Properties

Label 243.2.e.b.55.2
Level $243$
Weight $2$
Character 243.55
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 55.2
Root \(0.500000 - 2.22827i\) of defining polynomial
Character \(\chi\) \(=\) 243.55
Dual form 243.2.e.b.190.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.390411 + 0.142098i) q^{2} +(-1.39986 + 1.17462i) q^{4} +(-0.384663 - 2.18153i) q^{5} +(-1.01089 - 0.848241i) q^{7} +(0.795075 - 1.37711i) q^{8} +O(q^{10})\) \(q+(-0.390411 + 0.142098i) q^{2} +(-1.39986 + 1.17462i) q^{4} +(-0.384663 - 2.18153i) q^{5} +(-1.01089 - 0.848241i) q^{7} +(0.795075 - 1.37711i) q^{8} +(0.460168 + 0.797034i) q^{10} +(0.905608 - 5.13596i) q^{11} +(0.0169695 + 0.00617638i) q^{13} +(0.515197 + 0.187516i) q^{14} +(0.519924 - 2.94863i) q^{16} +(-1.56640 - 2.71308i) q^{17} +(-0.208676 + 0.361438i) q^{19} +(3.10095 + 2.60201i) q^{20} +(0.376249 + 2.13382i) q^{22} +(0.792386 - 0.664891i) q^{23} +(0.0873421 - 0.0317899i) q^{25} -0.00750270 q^{26} +2.41147 q^{28} +(-7.33639 + 2.67023i) q^{29} +(2.85709 - 2.39738i) q^{31} +(0.768264 + 4.35704i) q^{32} +(0.997061 + 0.836633i) q^{34} +(-1.46161 + 2.53159i) q^{35} +(-2.21238 - 3.83195i) q^{37} +(0.0301099 - 0.170762i) q^{38} +(-3.31005 - 1.20476i) q^{40} +(-3.45331 - 1.25690i) q^{41} +(-1.44265 + 8.18166i) q^{43} +(4.76508 + 8.25337i) q^{44} +(-0.214876 + 0.372177i) q^{46} +(5.43731 + 4.56245i) q^{47} +(-0.913143 - 5.17869i) q^{49} +(-0.0295820 + 0.0248222i) q^{50} +(-0.0310098 + 0.0112866i) q^{52} +1.30057 q^{53} -11.5526 q^{55} +(-1.97186 + 0.717698i) q^{56} +(2.48477 - 2.08497i) q^{58} +(0.642813 + 3.64557i) q^{59} +(5.29661 + 4.44439i) q^{61} +(-0.774775 + 1.34195i) q^{62} +(2.07506 + 3.59410i) q^{64} +(0.00694645 - 0.0393953i) q^{65} +(10.3618 + 3.77139i) q^{67} +(5.37958 + 1.95801i) q^{68} +(0.210896 - 1.19605i) q^{70} +(-3.04214 - 5.26914i) q^{71} +(0.273486 - 0.473692i) q^{73} +(1.40825 + 1.18166i) q^{74} +(-0.132435 - 0.751078i) q^{76} +(-5.27200 + 4.42374i) q^{77} +(-0.459645 + 0.167297i) q^{79} -6.63254 q^{80} +1.52681 q^{82} +(4.33543 - 1.57797i) q^{83} +(-5.31614 + 4.46077i) q^{85} +(-0.599371 - 3.39920i) q^{86} +(-6.35275 - 5.33059i) q^{88} +(-1.68653 + 2.92116i) q^{89} +(-0.0119153 - 0.0206379i) q^{91} +(-0.328234 + 1.86151i) q^{92} +(-2.77110 - 1.00860i) q^{94} +(0.868758 + 0.316202i) q^{95} +(1.72630 - 9.79033i) q^{97} +(1.09238 + 1.89206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} + 3 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} + 3 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} + 3 q^{13} - 6 q^{14} - 9 q^{16} - 9 q^{17} - 3 q^{19} + 21 q^{20} - 15 q^{22} - 24 q^{23} - 15 q^{25} + 30 q^{26} - 12 q^{28} - 30 q^{29} - 15 q^{31} + 27 q^{32} - 9 q^{34} - 12 q^{35} - 3 q^{37} + 12 q^{38} - 6 q^{40} + 21 q^{41} + 12 q^{43} - 3 q^{44} - 3 q^{46} - 3 q^{47} + 21 q^{49} - 12 q^{50} + 36 q^{52} + 18 q^{53} - 12 q^{55} - 3 q^{56} + 30 q^{58} - 15 q^{59} + 21 q^{61} + 12 q^{62} + 12 q^{64} + 24 q^{65} + 21 q^{67} + 18 q^{68} + 30 q^{70} - 27 q^{71} + 6 q^{73} + 12 q^{74} + 42 q^{76} + 3 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 33 q^{83} - 9 q^{85} + 30 q^{86} - 12 q^{88} - 9 q^{89} + 6 q^{91} - 42 q^{92} - 33 q^{94} - 30 q^{95} - 42 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.390411 + 0.142098i −0.276062 + 0.100478i −0.476341 0.879261i \(-0.658037\pi\)
0.200279 + 0.979739i \(0.435815\pi\)
\(3\) 0 0
\(4\) −1.39986 + 1.17462i −0.699930 + 0.587311i
\(5\) −0.384663 2.18153i −0.172027 0.975611i −0.941520 0.336957i \(-0.890602\pi\)
0.769494 0.638655i \(-0.220509\pi\)
\(6\) 0 0
\(7\) −1.01089 0.848241i −0.382082 0.320605i 0.431437 0.902143i \(-0.358007\pi\)
−0.813519 + 0.581538i \(0.802451\pi\)
\(8\) 0.795075 1.37711i 0.281102 0.486882i
\(9\) 0 0
\(10\) 0.460168 + 0.797034i 0.145518 + 0.252044i
\(11\) 0.905608 5.13596i 0.273051 1.54855i −0.472034 0.881580i \(-0.656480\pi\)
0.745085 0.666969i \(-0.232409\pi\)
\(12\) 0 0
\(13\) 0.0169695 + 0.00617638i 0.00470648 + 0.00171302i 0.344372 0.938833i \(-0.388092\pi\)
−0.339666 + 0.940546i \(0.610314\pi\)
\(14\) 0.515197 + 0.187516i 0.137692 + 0.0501159i
\(15\) 0 0
\(16\) 0.519924 2.94863i 0.129981 0.737159i
\(17\) −1.56640 2.71308i −0.379907 0.658019i 0.611141 0.791522i \(-0.290711\pi\)
−0.991048 + 0.133503i \(0.957377\pi\)
\(18\) 0 0
\(19\) −0.208676 + 0.361438i −0.0478736 + 0.0829195i −0.888969 0.457967i \(-0.848578\pi\)
0.841096 + 0.540886i \(0.181911\pi\)
\(20\) 3.10095 + 2.60201i 0.693394 + 0.581827i
\(21\) 0 0
\(22\) 0.376249 + 2.13382i 0.0802166 + 0.454931i
\(23\) 0.792386 0.664891i 0.165224 0.138639i −0.556427 0.830897i \(-0.687828\pi\)
0.721651 + 0.692257i \(0.243384\pi\)
\(24\) 0 0
\(25\) 0.0873421 0.0317899i 0.0174684 0.00635798i
\(26\) −0.00750270 −0.00147140
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) −7.33639 + 2.67023i −1.36233 + 0.495849i −0.916775 0.399404i \(-0.869217\pi\)
−0.445558 + 0.895253i \(0.646995\pi\)
\(30\) 0 0
\(31\) 2.85709 2.39738i 0.513148 0.430583i −0.349087 0.937090i \(-0.613508\pi\)
