Properties

Label 243.2.e.b.55.1
Level $243$
Weight $2$
Character 243.55
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.258654i\) of defining polynomial
Character \(\chi\) \(=\) 243.55
Dual form 243.2.e.b.190.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98897 + 0.723928i) q^{2} +(1.89986 - 1.59417i) q^{4} +(0.465915 + 2.64234i) q^{5} +(0.744850 + 0.625003i) q^{7} +(-0.508086 + 0.880031i) q^{8} +O(q^{10})\) \(q+(-1.98897 + 0.723928i) q^{2} +(1.89986 - 1.59417i) q^{4} +(0.465915 + 2.64234i) q^{5} +(0.744850 + 0.625003i) q^{7} +(-0.508086 + 0.880031i) q^{8} +(-2.83955 - 4.91825i) q^{10} +(0.0550295 - 0.312088i) q^{11} +(1.42272 + 0.517829i) q^{13} +(-1.93395 - 0.703898i) q^{14} +(-0.487835 + 2.76665i) q^{16} +(0.587342 + 1.01731i) q^{17} +(-3.11040 + 5.38737i) q^{19} +(5.09751 + 4.27732i) q^{20} +(0.116477 + 0.660572i) q^{22} +(-1.65676 + 1.39018i) q^{23} +(-2.06640 + 0.752107i) q^{25} -3.20463 q^{26} +2.41147 q^{28} +(-4.13926 + 1.50657i) q^{29} +(-6.64408 + 5.57504i) q^{31} +(-1.38548 - 7.85742i) q^{32} +(-1.90466 - 1.59820i) q^{34} +(-1.30443 + 2.25934i) q^{35} +(2.23332 + 3.86823i) q^{37} +(2.28644 - 12.9671i) q^{38} +(-2.56206 - 0.932515i) q^{40} +(5.49268 + 1.99917i) q^{41} +(0.970865 - 5.50605i) q^{43} +(-0.392973 - 0.680649i) q^{44} +(2.28885 - 3.96441i) q^{46} +(1.89678 + 1.59159i) q^{47} +(-1.05136 - 5.96259i) q^{49} +(3.56554 - 2.99184i) q^{50} +(3.52848 - 1.28426i) q^{52} +10.8920 q^{53} +0.850279 q^{55} +(-0.928471 + 0.337936i) q^{56} +(7.14224 - 5.99305i) q^{58} +(0.299406 + 1.69802i) q^{59} +(0.777365 + 0.652287i) q^{61} +(9.17898 - 15.8985i) q^{62} +(5.63455 + 9.75933i) q^{64} +(-0.705410 + 4.00058i) q^{65} +(-0.804895 - 0.292958i) q^{67} +(2.73763 + 0.996416i) q^{68} +(0.958882 - 5.43809i) q^{70} +(-4.79788 - 8.31018i) q^{71} +(7.62091 - 13.1998i) q^{73} +(-7.24234 - 6.07705i) q^{74} +(2.67907 + 15.1938i) q^{76} +(0.236045 - 0.198065i) q^{77} +(10.5375 - 3.83533i) q^{79} -7.53771 q^{80} -12.3721 q^{82} +(4.40239 - 1.60234i) q^{83} +(-2.41441 + 2.02593i) q^{85} +(2.05496 + 11.6542i) q^{86} +(0.246687 + 0.206995i) q^{88} +(-7.74976 + 13.4230i) q^{89} +(0.736071 + 1.27491i) q^{91} +(-0.931414 + 5.28231i) q^{92} +(-4.92484 - 1.79249i) q^{94} +(-15.6844 - 5.70867i) q^{95} +(-0.963658 + 5.46518i) q^{97} +(6.40762 + 11.0983i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} + 3 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} + 3 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} + 3 q^{13} - 6 q^{14} - 9 q^{16} - 9 q^{17} - 3 q^{19} + 21 q^{20} - 15 q^{22} - 24 q^{23} - 15 q^{25} + 30 q^{26} - 12 q^{28} - 30 q^{29} - 15 q^{31} + 27 q^{32} - 9 q^{34} - 12 q^{35} - 3 q^{37} + 12 q^{38} - 6 q^{40} + 21 q^{41} + 12 q^{43} - 3 q^{44} - 3 q^{46} - 3 q^{47} + 21 q^{49} - 12 q^{50} + 36 q^{52} + 18 q^{53} - 12 q^{55} - 3 q^{56} + 30 