i
\(711\) 0 0
\(712\) 23.3867 8.51206i 0.876453 0.319003i
\(713\) 2.47898 8.28037i 0.0928385 0.310102i
\(714\) 0 0
\(715\) −0.242556 + 4.16453i −0.00907109 + 0.155745i
\(716\) 0.954722 + 0.627930i 0.0356796 + 0.0234669i
\(717\) 0 0
\(718\) 8.82440 2.09142i 0.329324 0.0780511i
\(719\) 3.15002 17.8647i 0.117476 0.666240i −0.868018 0.496532i \(-0.834607\pi\)
0.985494 0.169708i \(-0.0542824\pi\)
\(720\) 0 0
\(721\) −1.64184 9.31131i −0.0611451 0.346771i
\(722\) −18.5059 42.9015i −0.688718 1.59663i
\(723\) 0 0
\(724\) −16.3459 54.5991i −0.607491 2.02916i
\(725\) −16.1063 21.6345i −0.598172 0.803484i
\(726\) 0 0
\(727\) 18.0996 + 9.08994i 0.671276 + 0.337127i 0.751579 0.659643i \(-0.229293\pi\)
−0.0803032 + 0.996770i \(0.525589\pi\)
\(728\) −15.5847 −0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) 58.9526 + 29.6071i 2.18044 + 1.09506i
\(732\) 0 0
\(733\) −1.05577 1.41814i −0.0389957 0.0523803i 0.782198 0.623030i \(-0.214099\pi\)
−0.821193 + 0.570650i \(0.806691\pi\)
\(734\) −7.31426 24.4313i −0.269974 0.901776i
\(735\) 0 0
\(736\) 9.29608 + 21.5507i 0.342658 + 0.794371i
\(737\) 0.256258 + 1.45331i 0.00943939 + 0.0535334i
\(738\) 0 0
\(739\) −1.58340 + 8.97988i −0.0582461 + 0.330330i −0.999982 0.00602346i \(-0.998083\pi\)
0.941736 + 0.336354i \(0.109194\pi\)
\(740\) 2.45748 0.582433i 0.0903387 0.0214107i
\(741\) 0 0
\(742\) −28.3421 18.6409i −1.04047 0.684329i
\(743\) −1.15833 + 19.8878i −0.0424951 + 0.729613i 0.908018 + 0.418930i \(0.137595\pi\)
−0.950514 + 0.310683i \(0.899442\pi\)
\(744\) 0 0
\(745\) 0.185464 0.619492i 0.00679487 0.0226964i
\(746\) 74.3653 27.0667i 2.72271 0.990984i
\(747\) 0 0
\(748\) 21.2839 + 7.74671i 0.778217 + 0.283248i
\(749\) −14.1910 + 19.0618i −0.518526 + 0.696502i
\(750\) 0 0
\(751\) −37.5165 8.89157i −1.36900 0.324458i −0.520591 0.853806i \(-0.674289\pi\)
−0.848405 + 0.529348i \(0.822437\pi\)
\(752\) 4.81660 11.1661i 0.175643 0.407187i
\(753\) 0 0
\(754\) −57.0709 + 37.5362i −2.07840 + 1.36699i
\(755\) 0.00634611 + 0.0109918i 0.000230959 + 0.000400032i
\(756\) 0 0
\(757\) 25.4729 44.1204i 0.925829 1.60358i 0.135606 0.990763i \(-0.456702\pi\)
0.790223 0.612820i \(-0.209965\pi\)
\(758\) −1.27148 21.8305i −0.0461824 0.792921i
\(759\) 0 0
\(760\) −6.52527 + 0.762694i −0.236696 + 0.0276658i
\(761\) 26.7225 28.3242i 0.968690 1.02675i −0.0309391 0.999521i \(-0.509850\pi\)
0.999629 0.0272302i \(-0.00866872\pi\)
\(762\) 0 0
\(763\) 3.22943 + 0.377466i 0.116913 + 0.0136652i
\(764\) −14.4293 + 12.1076i −0.522033 + 0.438038i
\(765\) 0 0
\(766\) −0.504379 0.423224i −0.0182239 0.0152917i
\(767\) −7.64258 8.10067i −0.275958 0.292498i
\(768\) 0 0
\(769\) 30.5189 15.3272i 1.10054 0.552711i 0.196648 0.980474i \(-0.436995\pi\)
0.903891 + 0.427763i \(0.140698\pi\)
\(770\) −2.78206 + 1.39720i −0.100258 + 0.0503516i
\(771\) 0 0
\(772\) 16.4106 + 17.3943i 0.590632 + 0.626033i