0.862235 + 0.506508i \(0.169064\pi\)
\(32\) 0.768264 + 4.35704i 0.135811 + 0.770224i
\(33\) 0 0
\(34\) 0.997061 + 0.836633i 0.170995 + 0.143481i
\(35\) −1.46161 + 2.53159i −0.247058 + 0.427916i
\(36\) 0 0
\(37\) −2.21238 3.83195i −0.363713 0.629969i 0.624856 0.780740i \(-0.285158\pi\)
−0.988569 + 0.150771i \(0.951824\pi\)
\(38\) 0.0301099 0.170762i 0.00488446 0.0277012i
\(39\) 0 0
\(40\) −3.31005 1.20476i −0.523365 0.190489i
\(41\) −3.45331 1.25690i −0.539317 0.196295i 0.0579766 0.998318i \(-0.481535\pi\)
−0.597294 + 0.802023i \(0.703757\pi\)
\(42\) 0 0
\(43\) −1.44265 + 8.18166i −0.220002 + 1.24769i 0.652012 + 0.758209i \(0.273925\pi\)
−0.872013 + 0.489482i \(0.837186\pi\)
\(44\) 4.76508 + 8.25337i 0.718363 + 1.24424i
\(45\) 0 0
\(46\) −0.214876 + 0.372177i −0.0316818 + 0.0548745i
\(47\) 5.43731 + 4.56245i 0.793114 + 0.665501i 0.946514 0.322663i \(-0.104578\pi\)
−0.153400 + 0.988164i \(0.549022\pi\)
\(48\) 0 0
\(49\) −0.913143 5.17869i −0.130449 0.739813i
\(50\) −0.0295820 + 0.0248222i −0.00418353 + 0.00351039i
\(51\) 0 0
\(52\) −0.0310098 + 0.0112866i −0.00430028 + 0.00156517i
\(53\) 1.30057 0.178648 0.0893238 0.996003i \(-0.471529\pi\)
0.0893238 + 0.996003i \(0.471529\pi\)
\(54\) 0 0
\(55\) −11.5526 −1.55775
\(56\) −1.97186 + 0.717698i −0.263501 + 0.0959064i
\(57\) 0 0
\(58\) 2.48477 2.08497i 0.326266 0.273770i
\(59\) 0.642813 + 3.64557i 0.0836871 + 0.474613i 0.997632 + 0.0687752i \(0.0219091\pi\)
−0.913945 + 0.405838i \(0.866980\pi\)
\(60\) 0 0
\(61\) 5.29661 + 4.44439i 0.678162 + 0.569045i 0.915469 0.402389i \(-0.131820\pi\)
−0.237307 + 0.971435i \(0.576265\pi\)
\(62\) −0.774775 + 1.34195i −0.0983965 + 0.170428i
\(63\) 0 0
\(64\) 2.07506 + 3.59410i 0.259382 + 0.449263i
\(65\) 0.00694645 0.0393953i 0.000861601 0.00488638i
\(66\) 0 0
\(67\) 10.3618 + 3.77139i 1.26590 + 0.460748i 0.885743 0.464176i \(-0.153649\pi\)
0.380152 + 0.924924i \(0.375872\pi\)
\(68\) 5.37958 + 1.95801i 0.652370 + 0.237443i
\(69\) 0 0
\(70\) 0.210896 1.19605i 0.0252069 0.142955i
\(71\) −3.04214 5.26914i −0.361035 0.625332i 0.627096 0.778942i \(-0.284243\pi\)
−0.988132 + 0.153610i \(0.950910\pi\)
\(72\) 0 0
\(73\) 0.273486 0.473692i 0.0320092 0.0554415i −0.849577 0.527465i \(-0.823143\pi\)
0.881586 + 0.472023i \(0.156476\pi\)
\(74\) 1.40825 + 1.18166i 0.163705 + 0.137365i
\(75\) 0 0
\(76\) −0.132435 0.751078i −0.0151914 0.0861545i
\(77\) −5.27200 + 4.42374i −0.600801 + 0.504132i
\(78\) 0 0
\(79\) −0.459645 + 0.167297i −0.0517141 + 0.0188224i −0.367748 0.929926i \(-0.619871\pi\)
0.316034 + 0.948748i \(0.397649\pi\)
\(80\) −6.63254 −0.741540
\(81\) 0 0
\(82\) 1.52681 0.168608
\(83\) 4.33543 1.57797i 0.475875 0.173205i −0.0929366 0.995672i \(-0.529625\pi\)
0.568812 + 0.822468i \(0.307403\pi\)
\(84\) 0 0
\(85\) −5.31614 + 4.46077i −0.576616 + 0.483838i
\(86\) −0.599371 3.39920i −0.0646318 0.366545i
\(87\) 0 0
\(88\) −6.35275 5.33059i −0.677206 0.568243i
\(89\) −1.68653 + 2.92116i −0.178772 + 0.309642i −0.941460 0.337124i \(-0.890546\pi\)
0.762688 + 0.646766i \(0.223879\pi\)
\(90\) 0 0
\(91\) −0.0119153 0.0206379i −0.00124906 0.00216344i
\(92\) −0.328234 + 1.86151i −0.0342208 + 0.194076i
\(93\) 0 0
\(94\) −2.77110 1.00860i −0.285817 0.104029i
\(95\) 0.868758 + 0.316202i 0.0891327 + 0.0324417i
\(96\) 0 0
\(97\) 1.72630 9.79033i 0.175279 0.994057i −0.762542 0.646939i \(-0.776049\pi\)
0.937821 0.347119i \(-0.112840\pi\)
\(98\) 1.09238 + 1.89206i 0.110347 + 0.191127i
\(99\) 0 0
\(100\) −0.0849256 + 0.147095i −0.00849256 + 0.0147095i
\(101\) −10.5710 8.87014i −1.05186 0.882612i −0.0585685 0.998283i \(-0.518654\pi\)
−0.993288 + 0.115671i \(0.963098\pi\)
\(102\) 0 0
\(103\) 0.792725 + 4.49576i 0.0781095 + 0.442981i 0.998632 + 0.0522911i \(0.0166524\pi\)
−0.920522 + 0.390690i \(0.872237\pi\)
\(104\) 0.0219975 0.0184581i 0.00215704 0.00180997i
\(105\) 0 0
\(106\) −0.507758 + 0.184809i −0.0493178 + 0.0179502i
\(107\) 11.2965 1.09207 0.546035 0.837762i \(-0.316136\pi\)
0.546035 + 0.837762i \(0.316136\pi\)
\(108\) 0 0
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) 4.51026 1.64160i 0.430037 0.156521i
\(111\) 0 0
\(112\) −3.02674 + 2.53974i −0.286000 + 0.239983i
\(113\) −2.18075 12.3676i −0.205148 1.16345i −0.897207 0.441609i \(-0.854408\pi\)
0.692060 0.721840i \(-0.256703\pi\)
\(114\) 0 0
\(115\) −1.75528 1.47286i −0.163681 0.137345i
\(116\) 7.13341 12.3554i 0.662321 1.14717i
\(117\) 0 0
\(118\) −0.768989 1.33193i −0.0707912 0.122614i
\(119\) −0.717884 + 4.07132i −0.0658083 + 0.373217i
\(120\) 0 0
\(121\) −15.2213 5.54010i −1.38375 0.503646i
\(122\) −2.69939 0.982498i −0.244391 0.0889512i
\(123\) 0 0
\(124\) −1.18351 + 6.71200i −0.106282 + 0.602755i
\(125\) −5.64092 9.77035i −0.504539 0.873887i
\(126\) 0 0
\(127\) 4.19749 7.27027i 0.372467 0.645132i −0.617477 0.786589i \(-0.711845\pi\)
0.989944 + 0.141456i \(0.0451785\pi\)
\(128\) −8.09919 6.79603i −0.715874 0.600690i
\(129\) 0 0
\(130\) 0.00288601 + 0.0163674i 0.000253120 + 0.00143552i
\(131\) 11.9004 9.98564i 1.03974 0.872449i 0.0477666 0.998859i \(-0.484790\pi\)