q^{58} - 15 q^{59} + 21 q^{61} + 12 q^{62} + 12 q^{64} + 24 q^{65} + 21 q^{67} + 18 q^{68} + 30 q^{70} - 27 q^{71} + 6 q^{73} + 12 q^{74} + 42 q^{76} + 3 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 33 q^{83} - 9 q^{85} + 30 q^{86} - 12 q^{88} - 9 q^{89} + 6 q^{91} - 42 q^{92} - 33 q^{94} - 30 q^{95} - 42 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98897 + 0.723928i −1.40642 + 0.511894i −0.930076 0.367366i \(-0.880260\pi\)
−0.476341 + 0.879261i \(0.658037\pi\)
\(3\) 0 0
\(4\) 1.89986 1.59417i 0.949930 0.797086i
\(5\) 0.465915 + 2.64234i 0.208364 + 1.18169i 0.892058 + 0.451920i \(0.149261\pi\)
−0.683695 + 0.729768i \(0.739628\pi\)
\(6\) 0 0
\(7\) 0.744850 + 0.625003i 0.281527 + 0.236229i 0.772606 0.634886i \(-0.218953\pi\)
−0.491079 + 0.871115i \(0.663397\pi\)
\(8\) −0.508086 + 0.880031i −0.179636 + 0.311138i
\(9\) 0 0
\(10\) −2.83955 4.91825i −0.897945 1.55529i
\(11\) 0.0550295 0.312088i 0.0165920 0.0940980i −0.975387 0.220499i \(-0.929231\pi\)
0.991979 + 0.126401i \(0.0403426\pi\)
\(12\) 0 0
\(13\) 1.42272 + 0.517829i 0.394592 + 0.143620i 0.531693 0.846937i \(-0.321556\pi\)
−0.137100 + 0.990557i \(0.543778\pi\)
\(14\) −1.93395 0.703898i −0.516869 0.188125i
\(15\) 0 0
\(16\) −0.487835 + 2.76665i −0.121959 + 0.691662i
\(17\) 0.587342 + 1.01731i 0.142451 + 0.246733i 0.928419 0.371534i \(-0.121168\pi\)
−0.785968 + 0.618267i \(0.787835\pi\)
\(18\) 0 0
\(19\) −3.11040 + 5.38737i −0.713575 + 1.23595i 0.249931 + 0.968264i \(0.419592\pi\)
−0.963507 + 0.267685i \(0.913741\pi\)
\(20\) 5.09751 + 4.27732i 1.13984 + 0.956438i
\(21\) 0 0
\(22\) 0.116477 + 0.660572i 0.0248329 + 0.140834i
\(23\) −1.65676 + 1.39018i −0.345458 + 0.289873i −0.798963 0.601380i \(-0.794618\pi\)
0.453505 + 0.891254i \(0.350173\pi\)
\(24\) 0 0
\(25\) −2.06640 + 0.752107i −0.413280 + 0.150421i
\(26\) −3.20463 −0.628480
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) −4.13926 + 1.50657i −0.768642 + 0.279763i −0.696428 0.717627i \(-0.745229\pi\)
−0.0722135 + 0.997389i \(0.523006\pi\)
\(30\) 0 0
\(31\) −6.64408 + 5.57504i −1.19331 + 1.00131i −0.193516 + 0.981097i \(0.561989\pi\)
−0.999796 + 0.0202102i \(0.993566\pi\)
\(32\) −1.38548 7.85742i −0.244920 1.38901i
\(33\) 0 0
\(34\) −1.90466 1.59820i −0.326647 0.274090i
\(35\) −1.30443 + 2.25934i −0.220489 + 0.381899i
\(36\) 0 0
\(37\) 2.23332 + 3.86823i 0.367156 + 0.635933i 0.989120 0.147113i \(-0.0469982\pi\)
−0.621964 + 0.783046i \(0.713665\pi\)
\(38\) 2.28644 12.9671i 0.370910 2.10353i
\(39\) 0 0
\(40\) −2.56206 0.932515i −0.405098 0.147443i
\(41\) 5.49268 + 1.99917i 0.857812 + 0.312218i 0.733221 0.679990i \(-0.238016\pi\)
0.124591 + 0.992208i \(0.460238\pi\)
\(42\) 0 0
\(43\) 0.970865 5.50605i 0.148056 0.839665i −0.816807 0.576911i \(-0.804258\pi\)
0.964863 0.262754i \(-0.0846308\pi\)
\(44\) −0.392973 0.680649i −0.0592429 0.102612i