\(773\) 2.31945 + 1.94625i 0.0834247 + 0.0700016i 0.683546 0.729907i \(-0.260437\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(774\) 0 0
\(775\) 9.73449 8.16820i 0.349673 0.293411i
\(776\) −5.91662 0.691554i −0.212394 0.0248254i
\(777\) 0 0
\(778\) −11.2276 + 11.9006i −0.402530 + 0.426657i
\(779\) 7.04808 0.823802i 0.252524 0.0295158i
\(780\) 0 0
\(781\) 0.573339 + 9.84385i 0.0205157 + 0.352241i
\(782\) −23.2165 + 40.2122i −0.830222 + 1.43799i
\(783\) 0 0
\(784\) −3.64034 6.30526i −0.130012 0.225188i
\(785\) −4.21554 + 2.77260i −0.150459 + 0.0989585i
\(786\) 0 0
\(787\) 0.899575 2.08545i 0.0320664 0.0743382i −0.901430 0.432924i \(-0.857482\pi\)
0.933497 + 0.358586i \(0.116741\pi\)
\(788\) 22.4732 + 5.32626i 0.800576 + 0.189740i
\(789\) 0 0
\(790\) −11.9769 + 16.0878i −0.426119 + 0.572377i
\(791\) −23.8739 8.68939i −0.848858 0.308959i
\(792\) 0 0
\(793\) −17.9926 + 6.54878i −0.638936 + 0.232554i
\(794\) 10.6365 35.5285i 0.377477 1.26086i
\(795\) 0 0
\(796\) −2.00636 + 34.4479i −0.0711135 + 1.22097i
\(797\) 10.5130 + 6.91452i 0.372390 + 0.244925i 0.721884 0.692014i \(-0.243276\pi\)
−0.349494 + 0.936939i \(0.613647\pi\)
\(798\) 0 0
\(799\) 40.6581 9.63616i 1.43838 0.340903i
\(800\) −5.99181 + 33.9812i −0.211842 + 1.20142i
\(801\) 0 0
\(802\) 5.12989 + 29.0931i 0.181143 + 1.02731i
\(803\) 3.07757 + 7.13460i 0.108605 + 0.251775i
\(804\) 0 0
\(805\) −1.05714 3.53109i −0.0372592 0.124454i
\(806\) −19.2185 25.8149i −0.676941 0.909290i
\(807\) 0 0
\(808\) −6.63835 3.33390i −0.233536 0.117286i
\(809\) 13.7132 0.482129 0.241065 0.970509i \(-0.422503\pi\)
0.241065 + 0.970509i \(0.422503\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) −26.3099 13.2133i −0.923295 0.463696i
\(813\) 0 0
\(814\) 2.24601 + 3.01691i 0.0787225 + 0.105743i
\(815\) −2.85444 9.53449i −0.0999866 0.333979i
\(816\) 0 0
\(817\) −24.2770 56.2805i −0.849345 1.96900i
\(818\) 0.254031 + 1.44068i 0.00888198 + 0.0503722i
\(819\) 0 0
\(820\) 0.342361 1.94163i 0.0119558 0.0678046i
\(821\) 50.3105 11.9238i 1.75585 0.416144i 0.778477 0.627673i \(-0.215993\pi\)
0.977372 + 0.211530i \(0.0678445\pi\)
\(822\) 0 0
\(823\) −17.0312 11.2016i −0.593669 0.390463i 0.216824 0.976211i \(-0.430430\pi\)
−0.810493 + 0.585748i \(0.800801\pi\)
\(824\) 0.480032 8.24183i 0.0167227 0.287118i
\(825\) 0 0
\(826\) 2.38371 7.96213i 0.0829397 0.277038i
\(827\) −40.3124 + 14.6725i −1.40180 + 0.510213i −0.928712 0.370803i \(-0.879083\pi\)
−0.473087 + 0.881016i \(0.656860\pi\)
\(828\) 0 0
\(829\) −13.4165 4.88321i −0.465975 0.169601i 0.0983534 0.995152i \(-0.468642\pi\)
−0.564328 + 0.825551i \(0.690865\pi\)
\(830\) −5.64428 + 7.58158i −0.195916 + 0.263160i
\(831\) 0 0
\(832\) 64.3496 + 15.2511i 2.23092 + 0.528738i
\(833\) 9.90860 22.9707i 0.343312 0.795888i
\(834\) 0 0
\(835\) −1.97410 + 1.29839i −0.0683167 + 0.0449326i