0.991978 + 0.126409i \(0.0403452\pi\)
\(132\) 0 0
\(133\) 0.517536 0.188368i 0.0448761 0.0163335i
\(134\) −4.58126 −0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) 11.2833 4.10677i 0.963994 0.350865i 0.188396 0.982093i \(-0.439671\pi\)
0.775597 + 0.631228i \(0.217449\pi\)
\(138\) 0 0
\(139\) 4.70743 3.95001i 0.399279 0.335035i −0.420936 0.907090i \(-0.638298\pi\)
0.820215 + 0.572055i \(0.193854\pi\)
\(140\) −0.927605 5.26071i −0.0783970 0.444611i
\(141\) 0 0
\(142\) 1.93642 + 1.62485i 0.162500 + 0.136354i
\(143\) 0.0470893 0.0815610i 0.00393780 0.00682047i
\(144\) 0 0
\(145\) 8.64723 + 14.9774i 0.718113 + 1.24381i
\(146\) −0.0394613 + 0.223796i −0.00326584 + 0.0185215i
\(147\) 0 0
\(148\) 7.59812 + 2.76549i 0.624561 + 0.227322i
\(149\) 0.829580 + 0.301942i 0.0679618 + 0.0247361i 0.375777 0.926710i \(-0.377376\pi\)
−0.307816 + 0.951446i \(0.599598\pi\)
\(150\) 0 0
\(151\) 1.42834 8.10051i 0.116237 0.659210i −0.869894 0.493239i \(-0.835813\pi\)
0.986131 0.165971i \(-0.0530760\pi\)
\(152\) 0.331826 + 0.574740i 0.0269147 + 0.0466176i
\(153\) 0 0
\(154\) 1.42964 2.47621i 0.115204 0.199539i
\(155\) −6.32899 5.31065i −0.508356 0.426562i
\(156\) 0 0
\(157\) 2.18099 + 12.3690i 0.174062 + 0.987155i 0.939221 + 0.343313i \(0.111549\pi\)
−0.765159 + 0.643841i \(0.777340\pi\)
\(158\) 0.155678 0.130629i 0.0123851 0.0103923i
\(159\) 0 0
\(160\) 9.20951 3.35199i 0.728076 0.264998i
\(161\) −1.36501 −0.107578
\(162\) 0 0
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) 6.31054 2.29685i 0.492771 0.179354i
\(165\) 0 0
\(166\) −1.46837 + 1.23211i −0.113968 + 0.0956303i
\(167\) 3.57072 + 20.2506i 0.276311 + 1.56704i 0.734767 + 0.678320i \(0.237292\pi\)
−0.458456 + 0.888717i \(0.651597\pi\)
\(168\) 0 0
\(169\) −9.95833 8.35603i −0.766025 0.642771i
\(170\) 1.44161 2.49694i 0.110567 0.191507i
\(171\) 0 0
\(172\) −7.59085 13.1477i −0.578797 1.00251i
\(173\) −2.43685 + 13.8201i −0.185270 + 1.05072i 0.740337 + 0.672236i \(0.234666\pi\)
−0.925608 + 0.378485i \(0.876445\pi\)
\(174\) 0 0
\(175\) −0.115259 0.0419509i −0.00871277 0.00317119i
\(176\) −14.6732 5.34061i −1.10603 0.402564i
\(177\) 0 0
\(178\) 0.243350 1.38010i 0.0182398 0.103443i
\(179\) 5.09500 + 8.82479i 0.380818 + 0.659596i 0.991179 0.132527i \(-0.0423091\pi\)
−0.610361 + 0.792123i \(0.708976\pi\)
\(180\) 0 0
\(181\) −12.0274 + 20.8320i −0.893987 + 1.54843i −0.0589331 + 0.998262i \(0.518770\pi\)
−0.835054 + 0.550169i \(0.814563\pi\)
\(182\) 0.00758444 + 0.00636410i 0.000562196 + 0.000471739i
\(183\) 0 0
\(184\) −0.285622 1.61984i −0.0210563 0.119416i
\(185\) −7.50851 + 6.30039i −0.552037 + 0.463214i
\(186\) 0 0
\(187\) −15.3528 + 5.58796i −1.12271 + 0.408632i
\(188\) −12.9706 −0.945981
\(189\) 0 0
\(190\) −0.384104 −0.0278658
\(191\) 10.2862 3.74388i 0.744285 0.270898i 0.0580861 0.998312i \(-0.481500\pi\)
0.686199 + 0.727414i \(0.259278\pi\)
\(192\) 0 0
\(193\) −8.27785 + 6.94594i −0.595853 + 0.499980i −0.890110 0.455747i \(-0.849372\pi\)
0.294257 + 0.955726i \(0.404928\pi\)
\(194\) 0.717219 + 4.06755i 0.0514933 + 0.292033i
\(195\) 0 0
\(196\) 7.36128 + 6.17684i 0.525805 + 0.441203i
\(197\) −11.0367 + 19.1161i −0.786331 + 1.36196i 0.141870 + 0.989885i \(0.454689\pi\)
−0.928201 + 0.372080i \(0.878645\pi\)
\(198\) 0 0
\(199\) −6.44338 11.1603i −0.456759 0.791130i 0.542028 0.840360i \(-0.317657\pi\)
−0.998787 + 0.0492301i \(0.984323\pi\)
\(200\) 0.0256653 0.145555i 0.00181481 0.0102923i
\(201\) 0 0
\(202\) 5.38747 + 1.96088i 0.379061 + 0.137967i
\(203\) 9.68131 + 3.52371i 0.679495 + 0.247316i
\(204\) 0 0
\(205\) −1.41361 + 8.01700i −0.0987311 + 0.559932i
\(206\) −0.948326 1.64255i −0.0660730 0.114442i
\(207\) 0 0
\(208\) 0.0270347 0.0468255i 0.00187452 0.00324676i
\(209\) 1.66735 + 1.39907i 0.115333 + 0.0967759i
\(210\) 0 0
\(211\) −4.16680 23.6311i −0.286854 1.62683i −0.698586 0.715526i \(-0.746187\pi\)
0.411732 0.911305i \(-0.364924\pi\)
\(212\) −1.82062 + 1.52768i −0.125041 + 0.104922i
\(213\) 0 0
\(214\) −4.41026 + 1.60520i −0.301479 + 0.109729i
\(215\) 18.4035 1.25511
\(216\) 0 0
\(217\) −4.92177 −0.334112
\(218\) −5.66220 + 2.06087i −0.383492 + 0.139580i
\(219\) 0 0
\(220\) 16.1720 13.5700i 1.09032 0.914886i
\(221\) −0.00982391 0.0557142i −0.000660828 0.00374774i
\(222\) 0 0
\(223\) 16.5942 + 13.9242i 1.11123 + 0.932432i 0.998128 0.0611519i \(-0.0194774\pi\)
0.113100 + 0.993584i \(0.463922\pi\)
\(224\) 2.91919 5.05618i 0.195047 0.337831i
\(225\) 0 0
\(226\) 2.60880 + 4.51858i 0.173535 + 0.300571i
\(227\) −3.75807 + 21.3131i −0.249432 + 1.41460i 0.560538 + 0.828128i \(0.310594\pi\)
−0.809970 + 0.586471i \(0.800517\pi\)
\(228\) 0 0
\(229\) 10.1537 + 3.69565i 0.670976 + 0.244215i 0.654968 0.755656i \(-0.272682\pi\)
0.0160082 + 0.999872i \(0.494904\pi\)
\(230\) 0.894571 + 0.325597i 0.0589862 + 0.0214692i
\(231\) 0 0
\(232\) −2.15578 + 12.2261i −0.141534 + 0.802680i
\(233\) 3.81950 + 6.61557i 0.250224 + 0.433400i 0.963587 0.267394i \(-0.0861625\pi\)
−0.713364 + 0.700794i \(0.752829\pi\)
\(234\) 0 0
\(235\) 7.86160 13.6167i 0.512834 0.888255i