\(45\) 0 0
\(46\) 2.28885 3.96441i 0.337473 0.584521i
\(47\) 1.89678 + 1.59159i 0.276674 + 0.232157i 0.770556 0.637372i \(-0.219978\pi\)
−0.493883 + 0.869528i \(0.664423\pi\)
\(48\) 0 0
\(49\) −1.05136 5.96259i −0.150195 0.851798i
\(50\) 3.56554 2.99184i 0.504244 0.423111i
\(51\) 0 0
\(52\) 3.52848 1.28426i 0.489313 0.178095i
\(53\) 10.8920 1.49613 0.748063 0.663628i \(-0.230984\pi\)
0.748063 + 0.663628i \(0.230984\pi\)
\(54\) 0 0
\(55\) 0.850279 0.114652
\(56\) −0.928471 + 0.337936i −0.124072 + 0.0451586i
\(57\) 0 0
\(58\) 7.14224 5.99305i 0.937822 0.786926i
\(59\) 0.299406 + 1.69802i 0.0389793 + 0.221063i 0.998075 0.0620196i \(-0.0197541\pi\)
−0.959096 + 0.283082i \(0.908643\pi\)
\(60\) 0 0
\(61\) 0.777365 + 0.652287i 0.0995314 + 0.0835168i 0.691195 0.722668i \(-0.257084\pi\)
−0.591664 + 0.806185i \(0.701529\pi\)
\(62\) 9.17898 15.8985i 1.16573 2.01911i
\(63\) 0 0
\(64\) 5.63455 + 9.75933i 0.704319 + 1.21992i
\(65\) −0.705410 + 4.00058i −0.0874953 + 0.496210i
\(66\) 0 0
\(67\) −0.804895 0.292958i −0.0983335 0.0357905i 0.292385 0.956301i \(-0.405551\pi\)
−0.390718 + 0.920510i \(0.627773\pi\)
\(68\) 2.73763 + 0.996416i 0.331986 + 0.120833i
\(69\) 0 0
\(70\) 0.958882 5.43809i 0.114608 0.649976i
\(71\) −4.79788 8.31018i −0.569404 0.986237i −0.996625 0.0820894i \(-0.973841\pi\)
0.427221 0.904147i \(-0.359493\pi\)
\(72\) 0 0
\(73\) 7.62091 13.1998i 0.891960 1.54492i 0.0544385 0.998517i \(-0.482663\pi\)
0.837522 0.546404i \(-0.184004\pi\)
\(74\) −7.24234 6.07705i −0.841905 0.706442i
\(75\) 0 0
\(76\) 2.67907 + 15.1938i 0.307311 + 1.74285i
\(77\) 0.236045 0.198065i 0.0268998 0.0225716i
\(78\) 0 0
\(79\) 10.5375 3.83533i 1.18556 0.431509i 0.327398 0.944887i \(-0.393828\pi\)
0.858163 + 0.513378i \(0.171606\pi\)
\(80\) −7.53771 −0.842741
\(81\) 0 0
\(82\) −12.3721 −1.36626
\(83\) 4.40239 1.60234i 0.483226 0.175880i −0.0889086 0.996040i \(-0.528338\pi\)
0.572134 + 0.820160i \(0.306116\pi\)
\(84\) 0 0
\(85\) −2.41441 + 2.02593i −0.261880 + 0.219743i
\(86\) 2.05496 + 11.6542i 0.221592 + 1.25671i
\(87\) 0 0
\(88\) 0.246687 + 0.206995i 0.0262969 + 0.0220657i
\(89\) −7.74976 + 13.4230i −0.821473 + 1.42283i 0.0831130 + 0.996540i \(0.473514\pi\)
−0.904586 + 0.426292i \(0.859820\pi\)
\(90\) 0 0
\(91\) 0.736071 + 1.27491i 0.0771612 + 0.133647i
\(92\) −0.931414 + 5.28231i −0.0971066 + 0.550719i
\(93\) 0 0
\(94\) −4.92484 1.79249i −0.507958 0.184882i
\(95\) −15.6844 5.70867i −1.60919 0.585697i
\(96\) 0 0
\(97\) −0.963658 + 5.46518i −0.0978446 + 0.554905i 0.895994 + 0.444066i \(0.146465\pi\)
−0.993838 + 0.110838i \(0.964647\pi\)
\(98\) 6.40762 + 11.0983i 0.647267 + 1.12110i
\(99\) 0 0
\(100\) −2.72688 + 4.72309i −0.272688 + 0.472309i
\(101\) 7.76696 + 6.51725i 0.772841 + 0.648491i 0.941435 0.337195i \(-0.109478\pi\)
−0.168594 + 0.985686i \(0.553923\pi\)
\(102\) 0 0