\(836\) −10.5221 18.2249i −0.363916 0.630321i
\(837\) 0 0
\(838\) 21.6341 37.4714i 0.747338 1.29443i
\(839\) 1.74775 + 30.0078i 0.0603391 + 1.03598i 0.883577 + 0.468286i \(0.155128\pi\)
−0.823238 + 0.567697i \(0.807835\pi\)
\(840\) 0 0
\(841\) −5.61087 + 0.655817i −0.193478 + 0.0226144i
\(842\) 18.7471 19.8707i 0.646067 0.684791i
\(843\) 0 0
\(844\) 15.4138 + 1.80161i 0.530563 + 0.0620140i
\(845\) −7.64942 + 6.41863i −0.263148 + 0.220807i
\(846\) 0 0
\(847\) 13.3637 + 11.2135i 0.459183 + 0.385300i
\(848\) 11.6551 + 12.3537i 0.400238 + 0.424227i
\(849\) 0 0
\(850\) −61.0038 + 30.6373i −2.09241 + 1.05085i
\(851\) −3.97943 + 1.99855i −0.136413 + 0.0685093i
\(852\) 0 0
\(853\) −25.0747 26.5776i −0.858542 0.910001i 0.138221 0.990401i \(-0.455862\pi\)
−0.996763 + 0.0804005i \(0.974380\pi\)
\(854\) −10.9463 9.18504i −0.374575 0.314306i
\(855\) 0 0
\(856\) −15.8956 + 13.3380i −0.543299 + 0.455882i
\(857\) −45.8475 5.35881i −1.56612 0.183053i −0.711644 0.702541i \(-0.752049\pi\)
−0.854478 + 0.519487i \(0.826123\pi\)
\(858\) 0 0
\(859\) 0.211808 0.224503i 0.00722679 0.00765995i −0.723750 0.690062i \(-0.757583\pi\)
0.730977 + 0.682402i \(0.239065\pi\)
\(860\) −16.9147 + 1.97704i −0.576785 + 0.0674165i
\(861\) 0 0
\(862\) 2.73299 + 46.9236i 0.0930859 + 1.59822i
\(863\) −16.3176 + 28.2630i −0.555459 + 0.962083i 0.442409 + 0.896813i \(0.354124\pi\)
−0.997868 + 0.0652694i \(0.979209\pi\)
\(864\) 0 0
\(865\) −4.29355 7.43665i −0.145985 0.252854i
\(866\) 7.27033 4.78177i 0.247056 0.162491i
\(867\) 0 0
\(868\) 5.49409 12.7367i 0.186482 0.432313i
\(869\) −16.7854 3.97821i −0.569405 0.134951i
\(870\) 0 0
\(871\) −3.88488 + 5.21830i −0.131634 + 0.176816i
\(872\) 2.66783 + 0.971011i 0.0903441 + 0.0328826i
\(873\) 0 0
\(874\) 40.5398 14.7553i 1.37128 0.499105i
\(875\) 3.25013 10.8562i 0.109874 0.367006i
\(876\) 0 0
\(877\) −0.404272 + 6.94107i −0.0136513 + 0.234383i 0.984580 + 0.174935i \(0.0559714\pi\)
−0.998231 + 0.0594489i \(0.981066\pi\)
\(878\) −56.7375 37.3168i −1.91480 1.25938i
\(879\) 0 0
\(880\) 1.51665 0.359453i 0.0511264 0.0121172i
\(881\) −6.47573 + 36.7257i −0.218173 + 1.23732i 0.657142 + 0.753767i \(0.271765\pi\)
−0.875315 + 0.483553i \(0.839346\pi\)
\(882\) 0 0
\(883\) 1.07456 + 6.09412i 0.0361618 + 0.205084i 0.997536 0.0701625i \(-0.0223518\pi\)
−0.961374 + 0.275246i \(0.911241\pi\)
\(884\) 39.5484 + 91.6836i 1.33016 + 3.08365i
\(885\) 0 0
\(886\) −0.999804 3.33958i −0.0335891 0.112195i
\(887\) 11.1212 + 14.9384i 0.373413 + 0.501581i 0.948616 0.316430i \(-0.102484\pi\)
−0.575203 + 0.818011i \(0.695077\pi\)
\(888\) 0 0
\(889\) 18.6289 + 9.35581i 0.624795 + 0.313784i
\(890\) 21.9166 0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) −34.6930 17.4235i −1.16096 0.583055i
\(894\) 0 0
\(895\) 0.161351 + 0.216732i 0.00539336 + 0.00724454i
\(896\) 6.25277 + 20.8857i 0.208890 + 0.697742i