\(236\) −5.18202 4.34823i −0.337321 0.283046i
\(237\) 0 0
\(238\) −0.298256 1.69150i −0.0193331 0.109643i
\(239\) 2.47547 2.07716i 0.160125 0.134360i −0.559205 0.829029i \(-0.688894\pi\)
0.719330 + 0.694669i \(0.244449\pi\)
\(240\) 0 0
\(241\) 24.9441 9.07891i 1.60679 0.584824i 0.625988 0.779832i \(-0.284696\pi\)
0.980802 + 0.195009i \(0.0624735\pi\)
\(242\) 6.72979 0.432608
\(243\) 0 0
\(244\) −12.6350 −0.808873
\(245\) −10.9462 + 3.98410i −0.699329 + 0.254535i
\(246\) 0 0
\(247\) −0.00577350 + 0.00484454i −0.000367359 + 0.000308251i
\(248\) −1.02986 5.84063i −0.0653962 0.370880i
\(249\) 0 0
\(250\) 3.59062 + 3.01289i 0.227091 + 0.190552i
\(251\) −2.24965 + 3.89651i −0.141997 + 0.245945i −0.928248 0.371961i \(-0.878686\pi\)
0.786252 + 0.617906i \(0.212019\pi\)
\(252\) 0 0
\(253\) −2.69726 4.67179i −0.169575 0.293713i
\(254\) −0.605656 + 3.43485i −0.0380022 + 0.215521i
\(255\) 0 0
\(256\) −3.67195 1.33648i −0.229497 0.0835301i
\(257\) 12.9071 + 4.69779i 0.805121 + 0.293040i 0.711607 0.702578i \(-0.247968\pi\)
0.0935139 + 0.995618i \(0.470190\pi\)
\(258\) 0 0
\(259\) −1.01394 + 5.75033i −0.0630031 + 0.357308i
\(260\) 0.0365505 + 0.0633073i 0.00226677 + 0.00392615i
\(261\) 0 0
\(262\) −3.22711 + 5.58952i −0.199372 + 0.345322i
\(263\) 18.5402 + 15.5571i 1.14324 + 0.959292i 0.999540 0.0303291i \(-0.00965554\pi\)
0.143700 + 0.989621i \(0.454100\pi\)
\(264\) 0 0
\(265\) −0.500283 2.83725i −0.0307321 0.174291i
\(266\) −0.175285 + 0.147081i −0.0107474 + 0.00901814i
\(267\) 0 0
\(268\) −18.9350 + 6.89179i −1.15664 + 0.420983i
\(269\) −12.0062 −0.732032 −0.366016 0.930609i \(-0.619278\pi\)
−0.366016 + 0.930609i \(0.619278\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) −8.81429 + 3.20814i −0.534445 + 0.194522i
\(273\) 0 0
\(274\) −3.82154 + 3.20665i −0.230868 + 0.193721i
\(275\) −0.0841740 0.477374i −0.00507588 0.0287868i
\(276\) 0 0
\(277\) −17.9891 15.0947i −1.08086 0.906950i −0.0848689 0.996392i \(-0.527047\pi\)
−0.995992 + 0.0894421i \(0.971492\pi\)
\(278\) −1.27654 + 2.21104i −0.0765621 + 0.132609i
\(279\) 0 0
\(280\) 2.32418 + 4.02560i 0.138897 + 0.240576i
\(281\) 3.53751 20.0622i 0.211030 1.19681i −0.676633 0.736320i \(-0.736562\pi\)
0.887663 0.460493i \(-0.152327\pi\)
\(282\) 0 0
\(283\) −10.9004 3.96741i −0.647960 0.235838i −0.00293048 0.999996i \(-0.500933\pi\)
−0.645030 + 0.764157i \(0.723155\pi\)
\(284\) 10.4478 + 3.80269i 0.619964 + 0.225648i
\(285\) 0 0
\(286\) −0.00679451 + 0.0385336i −0.000401768 + 0.00227854i
\(287\) 2.42478 + 4.19984i 0.143130 + 0.247909i
\(288\) 0 0
\(289\) 3.59280 6.22291i 0.211341 0.366053i
\(290\) −5.50423 4.61860i −0.323220 0.271213i
\(291\) 0 0
\(292\) 0.173567 + 0.984347i 0.0101572 + 0.0576045i
\(293\) −24.1872 + 20.2955i −1.41303 + 1.18567i −0.458081 + 0.888910i \(0.651463\pi\)
−0.954951 + 0.296764i \(0.904093\pi\)
\(294\) 0 0
\(295\) 7.70567 2.80463i 0.448642 0.163292i
\(296\) −7.03603 −0.408961
\(297\) 0 0
\(298\) −0.366782 −0.0212471
\(299\) 0.0175530 0.00638876i 0.00101511 0.000369472i
\(300\) 0 0
\(301\) 8.39838 7.04708i 0.484075 0.406187i
\(302\) 0.593426 + 3.36549i 0.0341479 + 0.193662i
\(303\) 0 0
\(304\) 0.957252 + 0.803230i 0.0549022 + 0.0460684i
\(305\) 7.65816 13.2643i 0.438505 0.759513i
\(306\) 0 0
\(307\) 4.06027 + 7.03259i 0.231732 + 0.401371i 0.958318 0.285704i \(-0.0922275\pi\)
−0.726586 + 0.687075i \(0.758894\pi\)
\(308\) 2.18385 12.3852i 0.124436 0.705714i
\(309\) 0 0
\(310\) 3.22553 + 1.17400i 0.183198 + 0.0666786i
\(311\) −22.4103 8.15669i −1.27077 0.462523i −0.383402 0.923581i \(-0.625248\pi\)
−0.887370 + 0.461058i \(0.847470\pi\)
\(312\) 0 0
\(313\) 4.67295 26.5016i 0.264131 1.49796i −0.507367 0.861730i \(-0.669381\pi\)
0.771498 0.636231i \(-0.219508\pi\)
\(314\) −2.60909 4.51908i −0.147240 0.255026i
\(315\) 0 0
\(316\) 0.446928 0.774102i 0.0251417 0.0435466i
\(317\) 6.38294 + 5.35592i 0.358501 + 0.300818i 0.804193 0.594368i \(-0.202598\pi\)
−0.445692 + 0.895187i \(0.647042\pi\)
\(318\) 0 0
\(319\) 7.07028 + 40.0976i 0.395860 + 2.24503i
\(320\) 7.04246 5.90933i 0.393685 0.330341i
\(321\) 0 0
\(322\) 0.532913 0.193964i 0.0296981 0.0108092i
\(323\) 1.30748 0.0727501
\(324\) 0 0
\(325\) 0.00167849 9.31061e−5
\(326\) −1.29408 + 0.471006i −0.0716724 + 0.0260866i
\(327\) 0 0
\(328\) −4.47654 + 3.75626i −0.247176 + 0.207405i
\(329\) −1.62649 9.22431i −0.0896715 0.508553i
\(330\) 0 0
\(331\) −4.91820 4.12686i −0.270329 0.226833i 0.497538 0.867442i \(-0.334237\pi\)
−0.767867 + 0.640609i \(0.778682\pi\)
\(332\) −4.21548 + 7.30143i −0.231355 + 0.400718i
\(333\) 0 0
\(334\) −4.27161 7.39865i −0.233732 0.404836i
\(335\) 4.24160 24.0553i 0.231743 1.31428i
\(336\) 0 0
\(337\) −7.02410 2.55656i −0.382627 0.139265i 0.143543 0.989644i \(-0.454150\pi\)
−0.526170 + 0.850379i \(0.676373\pi\)
\(338\) 5.07521 + 1.84723i 0.276055 + 0.100476i
\(339\) 0 0
\(340\) 2.20213 12.4889i 0.119427 0.677306i
\(341\) −9.72545 16.8450i −0.526663 0.912206i
\(342\) 0 0
\(343\) −8.08839 + 14.0095i −0.436732 + 0.756442i
\(344\) 10.1200 + 8.49172i 0.545636 + 0.457843i