\(103\) −1.71101 9.70360i −0.168590 0.956124i −0.945285 0.326246i \(-0.894216\pi\)
0.776694 0.629878i \(-0.216895\pi\)
\(104\) −1.17857 + 0.988939i −0.115568 + 0.0969734i
\(105\) 0 0
\(106\) −21.6638 + 7.88499i −2.10418 + 0.765858i
\(107\) −5.17080 −0.499880 −0.249940 0.968261i \(-0.580411\pi\)
−0.249940 + 0.968261i \(0.580411\pi\)
\(108\) 0 0
\(109\) −7.31065 −0.700234 −0.350117 0.936706i \(-0.613858\pi\)
−0.350117 + 0.936706i \(0.613858\pi\)
\(110\) −1.69118 + 0.615541i −0.161248 + 0.0586895i
\(111\) 0 0
\(112\) −2.09253 + 1.75584i −0.197725 + 0.165911i
\(113\) −1.80171 10.2180i −0.169491 0.961230i −0.944313 0.329050i \(-0.893272\pi\)
0.774822 0.632180i \(-0.217840\pi\)
\(114\) 0 0
\(115\) −4.44524 3.73000i −0.414521 0.347824i
\(116\) −5.46229 + 9.46096i −0.507161 + 0.878428i
\(117\) 0 0
\(118\) −1.82475 3.16056i −0.167982 0.290953i
\(119\) −0.198338 + 1.12483i −0.0181816 + 0.103113i
\(120\) 0 0
\(121\) 10.2422 + 3.72787i 0.931113 + 0.338898i
\(122\) −2.01837 0.734626i −0.182734 0.0665099i
\(123\) 0 0
\(124\) −3.73524 + 21.1836i −0.335435 + 1.90234i
\(125\) 3.75766 + 6.50846i 0.336095 + 0.582134i
\(126\) 0 0
\(127\) −2.61372 + 4.52709i −0.231930 + 0.401714i −0.958376 0.285509i \(-0.907837\pi\)
0.726446 + 0.687223i \(0.241171\pi\)
\(128\) −6.04805 5.07491i −0.534577 0.448563i
\(129\) 0 0
\(130\) −1.49309 8.46771i −0.130952 0.742667i
\(131\) 5.54180 4.65012i 0.484189 0.406283i −0.367749 0.929925i \(-0.619872\pi\)
0.851938 + 0.523642i \(0.175427\pi\)
\(132\) 0 0
\(133\) −5.68391 + 2.06877i −0.492858 + 0.179385i
\(134\) 1.81300 0.156619
\(135\) 0 0
\(136\) −1.19368 −0.102357
\(137\) 10.5709 3.84749i 0.903133 0.328714i 0.151626 0.988438i \(-0.451549\pi\)
0.751508 + 0.659724i \(0.229327\pi\)
\(138\) 0 0
\(139\) 7.18562 6.02945i 0.609477 0.511412i −0.284999 0.958528i \(-0.591993\pi\)
0.894476 + 0.447116i \(0.147549\pi\)
\(140\) 1.12354 + 6.37192i 0.0949566 + 0.538526i
\(141\) 0 0
\(142\) 15.5588 + 13.0554i 1.30567 + 1.09559i
\(143\) 0.239900 0.415518i 0.0200614 0.0347474i
\(144\) 0 0
\(145\) −5.90940 10.2354i −0.490749 0.850003i
\(146\) −5.60210 + 31.7711i −0.463633 + 2.62939i
\(147\) 0 0
\(148\) 10.4096 + 3.78879i 0.855666 + 0.311437i
\(149\) 17.9023 + 6.51591i 1.46661 + 0.533804i 0.947179 0.320705i \(-0.103920\pi\)
0.519436 + 0.854509i \(0.326142\pi\)
\(150\) 0 0
\(151\) 0.697024 3.95302i 0.0567230 0.321692i −0.943222 0.332163i \(-0.892222\pi\)
0.999945 + 0.0104703i \(0.00333286\pi\)
\(152\) −3.16070 5.47450i −0.256367 0.444041i
\(153\) 0 0
\(154\) −0.326102 + 0.564825i −0.0262780 + 0.0455149i
\(155\) −17.8267 14.9584i −1.43188 1.20149i
\(156\) 0 0
\(157\) 1.26345 + 7.16538i 0.100834 + 0.571860i 0.992803 + 0.119762i \(0.0382131\pi\)
−0.891968 + 0.452098i \(0.850676\pi\)
\(158\) −18.1823 + 15.2568i −1.44651 + 1.21376i
\(159\) 0 0
\(160\) 20.1164 7.32178i 1.59034 0.578838i