\(897\) 0 0
\(898\) 9.05303 + 20.9873i 0.302103 + 0.700355i
\(899\) −2.83476 16.0767i −0.0945444 0.536188i
\(900\) 0 0
\(901\) −10.1337 + 57.4708i −0.337601 + 1.91463i
\(902\) 2.85701 0.677124i 0.0951280 0.0225458i
\(903\) 0 0
\(904\) −18.5343 12.1902i −0.616443 0.405441i
\(905\) 0.783576 13.4535i 0.0260469 0.447209i
\(906\) 0 0
\(907\) −7.50927 + 25.0827i −0.249341 + 0.832858i 0.738075 + 0.674718i \(0.235735\pi\)
−0.987417 + 0.158140i \(0.949450\pi\)
\(908\) −35.0525 + 12.7581i −1.16326 + 0.423392i
\(909\) 0 0
\(910\) −12.8966 4.69396i −0.427516 0.155603i
\(911\) −4.75418 + 6.38597i −0.157513 + 0.211576i −0.873873 0.486154i \(-0.838399\pi\)
0.716360 + 0.697731i \(0.245807\pi\)
\(912\) 0 0
\(913\) −7.91034 1.87478i −0.261794 0.0620463i
\(914\) −35.4549 + 82.1937i −1.17274 + 2.71873i
\(915\) 0 0
\(916\) −36.5368 + 24.0306i −1.20721 + 0.793995i
\(917\) 13.3366 + 23.0996i 0.440412 + 0.762816i
\(918\) 0 0
\(919\) −27.5324 + 47.6875i −0.908210 + 1.57307i −0.0916606 + 0.995790i \(0.529217\pi\)
−0.816549 + 0.577276i \(0.804116\pi\)
\(920\) −0.187136 3.21301i −0.00616971 0.105930i
\(921\) 0 0
\(922\) 74.1232 8.66376i 2.44112 0.285326i
\(923\) −29.8304 + 31.6183i −0.981878 + 1.04073i
\(924\) 0 0
\(925\) −6.50258 0.760043i −0.213804 0.0249901i
\(926\) 55.5581 46.6188i 1.82575 1.53199i
\(927\) 0 0
\(928\) 33.9569 + 28.4932i 1.11469 + 0.935336i
\(929\) −30.0976 31.9016i −0.987472 1.04666i −0.998908 0.0467244i \(-0.985122\pi\)
0.0114360 0.999935i \(-0.496360\pi\)
\(930\) 0 0
\(931\) −20.7710 + 10.4316i −0.680741 + 0.341881i
\(932\) 13.0940 6.57607i 0.428909 0.215406i
\(933\) 0 0
\(934\) −15.5142 16.4441i −0.507641 0.538068i
\(935\) 4.10265 + 3.44253i 0.134171 + 0.112583i
\(936\) 0 0
\(937\) 25.4682 21.3704i 0.832010 0.698140i −0.123741 0.992315i \(-0.539489\pi\)
0.955752 + 0.294175i \(0.0950449\pi\)
\(938\) −4.82222 0.563637i −0.157451 0.0184034i
\(939\) 0 0
\(940\) −7.40214 + 7.84581i −0.241431 + 0.255902i
\(941\) 11.1321 1.30115i 0.362896 0.0424164i 0.0673085 0.997732i \(-0.478559\pi\)
0.295587 + 0.955316i \(0.404485\pi\)
\(942\) 0 0
\(943\) 0.202130 + 3.47044i 0.00658226 + 0.113013i
\(944\) −2.08058 + 3.60368i −0.0677172 + 0.117290i
\(945\) 0 0
\(946\) −12.6807 21.9637i −0.412286 0.714101i
\(947\) 3.95278 2.59978i 0.128448 0.0844816i −0.483659 0.875256i \(-0.660693\pi\)
0.612107 + 0.790775i \(0.290322\pi\)
\(948\) 0 0
\(949\) −13.5671 + 31.4522i −0.440408 + 1.02098i
\(950\) 61.7162 + 14.6270i 2.00234 + 0.474563i
\(951\) 0 0
\(952\) −11.9480 + 16.0490i −0.387238 + 0.520151i
\(953\) −1.77553 0.646238i −0.0575149 0.0209337i 0.313102 0.949719i \(-0.398632\pi\)
−0.370617 + 0.928786i \(0.620854\pi\)
\(954\) 0 0
\(955\) −4.18525 + 1.52331i −0.135432 + 0.0492930i
\(956\) −12.6591 + 42.2844i −0.409425 + 1.36758i
\(957\) 0 0
\(958\) −2.56775 + 44.0865i −0.0829601 + 1.42437i