\(345\) 0 0
\(346\) −1.01243 5.74177i −0.0544285 0.308680i
\(347\) 24.0955 20.2186i 1.29352 1.08539i 0.302290 0.953216i \(-0.402249\pi\)
0.991227 0.132173i \(-0.0421955\pi\)
\(348\) 0 0
\(349\) −11.1381 + 4.05395i −0.596210 + 0.217003i −0.622459 0.782653i \(-0.713866\pi\)
0.0262485 + 0.999655i \(0.491644\pi\)
\(350\) 0.0509595 0.00272390
\(351\) 0 0
\(352\) 23.0733 1.22981
\(353\) −7.71214 + 2.80699i −0.410476 + 0.149401i −0.539001 0.842305i \(-0.681198\pi\)
0.128525 + 0.991706i \(0.458976\pi\)
\(354\) 0 0
\(355\) −10.3246 + 8.66337i −0.547973 + 0.459804i
\(356\) −1.07035 6.07025i −0.0567284 0.321723i
\(357\) 0 0
\(358\) −3.24312 2.72130i −0.171404 0.143825i
\(359\) 8.86365 15.3523i 0.467806 0.810263i −0.531517 0.847047i \(-0.678378\pi\)
0.999323 + 0.0367840i \(0.0117114\pi\)
\(360\) 0 0
\(361\) 9.41291 + 16.3036i 0.495416 + 0.858086i
\(362\) 1.73543 9.84210i 0.0912120 0.517289i
\(363\) 0 0
\(364\) 0.0409214 + 0.0148942i 0.00214486 + 0.000780667i
\(365\) −1.13858 0.414408i −0.0595958 0.0216911i
\(366\) 0 0
\(367\) −3.52845 + 20.0108i −0.184184 + 1.04456i 0.742816 + 0.669495i \(0.233490\pi\)
−0.927000 + 0.375062i \(0.877622\pi\)
\(368\) −1.54854 2.68215i −0.0807232 0.139817i
\(369\) 0 0
\(370\) 2.03613 3.52668i 0.105853 0.183343i
\(371\) −1.31474 1.10320i −0.0682581 0.0572753i
\(372\) 0 0
\(373\) −1.68116 9.53435i −0.0870474 0.493670i −0.996896 0.0787298i \(-0.974914\pi\)
0.909849 0.414940i \(-0.136198\pi\)
\(374\) 5.19986 4.36320i 0.268878 0.225616i
\(375\) 0 0
\(376\) 10.6061 3.86029i 0.546966 0.199079i
\(377\) −0.140987 −0.00726119
\(378\) 0 0
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) −1.58756 + 0.577824i −0.0814400 + 0.0296417i
\(381\) 0 0
\(382\) −3.48385 + 2.92330i −0.178249 + 0.149569i
\(383\) −0.824861 4.67802i −0.0421484 0.239036i 0.956454 0.291882i \(-0.0942816\pi\)
−0.998603 + 0.0528469i \(0.983170\pi\)
\(384\) 0 0
\(385\) 11.6785 + 9.79940i 0.595190 + 0.499424i
\(386\) 2.24476 3.88803i 0.114255 0.197896i
\(387\) 0 0
\(388\) 9.08336 + 15.7328i 0.461138 + 0.798714i
\(389\) 3.78784 21.4819i 0.192051 1.08918i −0.724505 0.689270i \(-0.757931\pi\)
0.916556 0.399907i \(-0.130957\pi\)
\(390\) 0 0
\(391\) −3.04509 1.10832i −0.153997 0.0560503i
\(392\) −7.85765 2.85995i −0.396871 0.144449i
\(393\) 0 0
\(394\) 1.59248 9.03141i 0.0802281 0.454996i
\(395\) 0.541773 + 0.938378i 0.0272595 + 0.0472149i
\(396\) 0 0
\(397\) 17.4245 30.1802i 0.874512 1.51470i 0.0172294 0.999852i \(-0.494515\pi\)
0.857282 0.514847i \(-0.172151\pi\)
\(398\) 4.10141 + 3.44149i 0.205585 + 0.172507i
\(399\) 0 0
\(400\) −0.0483256 0.274068i −0.00241628 0.0137034i
\(401\) 14.4216 12.1012i 0.720181 0.604304i −0.207254 0.978287i \(-0.566453\pi\)
0.927435 + 0.373983i \(0.122008\pi\)
\(402\) 0 0
\(403\) 0.0632904 0.0230358i 0.00315272 0.00114750i
\(404\) 25.2170 1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) −21.6843 + 7.89243i −1.07485 + 0.391213i
\(408\) 0 0
\(409\) −4.87201 + 4.08810i −0.240905 + 0.202144i −0.755244 0.655443i \(-0.772482\pi\)
0.514339 + 0.857587i \(0.328037\pi\)
\(410\) −0.587309 3.33079i −0.0290051 0.164496i
\(411\) 0 0
\(412\) −6.39053 5.36229i −0.314839 0.264181i
\(413\) 2.44251 4.23055i 0.120188 0.208172i
\(414\) 0 0
\(415\) −5.11007 8.85090i −0.250843 0.434474i
\(416\) −0.0138737 + 0.0786817i −0.000680215 + 0.00385769i
\(417\) 0 0
\(418\) −0.849756 0.309286i −0.0415629 0.0151277i
\(419\) −22.8514 8.31724i −1.11636 0.406324i −0.283040 0.959108i \(-0.591343\pi\)
−0.833324 + 0.552784i \(0.813565\pi\)
\(420\) 0 0
\(421\) −1.38746 + 7.86865i −0.0676204 + 0.383495i 0.932150 + 0.362072i \(0.117931\pi\)
−0.999771 + 0.0214224i \(0.993181\pi\)
\(422\) 4.98469 + 8.63373i 0.242651 + 0.420283i
\(423\) 0 0
\(424\) 1.03405 1.79103i 0.0502181 0.0869803i
\(425\) −0.223061 0.187170i −0.0108200 0.00907910i
\(426\) 0 0
\(427\) −1.58441 8.98561i −0.0766748 0.434844i
\(428\) −15.8135 + 13.2691i −0.764373 + 0.641385i
\(429\) 0 0
\(430\) −7.18492 + 2.61510i −0.346487 + 0.126111i
\(431\) −9.87124 −0.475481 −0.237740 0.971329i \(-0.576407\pi\)
−0.237740 + 0.971329i \(0.576407\pi\)
\(432\) 0 0
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) 1.92151 0.699373i 0.0922356 0.0335710i
\(435\) 0 0
\(436\) −20.3024 + 17.0358i −0.972310 + 0.815865i
\(437\) 0.0749645 + 0.425145i 0.00358604 + 0.0203374i
\(438\) 0 0
\(439\) −11.5933 9.72796i −0.553320 0.464290i 0.322744 0.946486i \(-0.395395\pi\)
−0.876063 + 0.482196i \(0.839839\pi\)
\(440\) −9.18520 + 15.9092i −0.437887 + 0.758443i
\(441\) 0 0
\(442\) 0.0117522 + 0.0203554i 0.000558996 + 0.000968210i
\(443\) 0.125512 0.711813i 0.00596324 0.0338192i −0.981681 0.190532i \(-0.938979\pi\)
0.987644 + 0.156713i \(0.0500898\pi\)
\(444\) 0 0
\(445\) 7.02135 + 2.55556i 0.332844 + 0.121145i
\(446\) −8.45714 3.07815i −0.400457 0.145754i
\(447\) 0 0
\(448\) 0.951004 5.39341i 0.0449307 0.254815i
\(449\) 0.834224 + 1.44492i 0.0393695 + 0.0681899i 0.885039 0.465517i \(-0.154132\pi\)
−0.845669 + 0.533707i \(0.820798\pi\)
\(450\) 0 0
\(451\) −9.58275 + 16.5978i −0.451234 + 0.781560i