\(161\) −2.10290 −0.165732
\(162\) 0 0
\(163\) 12.4492 0.975094 0.487547 0.873097i \(-0.337892\pi\)
0.487547 + 0.873097i \(0.337892\pi\)
\(164\) 13.6223 4.95813i 1.06373 0.387165i
\(165\) 0 0
\(166\) −7.59627 + 6.37403i −0.589585 + 0.494721i
\(167\) 0.404928 + 2.29646i 0.0313343 + 0.177705i 0.996458 0.0840872i \(-0.0267974\pi\)
−0.965124 + 0.261793i \(0.915686\pi\)
\(168\) 0 0
\(169\) −8.20258 6.88278i −0.630968 0.529445i
\(170\) 3.33558 5.77739i 0.255827 0.443106i
\(171\) 0 0
\(172\) −6.93308 12.0085i −0.528643 0.915636i
\(173\) 0.622055 3.52785i 0.0472939 0.268217i −0.951987 0.306139i \(-0.900963\pi\)
0.999281 + 0.0379219i \(0.0120738\pi\)
\(174\) 0 0
\(175\) −2.00923 0.731298i −0.151883 0.0552810i
\(176\) 0.836592 + 0.304494i 0.0630605 + 0.0229521i
\(177\) 0 0
\(178\) 5.69681 32.3082i 0.426994 2.42160i
\(179\) −9.99785 17.3168i −0.747275 1.29432i −0.949124 0.314901i \(-0.898029\pi\)
0.201850 0.979416i \(-0.435305\pi\)
\(180\) 0 0
\(181\) −4.86616 + 8.42844i −0.361699 + 0.626481i −0.988241 0.152907i \(-0.951136\pi\)
0.626542 + 0.779388i \(0.284470\pi\)
\(182\) −2.38697 2.00291i −0.176934 0.148465i
\(183\) 0 0
\(184\) −0.381630 2.16433i −0.0281341 0.159557i
\(185\) −9.18062 + 7.70346i −0.674973 + 0.566369i
\(186\) 0 0
\(187\) 0.349810 0.127320i 0.0255806 0.00931059i
\(188\) 6.14088 0.447869
\(189\) 0 0
\(190\) 35.3286 2.56301
\(191\) −16.6857 + 6.07309i −1.20733 + 0.439433i −0.865778 0.500428i \(-0.833176\pi\)
−0.341555 + 0.939862i \(0.610954\pi\)
\(192\) 0 0
\(193\) 8.10807 6.80348i 0.583632 0.489725i −0.302506 0.953148i \(-0.597823\pi\)
0.886138 + 0.463422i \(0.153379\pi\)
\(194\) −2.03970 11.5677i −0.146442 0.830514i
\(195\) 0 0
\(196\) −11.5028 9.65202i −0.821631 0.689430i
\(197\) 7.07945 12.2620i 0.504390 0.873628i −0.495597 0.868552i \(-0.665051\pi\)
0.999987 0.00507615i \(-0.00161579\pi\)
\(198\) 0 0
\(199\) −3.77010 6.53000i −0.267255 0.462899i 0.700897 0.713263i \(-0.252783\pi\)
−0.968152 + 0.250363i \(0.919450\pi\)
\(200\) 0.388030 2.20063i 0.0274379 0.155608i
\(201\) 0 0
\(202\) −20.1663 7.33993i −1.41890 0.516436i
\(203\) −4.02474 1.46489i −0.282481 0.102815i
\(204\) 0 0
\(205\) −2.72336 + 15.4449i −0.190208 + 1.07872i
\(206\) 10.4278 + 18.0616i 0.726543 + 1.25841i
\(207\) 0 0
\(208\) −2.12670 + 3.68356i −0.147460 + 0.255409i
\(209\) 1.51017 + 1.26718i 0.104461 + 0.0876528i
\(210\) 0 0
\(211\) 0.905339 + 5.13443i 0.0623261 + 0.353469i 0.999983 + 0.00590544i \(0.00187977\pi\)
−0.937656 + 0.347563i \(0.887009\pi\)
\(212\) 20.6932 17.3637i 1.42121 1.19254i
\(213\) 0 0
\(214\) 10.2846 3.74329i 0.703040 0.255886i
\(215\) 15.0012 1.02307
\(216\) 0 0
\(217\) −8.43326 −0.572487
\(218\) 14.5407 5.29238i 0.984821 0.358445i
\(219\) 0 0
\(220\) 1.61541 1.35549i 0.108911 0.0913872i
\(221\) 0.308835 + 1.75149i 0.0207745 + 0.117818i
\(222\) 0 0