\(959\) 0.566740 + 0.372750i 0.0183010 + 0.0120367i
\(960\) 0 0
\(961\) −22.6804 + 5.37536i −0.731626 + 0.173399i
\(962\) −2.87920 + 16.3288i −0.0928293 + 0.526461i
\(963\) 0 0
\(964\) −11.1041 62.9743i −0.357638 2.02827i
\(965\) 2.23963 + 5.19204i 0.0720962 + 0.167138i
\(966\) 0 0
\(967\) 16.0167 + 53.4996i 0.515064 + 1.72043i 0.679162 + 0.733988i \(0.262343\pi\)
−0.164099 + 0.986444i \(0.552472\pi\)
\(968\) 9.09626 + 12.2184i 0.292365 + 0.392714i
\(969\) 0 0
\(970\) −4.68781 2.35431i −0.150517 0.0755922i
\(971\) 6.12547 0.196576 0.0982879 0.995158i \(-0.468663\pi\)
0.0982879 + 0.995158i \(0.468663\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) 53.6094 + 26.9236i 1.71776 + 0.862689i
\(975\) 0 0
\(976\) 4.27219 + 5.73854i 0.136749 + 0.183686i
\(977\) 8.18742 + 27.3479i 0.261939 + 0.874937i 0.983240 + 0.182315i \(0.0583591\pi\)
−0.721301 + 0.692621i \(0.756456\pi\)
\(978\) 0 0
\(979\) 7.46620 + 17.3086i 0.238621 + 0.553185i
\(980\) 1.12141 + 6.35984i 0.0358222 + 0.203158i
\(981\) 0 0
\(982\) 3.86034 21.8931i 0.123188 0.698636i
\(983\) 21.4823 5.09140i 0.685179 0.162390i 0.126740 0.991936i \(-0.459549\pi\)
0.558439 + 0.829545i \(0.311400\pi\)
\(984\) 0 0
\(985\) 4.56266 + 3.00091i 0.145378 + 0.0956168i
\(986\) −5.09912 + 87.5485i −0.162389 + 2.78811i
\(987\) 0 0
\(988\) 26.6072 88.8742i 0.846488 2.82747i
\(989\) 28.2164 10.2699i 0.897228 0.326564i
\(990\) 0 0
\(991\) 33.4354 + 12.1695i 1.06211 + 0.386577i 0.813221 0.581955i \(-0.197712\pi\)
0.248890 + 0.968532i \(0.419934\pi\)
\(992\) −12.4715 + 16.7521i −0.395969 + 0.531879i
\(993\) 0 0
\(994\) −31.5660 7.48128i −1.00121 0.237292i
\(995\) −3.23166 + 7.49182i −0.102450 + 0.237507i
\(996\) 0 0
\(997\) −30.7695 + 20.2374i −0.974479 + 0.640925i −0.933629 0.358240i \(-0.883377\pi\)
−0.0408497 + 0.999165i \(0.513006\pi\)
\(998\) −9.51222 16.4757i −0.301104 0.521528i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.10.1 144
3.2 odd 2 81.2.g.a.13.8 144
9.2 odd 6 729.2.g.d.514.1 144
9.4 even 3 729.2.g.b.28.8 144
9.5 odd 6 729.2.g.c.28.1 144
9.7 even 3 729.2.g.a.514.8 144
81.2 odd 54 729.2.g.c.703.1 144
81.5 odd 54 6561.2.a.c.1.65 72
81.25 even 27 inner 243.2.g.a.73.1 144
81.29 odd 54 729.2.g.d.217.1 144
81.52 even 27 729.2.g.a.217.8 144
81.56 odd 54 81.2.g.a.25.8 yes 144
81.76 even 27 6561.2.a.d.1.8 72
81.79 even 27 729.2.g.b.703.8 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 3.2 odd 2
81.2.g.a.25.8 yes 144 81.56 odd 54
243.2.g.a.10.1 144 1.1 even 1 trivial
243.2.g.a.73.1 144 81.25 even 27 inner
729.2.g.a.217.8 144 81.52 even 27
729.2.g.a.514.8 144 9.7 even 3
729.2.g.b.28.8 144 9.4 even 3
729.2.g.b.703.8 144 81.79 even 27
729.2.g.c.28.1 144 9.5 odd 6
729.2.g.c.703.1 144 81.2 odd 54
729.2.g.d.217.1 144 81.29 odd 54
729.2.g.d.514.1 144 9.2 odd 6
6561.2.a.c.1.65 72 81.5 odd 54
6561.2.a.d.1.8 72 81.76 even 27