\(452\) 17.5800 + 14.7514i 0.826896 + 0.693848i
\(453\) 0 0
\(454\) −1.56135 8.85487i −0.0732779 0.415580i
\(455\) −0.0404388 + 0.0339322i −0.00189580 + 0.00159077i
\(456\) 0 0
\(457\) −10.4150 + 3.79076i −0.487195 + 0.177324i −0.573926 0.818907i \(-0.694580\pi\)
0.0867310 + 0.996232i \(0.472358\pi\)
\(458\) −4.48926 −0.209769
\(459\) 0 0
\(460\) 4.18720 0.195229
\(461\) −20.5646 + 7.48490i −0.957789 + 0.348607i −0.773167 0.634203i \(-0.781328\pi\)
−0.184622 + 0.982810i \(0.559106\pi\)
\(462\) 0 0
\(463\) 19.0375 15.9744i 0.884749 0.742393i −0.0824009 0.996599i \(-0.526259\pi\)
0.967150 + 0.254207i \(0.0818143\pi\)
\(464\) 4.05916 + 23.0206i 0.188442 + 1.06871i
\(465\) 0 0
\(466\) −2.43123 2.04004i −0.112625 0.0945032i
\(467\) −5.91777 + 10.2499i −0.273842 + 0.474308i −0.969842 0.243734i \(-0.921628\pi\)
0.696001 + 0.718041i \(0.254961\pi\)
\(468\) 0 0
\(469\) −7.27564 12.6018i −0.335958 0.581896i
\(470\) −1.13435 + 6.43321i −0.0523236 + 0.296742i
\(471\) 0 0
\(472\) 5.53144 + 2.01328i 0.254605 + 0.0926687i
\(473\) 40.7142 + 14.8187i 1.87204 + 0.681367i
\(474\) 0 0
\(475\) −0.00673613 + 0.0382025i −0.000309075 + 0.00175285i
\(476\) −3.77733 6.54252i −0.173134 0.299876i
\(477\) 0 0
\(478\) −0.671288 + 1.16270i −0.0307040 + 0.0531809i
\(479\) −2.21184 1.85595i −0.101062 0.0848007i 0.590857 0.806776i \(-0.298790\pi\)
−0.691918 + 0.721976i \(0.743234\pi\)
\(480\) 0 0
\(481\) −0.0138753 0.0786906i −0.000632658 0.00358798i
\(482\) −8.44834 + 7.08900i −0.384811 + 0.322895i
\(483\) 0 0
\(484\) 27.8152 10.1239i 1.26433 0.460178i
\(485\) −22.0220 −0.999966
\(486\) 0 0
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) 10.3316 3.76040i 0.467690 0.170225i
\(489\) 0 0
\(490\) 3.70739 3.11087i 0.167483 0.140535i
\(491\) 3.91977 + 22.2301i 0.176897 + 1.00323i 0.935932 + 0.352181i \(0.114560\pi\)
−0.759035 + 0.651050i \(0.774329\pi\)
\(492\) 0 0
\(493\) 18.7362 + 15.7216i 0.843838 + 0.708064i
\(494\) 0.00156564 0.00271176i 7.04413e−5 0.000122008i
\(495\) 0 0
\(496\) −5.58354 9.67097i −0.250708 0.434239i
\(497\) −1.39422 + 7.90701i −0.0625393 + 0.354678i
\(498\) 0 0
\(499\) 23.8051 + 8.66433i 1.06566 + 0.387869i 0.814552 0.580090i \(-0.196983\pi\)
0.251108 + 0.967959i \(0.419205\pi\)
\(500\) 19.3730 + 7.05118i 0.866385 + 0.315338i
\(501\) 0 0
\(502\) 0.324602 1.84091i 0.0144877 0.0821637i
\(503\) 1.87207 + 3.24252i 0.0834714 + 0.144577i 0.904739 0.425967i \(-0.140066\pi\)
−0.821267 + 0.570543i \(0.806733\pi\)
\(504\) 0 0
\(505\) −15.2842 + 26.4731i −0.680139 + 1.17804i
\(506\) 1.71689 + 1.44064i 0.0763250 + 0.0640443i
\(507\) 0 0
\(508\) 2.66392 + 15.1078i 0.118192 + 0.670302i
\(509\) −18.6531 + 15.6518i −0.826784 + 0.693754i −0.954550 0.298050i \(-0.903664\pi\)
0.127766 + 0.991804i \(0.459219\pi\)
\(510\) 0 0
\(511\) −0.678271 + 0.246871i −0.0300050 + 0.0109209i
\(512\) 22.7690 1.00626
\(513\) 0 0
\(514\) −5.70660 −0.251707
\(515\) 9.50273 3.45871i 0.418740 0.152409i
\(516\) 0 0
\(517\) 28.3566 23.7940i 1.24712 1.04646i
\(518\) −0.421257 2.38907i −0.0185090 0.104970i
\(519\) 0 0
\(520\) −0.0487287 0.0408882i −0.00213689 0.00179307i
\(521\) 9.81046 16.9922i 0.429804 0.744443i −0.567051 0.823682i \(-0.691916\pi\)
0.996856 + 0.0792397i \(0.0252492\pi\)
\(522\) 0 0
\(523\) −10.4077 18.0267i −0.455097 0.788251i 0.543597 0.839346i \(-0.317062\pi\)
−0.998694 + 0.0510956i \(0.983729\pi\)
\(524\) −4.92957 + 27.9570i −0.215349 + 1.22131i
\(525\) 0 0
\(526\) −9.44893 3.43913i −0.411993 0.149953i
\(527\) −10.9796 3.99626i −0.478280 0.174080i
\(528\) 0 0
\(529\) −3.80811 + 21.5969i −0.165570 + 0.938995i
\(530\) 0.598482 + 1.03660i 0.0259964 + 0.0450271i
\(531\) 0 0
\(532\) −0.503217 + 0.871598i −0.0218172 + 0.0377886i
\(533\) −0.0508378 0.0426579i −0.00220203 0.00184772i
\(534\) 0 0
\(535\) −4.34534 24.6436i −0.187865 1.06544i
\(536\) 13.4320 11.2708i 0.580175 0.486825i
\(537\) 0 0
\(538\) 4.68735 1.70606i 0.202086 0.0735533i
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) −1.45146 + 0.528288i −0.0623455 + 0.0226919i
\(543\) 0 0
\(544\) 10.6176 8.90922i 0.455226 0.381980i
\(545\) −5.57884 31.6392i −0.238971 1.35527i
\(546\) 0 0
\(547\) 17.3491 + 14.5576i 0.741795 + 0.622440i 0.933319 0.359048i \(-0.116899\pi\)
−0.191524 + 0.981488i \(0.561343\pi\)
\(548\) −10.9711 + 19.0025i −0.468661 + 0.811745i
\(549\) 0 0
\(550\) 0.100696 + 0.174411i 0.00429370 + 0.00743691i
\(551\) 0.565809 3.20886i 0.0241043 0.136702i
\(552\) 0 0
\(553\) 0.606561 + 0.220770i 0.0257936 + 0.00938810i
\(554\) 9.16806 + 3.33690i 0.389513 + 0.141771i
\(555\) 0 0
\(556\) −1.94998 + 11.0589i −0.0826978 + 0.469002i
\(557\) 18.2259 + 31.5682i 0.772256 + 1.33759i 0.936324 + 0.351138i \(0.114205\pi\)
−0.164067 + 0.986449i \(0.552461\pi\)
\(558\) 0 0
\(559\) −0.0750139 + 0.129928i −0.00317275 + 0.00549537i
\(560\) 6.70480 + 5.62599i 0.283329 + 0.237742i
\(561\) 0 0
\(562\) 1.46972 + 8.33519i 0.0619963 + 0.351599i
\(563\) −20.3126 + 17.0443i −0.856075 + 0.718332i −0.961119 0.276136i \(-0.910946\pi\)