\(223\) 13.5542 + 11.3734i 0.907659 + 0.761616i 0.971672 0.236333i \(-0.0759456\pi\)
−0.0640133 + 0.997949i \(0.520390\pi\)
\(224\) 3.87894 6.71853i 0.259173 0.448901i
\(225\) 0 0
\(226\) 10.9807 + 19.0191i 0.730423 + 1.26513i
\(227\) 2.73878 15.5324i 0.181779 1.03092i −0.748245 0.663422i \(-0.769103\pi\)
0.930024 0.367498i \(-0.119785\pi\)
\(228\) 0 0
\(229\) 1.66031 + 0.604303i 0.109716 + 0.0399335i 0.396295 0.918123i \(-0.370296\pi\)
−0.286579 + 0.958057i \(0.592518\pi\)
\(230\) 11.5417 + 4.20084i 0.761038 + 0.276995i
\(231\) 0 0
\(232\) 0.777275 4.40815i 0.0510306 0.289409i
\(233\) −6.94920 12.0364i −0.455257 0.788529i 0.543446 0.839444i \(-0.317119\pi\)
−0.998703 + 0.0509157i \(0.983786\pi\)
\(234\) 0 0
\(235\) −3.32177 + 5.75347i −0.216688 + 0.375315i
\(236\) 3.27576 + 2.74869i 0.213234 + 0.178924i
\(237\) 0 0
\(238\) −0.419807 2.38084i −0.0272120 0.154327i
\(239\) 15.1927 12.7482i 0.982735 0.824613i −0.00176451 0.999998i \(-0.500562\pi\)
0.984500 + 0.175386i \(0.0561172\pi\)
\(240\) 0 0
\(241\) −18.2063 + 6.62654i −1.17277 + 0.426853i −0.853642 0.520859i \(-0.825612\pi\)
−0.319126 + 0.947712i \(0.603389\pi\)
\(242\) −23.0703 −1.48301
\(243\) 0 0
\(244\) 2.51674 0.161118
\(245\) 15.2653 5.55612i 0.975265 0.354967i
\(246\) 0 0
\(247\) −7.21498 + 6.05409i −0.459078 + 0.385212i
\(248\) −1.53045 8.67960i −0.0971835 0.551155i
\(249\) 0 0
\(250\) −12.1855 10.2249i −0.770681 0.646678i
\(251\) −2.73786 + 4.74212i −0.172812 + 0.299320i −0.939402 0.342818i \(-0.888619\pi\)
0.766590 + 0.642137i \(0.221952\pi\)
\(252\) 0 0
\(253\) 0.342689 + 0.593554i 0.0215447 + 0.0373164i
\(254\) 1.92133 10.8964i 0.120555 0.683701i
\(255\) 0 0
\(256\) −5.47570 1.99299i −0.342231 0.124562i
\(257\) −10.8677 3.95552i −0.677909 0.246739i −0.0199594 0.999801i \(-0.506354\pi\)
−0.657949 + 0.753062i \(0.728576\pi\)
\(258\) 0 0
\(259\) −0.754166 + 4.27709i −0.0468616 + 0.265765i
\(260\) 5.03743 + 8.72508i 0.312408 + 0.541107i
\(261\) 0 0
\(262\) −7.65614 + 13.2608i −0.472998 + 0.819257i
\(263\) −4.96239 4.16394i −0.305994 0.256759i 0.476840 0.878990i \(-0.341782\pi\)
−0.782834 + 0.622231i \(0.786227\pi\)
\(264\) 0 0
\(265\) 5.07473 + 28.7802i 0.311738 + 1.76795i
\(266\) 9.80751 8.22948i 0.601337 0.504582i
\(267\) 0 0
\(268\) −1.99621 + 0.726562i −0.121938 + 0.0443818i
\(269\) 13.8387 0.843758 0.421879 0.906652i \(-0.361371\pi\)
0.421879 + 0.906652i \(0.361371\pi\)
\(270\) 0 0
\(271\) 1.94536 0.118172 0.0590860 0.998253i \(-0.481181\pi\)
0.0590860 + 0.998253i \(0.481181\pi\)
\(272\) −3.10106 + 1.12869i −0.188029 + 0.0684370i
\(273\) 0 0
\(274\) −18.2399 + 15.3051i −1.10192 + 0.924617i
\(275\) 0.121011 + 0.686285i 0.00729721 + 0.0413846i
\(276\) 0 0
\(277\) 9.55463 + 8.01729i 0.574082 + 0.481712i 0.882998 0.469377i \(-0.155522\pi\)
−0.308915 + 0.951090i \(0.599966\pi\)
\(278\) −9.92713 + 17.1943i −0.595390 + 1.03125i