0.105044 + 0.994468i \(0.466502\pi\)
\(564\) 0 0
\(565\) −26.1416 + 9.51475i −1.09978 + 0.400288i
\(566\) 4.81938 0.202574
\(567\) 0 0
\(568\) −9.67492 −0.405950
\(569\) 21.5823 7.85531i 0.904777 0.329312i 0.152612 0.988286i \(-0.451232\pi\)
0.752165 + 0.658974i \(0.229009\pi\)
\(570\) 0 0
\(571\) −3.67549 + 3.08410i −0.153814 + 0.129066i −0.716447 0.697641i \(-0.754233\pi\)
0.562633 + 0.826707i \(0.309788\pi\)
\(572\) 0.0298850 + 0.169486i 0.00124955 + 0.00708657i
\(573\) 0 0
\(574\) −1.54345 1.29511i −0.0644223 0.0540567i
\(575\) 0.0480718 0.0832628i 0.00200473 0.00347230i
\(576\) 0 0
\(577\) 2.15666 + 3.73545i 0.0897831 + 0.155509i 0.907419 0.420226i \(-0.138049\pi\)
−0.817636 + 0.575735i \(0.804716\pi\)
\(578\) −0.518404 + 2.94002i −0.0215628 + 0.122289i
\(579\) 0 0
\(580\) −29.6977 10.8091i −1.23313 0.448823i
\(581\) −5.72116 2.08233i −0.237354 0.0863897i
\(582\) 0 0
\(583\) 1.17781 6.67969i 0.0487799 0.276645i
\(584\) −0.434885 0.753242i −0.0179957 0.0311694i
\(585\) 0 0
\(586\) 6.55900 11.3605i 0.270950 0.469299i
\(587\) −32.0377 26.8828i −1.32234 1.10957i −0.985804 0.167900i \(-0.946301\pi\)
−0.336532 0.941672i \(-0.609254\pi\)
\(588\) 0 0
\(589\) 0.270298 + 1.53294i 0.0111374 + 0.0631635i
\(590\) −2.60984 + 2.18992i −0.107446 + 0.0901575i
\(591\) 0 0
\(592\) −12.4493 + 4.53117i −0.511663 + 0.186230i
\(593\) 31.5370 1.29507 0.647536 0.762035i \(-0.275800\pi\)
0.647536 + 0.762035i \(0.275800\pi\)
\(594\) 0 0
\(595\) 9.15786 0.375436
\(596\) −1.51596 + 0.551766i −0.0620963 + 0.0226012i
\(597\) 0 0
\(598\) −0.00594504 + 0.00498848i −0.000243111 + 0.000203994i
\(599\) 2.19323 + 12.4384i 0.0896129 + 0.508220i 0.996266 + 0.0863420i \(0.0275178\pi\)
−0.906653 + 0.421878i \(0.861371\pi\)
\(600\) 0 0
\(601\) 15.7368 + 13.2048i 0.641919 + 0.538634i 0.904607 0.426247i \(-0.140165\pi\)
−0.262688 + 0.964881i \(0.584609\pi\)
\(602\) −2.27744 + 3.94465i −0.0928216 + 0.160772i
\(603\) 0 0
\(604\) 7.51556 + 13.0173i 0.305804 + 0.529668i
\(605\) −6.23084 + 35.3369i −0.253320 + 1.43665i
\(606\) 0 0
\(607\) −12.1338 4.41636i −0.492497 0.179254i 0.0838192 0.996481i \(-0.473288\pi\)
−0.576316 + 0.817227i \(0.695510\pi\)
\(608\) −1.73512 0.631531i −0.0703683 0.0256120i
\(609\) 0 0
\(610\) −1.10500 + 6.26674i −0.0447400 + 0.253733i
\(611\) 0.0640889 + 0.111005i 0.00259276 + 0.00449079i
\(612\) 0 0
\(613\) 15.5799 26.9851i 0.629265 1.08992i −0.358434 0.933555i \(-0.616689\pi\)
0.987699 0.156364i \(-0.0499774\pi\)
\(614\) −2.58449 2.16864i −0.104301 0.0875193i
\(615\) 0 0
\(616\) 1.90034 + 10.7773i 0.0765667 + 0.434231i
\(617\) 5.47016 4.59001i 0.220220 0.184787i −0.526003 0.850483i \(-0.676310\pi\)
0.746223 + 0.665696i \(0.231865\pi\)
\(618\) 0 0
\(619\) 9.42596 3.43077i 0.378861 0.137894i −0.145568 0.989348i \(-0.546501\pi\)
0.524429 + 0.851454i \(0.324279\pi\)
\(620\) 15.0977 0.606338
\(621\) 0 0
\(622\) 9.90827 0.397285
\(623\) 4.18276 1.52240i 0.167579 0.0609936i
\(624\) 0 0
\(625\) −18.7885 + 15.7654i −0.751539 + 0.630616i
\(626\) 1.94145 + 11.0105i 0.0775961 + 0.440070i
\(627\) 0 0
\(628\) −17.5820 14.7530i −0.701598 0.588711i
\(629\) −6.93093 + 12.0047i −0.276354 + 0.478660i
\(630\) 0 0
\(631\) 3.53780 + 6.12765i 0.140838 + 0.243938i 0.927812 0.373047i \(-0.121687\pi\)
−0.786975 + 0.616985i \(0.788354\pi\)
\(632\) −0.135066 + 0.765996i −0.00537263 + 0.0304697i
\(633\) 0 0
\(634\) −3.25303 1.18401i −0.129194 0.0470229i
\(635\) −17.4750 6.36037i −0.693473 0.252403i
\(636\) 0 0
\(637\) 0.0164900 0.0935195i 0.000653358 0.00370538i
\(638\) −8.45809 14.6498i −0.334859 0.579993i
\(639\) 0 0
\(640\) −11.7103 + 20.2828i −0.462890 + 0.801750i
\(641\) 3.83881 + 3.22114i 0.151624 + 0.127228i 0.715444 0.698670i \(-0.246224\pi\)
−0.563820 + 0.825898i \(0.690669\pi\)
\(642\) 0 0
\(643\) 0.284506 + 1.61351i 0.0112198 + 0.0636307i 0.989904 0.141742i \(-0.0452704\pi\)
−0.978684 + 0.205373i \(0.934159\pi\)
\(644\) 1.91082 1.60337i 0.0752968 0.0631815i
\(645\) 0 0
\(646\) −0.510454 + 0.185790i −0.0200835 + 0.00730981i
\(647\) −34.4927 −1.35605 −0.678024 0.735040i \(-0.737164\pi\)
−0.678024 + 0.735040i \(0.737164\pi\)
\(648\) 0 0
\(649\) 19.3056 0.757813
\(650\) −0.000655302 0 0.000238510i −2.57031e−5 0 9.35515e-6i
\(651\) 0 0
\(652\) −4.64006 + 3.89347i −0.181719 + 0.152480i
\(653\) −6.73071 38.1717i −0.263393 1.49378i −0.773573 0.633708i \(-0.781532\pi\)
0.510180 0.860068i \(-0.329579\pi\)
\(654\) 0 0
\(655\) −26.3617 22.1201i −1.03004 0.864302i
\(656\) −5.50161 + 9.52907i −0.214802 + 0.372048i
\(657\) 0 0
\(658\) 1.94575 + 3.37015i 0.0758534 + 0.131382i
\(659\) −1.63089 + 9.24924i −0.0635305 + 0.360299i 0.936425 + 0.350868i \(0.114113\pi\)
−0.999956 + 0.00943154i \(0.996998\pi\)
\(660\) 0 0
\(661\) 22.6912 + 8.25891i 0.882584 + 0.321234i 0.743252 0.669012i \(-0.233282\pi\)
0.139332 + 0.990246i \(0.455505\pi\)
\(662\) 2.50654 + 0.912305i 0.0974193 + 0.0354577i
\(663\) 0 0
\(664\) 1.27396 7.22497i 0.0494391 0.280383i
\(665\) −0.610007 1.05656i −0.0236551 0.0409718i
\(666\) 0 0
\(667\) −4.03784 + 6.99375i −0.156346 + 0.270799i