\(279\) 0 0
\(280\) −1.32553 2.29588i −0.0792154 0.137205i
\(281\) −1.69409 + 9.60766i −0.101061 + 0.573145i 0.891660 + 0.452706i \(0.149541\pi\)
−0.992721 + 0.120439i \(0.961570\pi\)
\(282\) 0 0
\(283\) −24.9688 9.08790i −1.48424 0.540220i −0.532315 0.846547i \(-0.678678\pi\)
−0.951926 + 0.306327i \(0.900900\pi\)
\(284\) −22.3632 8.13953i −1.32701 0.482992i
\(285\) 0 0
\(286\) −0.176349 + 1.00013i −0.0104277 + 0.0591387i
\(287\) 2.84173 + 4.92202i 0.167742 + 0.290538i
\(288\) 0 0
\(289\) 7.81006 13.5274i 0.459415 0.795730i
\(290\) 19.1633 + 16.0799i 1.12531 + 0.944247i
\(291\) 0 0
\(292\) −6.56410 37.2268i −0.384135 2.17854i
\(293\) −9.38976 + 7.87895i −0.548556 + 0.460293i −0.874452 0.485113i \(-0.838779\pi\)
0.325896 + 0.945406i \(0.394334\pi\)
\(294\) 0 0
\(295\) −4.34723 + 1.58226i −0.253106 + 0.0921229i
\(296\) −4.53888 −0.263817
\(297\) 0 0
\(298\) −40.3243 −2.33592
\(299\) −3.07698 + 1.11993i −0.177947 + 0.0647672i
\(300\) 0 0
\(301\) 4.16445 3.49439i 0.240035 0.201413i
\(302\) 1.47534 + 8.36705i 0.0848961 + 0.481470i
\(303\) 0 0
\(304\) −13.3876 11.2335i −0.767832 0.644288i
\(305\) −1.36137 + 2.35797i −0.0779521 + 0.135017i
\(306\) 0 0
\(307\) 13.2370 + 22.9271i 0.755475 + 1.30852i 0.945138 + 0.326671i \(0.105927\pi\)
−0.189663 + 0.981849i \(0.560740\pi\)
\(308\) 0.132702 0.752591i 0.00756141 0.0428829i
\(309\) 0 0
\(310\) 46.2857 + 16.8466i 2.62885 + 0.956823i
\(311\) −16.5945 6.03990i −0.940987 0.342491i −0.174432 0.984669i \(-0.555809\pi\)
−0.766556 + 0.642178i \(0.778031\pi\)
\(312\) 0 0
\(313\) 1.67522 9.50064i 0.0946890 0.537008i −0.900153 0.435574i \(-0.856546\pi\)
0.994842 0.101435i \(-0.0323433\pi\)
\(314\) −7.70019 13.3371i −0.434547 0.752657i
\(315\) 0 0
\(316\) 13.9056 24.0852i 0.782250 1.35490i
\(317\) 2.84240 + 2.38506i 0.159645 + 0.133958i 0.719111 0.694895i \(-0.244549\pi\)
−0.559466 + 0.828853i \(0.688994\pi\)
\(318\) 0 0
\(319\) 0.242400 + 1.37472i 0.0135718 + 0.0769694i
\(320\) −23.1622 + 19.4354i −1.29481 + 1.08647i
\(321\) 0 0
\(322\) 4.18262 1.52235i 0.233089 0.0848373i
\(323\) −7.30748 −0.406599
\(324\) 0 0
\(325\) −3.32937 −0.184680
\(326\) −24.7611 + 9.01229i −1.37139 + 0.499145i
\(327\) 0 0
\(328\) −4.55009 + 3.81798i −0.251236 + 0.210812i
\(329\) 0.418069 + 2.37099i 0.0230489 + 0.130717i
\(330\) 0 0
\(331\) −1.08226 0.908128i −0.0594866 0.0499152i 0.612560 0.790424i \(-0.290140\pi\)
−0.672046 + 0.740509i \(0.734584\pi\)
\(332\) 5.80953 10.0624i 0.318839 0.552246i
\(333\) 0 0
\(334\) −2.46786 4.27446i −0.135035 0.233888i
\(335\) 0.399080 2.26330i 0.0218041 0.123657i
\(336\) 0 0
\(337\) 12.2067 + 4.44287i 0.664940 + 0.242018i 0.652368 0.757903i \(-0.273776\pi\)
0.0125722 + 0.999921i \(0.495998\pi\)
\(338\) 21.2974 + 7.75161i 1.15842 + 0.421632i
\(339\) 0 0
\(340\) −1.35736 + 7.69798i −0.0736133 + 0.417482i