\(668\) −28.7853 24.1537i −1.11374 0.934536i
\(669\) 0 0
\(670\) 1.76224 + 9.99417i 0.0680814 + 0.386109i
\(671\) 27.6228 23.1783i 1.06637 0.894788i
\(672\) 0 0
\(673\) 24.8700 9.05195i 0.958669 0.348927i 0.185157 0.982709i \(-0.440721\pi\)
0.773512 + 0.633782i \(0.218498\pi\)
\(674\) 3.10557 0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) 29.1933 10.6255i 1.12199 0.408371i 0.286611 0.958047i \(-0.407471\pi\)
0.835378 + 0.549676i \(0.185249\pi\)
\(678\) 0 0
\(679\) −10.0497 + 8.43267i −0.385671 + 0.323616i
\(680\) 1.91624 + 10.8676i 0.0734846 + 0.416752i
\(681\) 0 0
\(682\) 6.19055 + 5.19449i 0.237048 + 0.198907i
\(683\) 19.0681 33.0268i 0.729619 1.26374i −0.227425 0.973796i \(-0.573031\pi\)
0.957044 0.289942i \(-0.0936359\pi\)
\(684\) 0 0
\(685\) −13.2993 23.0351i −0.508140 0.880125i
\(686\) 1.16707 6.61880i 0.0445590 0.252707i
\(687\) 0 0
\(688\) 23.3747 + 8.50768i 0.891150 + 0.324352i
\(689\) 0.0220700 + 0.00803284i 0.000840802 + 0.000306027i
\(690\) 0 0
\(691\) 5.71815 32.4293i 0.217529 1.23367i −0.658935 0.752200i \(-0.728993\pi\)
0.876464 0.481468i \(-0.159896\pi\)
\(692\) −12.8221 22.2085i −0.487424 0.844242i
\(693\) 0 0
\(694\) −6.53414 + 11.3175i −0.248033 + 0.429605i
\(695\) −10.4278 8.75000i −0.395551 0.331906i
\(696\) 0 0
\(697\) 1.99918 + 11.3379i 0.0757244 + 0.429455i
\(698\) 3.77238 3.16541i 0.142787 0.119812i
\(699\) 0 0
\(700\) 0.210623 0.0766606i 0.00796081 0.00289750i
\(701\) 2.30710 0.0871381 0.0435690 0.999050i \(-0.486127\pi\)
0.0435690 + 0.999050i \(0.486127\pi\)
\(702\) 0 0
\(703\) 1.84668 0.0696490
\(704\) 20.3384 7.40255i 0.766530 0.278994i
\(705\) 0 0
\(706\) 2.61203 2.19176i 0.0983051 0.0824878i
\(707\) 3.16217 + 17.9336i 0.118926 + 0.674461i
\(708\) 0 0
\(709\) −8.54298 7.16841i −0.320838 0.269215i 0.468116 0.883667i \(-0.344933\pi\)
−0.788954 + 0.614452i \(0.789377\pi\)
\(710\) 2.79979 4.84937i 0.105074 0.181994i
\(711\) 0 0
\(712\) 2.68184 + 4.64508i 0.100506 + 0.174082i
\(713\) 0.669920 3.79930i 0.0250887 0.142285i
\(714\) 0 0
\(715\) −0.196042 0.0713533i −0.00733154 0.00266846i
\(716\) −17.4981 6.36878i −0.653934 0.238013i
\(717\) 0 0
\(718\) −1.27894 + 7.25321i −0.0477295 + 0.270687i
\(719\) −16.0850 27.8600i −0.599869 1.03900i −0.992840 0.119453i \(-0.961886\pi\)
0.392971 0.919551i \(-0.371447\pi\)
\(720\) 0 0
\(721\) 3.01213 5.21717i 0.112178 0.194297i
\(722\) −5.99161 5.02756i −0.222985 0.187106i
\(723\) 0 0
\(724\) −7.63311 43.2895i −0.283682 1.60884i
\(725\) −0.555889 + 0.466446i −0.0206452 + 0.0173234i
\(726\) 0 0
\(727\) 5.04193 1.83511i 0.186995 0.0680605i −0.246826 0.969060i \(-0.579387\pi\)
0.433820 + 0.900999i \(0.357165\pi\)
\(728\) −0.0378942 −0.00140445
\(729\) 0 0
\(730\) 0.503399 0.0186316
\(731\) 24.4573 8.90171i 0.904584 0.329242i
\(732\) 0 0
\(733\) −11.1815 + 9.38235i −0.412996 + 0.346545i −0.825491 0.564415i \(-0.809102\pi\)
0.412495 + 0.910960i \(0.364657\pi\)
\(734\) −1.46595 8.31382i −0.0541093 0.306869i
\(735\) 0 0
\(736\) 3.50572 + 2.94165i 0.129223 + 0.108431i
\(737\) 28.7534 49.8023i 1.05915 1.83449i
\(738\) 0 0
\(739\) 21.6083 + 37.4266i 0.794873 + 1.37676i 0.922920 + 0.384992i \(0.125796\pi\)
−0.128047 + 0.991768i \(0.540871\pi\)
\(740\) 3.11029 17.6393i 0.114336 0.648434i
\(741\) 0 0
\(742\) 0.670052 + 0.243879i 0.0245984 + 0.00895308i
\(743\) 7.62298 + 2.77454i 0.279660 + 0.101788i 0.478042 0.878337i \(-0.341347\pi\)
−0.198382 + 0.980125i \(0.563569\pi\)
\(744\) 0 0
\(745\) 0.339588 1.92590i 0.0124416 0.0705596i
\(746\) 2.01116 + 3.48342i 0.0736336 + 0.127537i
\(747\) 0 0
\(748\) 14.9280 25.8561i 0.545823 0.945393i
\(749\) −11.4195 9.58213i −0.417261 0.350123i
\(750\) 0 0
\(751\) 1.52037 + 8.62244i 0.0554790 + 0.314637i 0.999901 0.0140996i \(-0.00448819\pi\)
−0.944422 + 0.328737i \(0.893377\pi\)
\(752\) 16.2800 13.6605i 0.593670 0.498148i
\(753\) 0 0
\(754\) 0.0550428 0.0200339i 0.00200454 0.000729593i
\(755\) −18.2210 −0.663129
\(756\) 0 0
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) 1.61203 0.586730i 0.0585514 0.0213110i
\(759\) 0 0
\(760\) 1.12617 0.944972i 0.0408506 0.0342777i
\(761\) 4.26235 + 24.1730i 0.154510 + 0.876271i 0.959232 + 0.282619i \(0.0912032\pi\)
−0.804722 + 0.593652i \(0.797686\pi\)
\(762\) 0 0
\(763\) −14.6612 12.3022i −0.530771 0.445370i
\(764\) −10.0016 + 17.3233i −0.361846 + 0.626736i
\(765\) 0 0
\(766\) 0.986770 + 1.70914i 0.0356535 + 0.0617536i
\(767\) −0.0116082 + 0.0658336i −0.000419150 + 0.00237712i
\(768\) 0 0
\(769\) −29.5199 10.7444i −1.06451 0.387451i −0.250392 0.968145i \(-0.580559\pi\)
−0.814122 + 0.580693i \(0.802782\pi\)
\(770\) −5.95187 2.16630i −0.214491 0.0780682i
\(771\) 0 0
\(772\) 3.42898 19.4467i 0.123412 0.699902i
\(773\) 14.3573 + 24.8675i 0.516395 + 0.894422i 0.999819 + 0.0190355i \(0.00605954\pi\)
−0.483424 + 0.875386i \(0.660607\pi\)
\(774\) 0 0
\(775\) 0.173332 0.300219i 0.00622625 0.0107842i
\(776\) −12.1098 10.1614i −0.434717 0.364771i
\(777\) 0 0
\(778\) 1.57372 + 8.92501i 0.0564206 + 0.319977i
\(779\) 1.17492 0.985872i 0.0420958 0.0353225i