\(341\) 1.37428 + 2.38033i 0.0744215 + 0.128902i
\(342\) 0 0
\(343\) 6.34669 10.9928i 0.342689 0.593555i
\(344\) 4.35221 + 3.65194i 0.234656 + 0.196899i
\(345\) 0 0
\(346\) 1.31665 + 7.46712i 0.0707838 + 0.401435i
\(347\) 3.67737 3.08568i 0.197411 0.165648i −0.538724 0.842483i \(-0.681093\pi\)
0.736135 + 0.676835i \(0.236649\pi\)
\(348\) 0 0
\(349\) 21.2160 7.72198i 1.13567 0.413348i 0.295319 0.955399i \(-0.404574\pi\)
0.840346 + 0.542050i \(0.182352\pi\)
\(350\) 4.52571 0.241909
\(351\) 0 0
\(352\) −2.52845 −0.134767
\(353\) −27.9150 + 10.1602i −1.48577 + 0.540775i −0.952331 0.305065i \(-0.901322\pi\)
−0.533436 + 0.845840i \(0.679100\pi\)
\(354\) 0 0
\(355\) 19.7229 16.5495i 1.04678 0.878354i
\(356\) 6.67507 + 37.8562i 0.353778 + 2.00638i
\(357\) 0 0
\(358\) 32.4216 + 27.2049i 1.71353 + 1.43783i
\(359\) 6.70991 11.6219i 0.354136 0.613381i −0.632834 0.774288i \(-0.718108\pi\)
0.986970 + 0.160906i \(0.0514418\pi\)
\(360\) 0 0
\(361\) −9.84920 17.0593i −0.518379 0.897858i
\(362\) 3.57709 20.2867i 0.188008 1.06625i
\(363\) 0 0
\(364\) 3.43086 + 1.24873i 0.179826 + 0.0654513i
\(365\) 38.4290 + 13.9870i 2.01147 + 0.732114i
\(366\) 0 0
\(367\) −1.38050 + 7.82920i −0.0720615 + 0.408681i 0.927344 + 0.374209i \(0.122086\pi\)
−0.999406 + 0.0344715i \(0.989025\pi\)
\(368\) −3.03793 5.26184i −0.158363 0.274293i
\(369\) 0 0
\(370\) 12.6833 21.9681i 0.659372 1.14207i
\(371\) 8.11288 + 6.80751i 0.421200 + 0.353428i
\(372\) 0 0
\(373\) −1.98315 11.2470i −0.102684 0.582348i −0.992120 0.125289i \(-0.960014\pi\)
0.889437 0.457059i \(-0.151097\pi\)
\(374\) −0.603592 + 0.506474i −0.0312110 + 0.0261891i
\(375\) 0 0
\(376\) −2.36437 + 0.860561i −0.121933 + 0.0443801i
\(377\) −6.66917 −0.343480
\(378\) 0 0
\(379\) −24.1705 −1.24155 −0.620777 0.783987i \(-0.713183\pi\)
−0.620777 + 0.783987i \(0.713183\pi\)
\(380\) −38.8988 + 14.1580i −1.99547 + 0.726291i
\(381\) 0 0
\(382\) 28.7909 24.1584i 1.47307 1.23605i
\(383\) −1.63981 9.29982i −0.0837903 0.475199i −0.997611 0.0690808i \(-0.977993\pi\)
0.913821 0.406118i \(-0.133118\pi\)
\(384\) 0 0
\(385\) 0.633331 + 0.531428i 0.0322775 + 0.0270841i
\(386\) −11.2015 + 19.4016i −0.570143 + 0.987516i
\(387\) 0 0
\(388\) 6.88162 + 11.9193i 0.349361 + 0.605111i
\(389\) 0.442405 2.50900i 0.0224308 0.127211i −0.971536 0.236891i \(-0.923871\pi\)
0.993967 + 0.109680i \(0.0349826\pi\)
\(390\) 0 0
\(391\) −2.38733 0.868915i −0.120732 0.0439429i
\(392\) 5.78145 + 2.10427i 0.292007 + 0.106282i
\(393\) 0 0
\(394\) −5.20407 + 29.5137i −0.262177 + 1.48688i
\(395\) 15.0438 + 26.0567i 0.756937 + 1.31105i
\(396\) 0 0
\(397\) −1.83759 + 3.18279i −0.0922258 + 0.159740i −0.908447 0.417999i \(-0.862731\pi\)
0.816222 + 0.577739i \(0.196065\pi\)
\(398\) 12.2259 + 10.2587i 0.612828 + 0.514223i
\(399\) 0 0
\(400\) −1.07276 6.08390i −0.0536378 0.304195i
\(401\) −12.3706 + 10.3802i −0.617760 + 0.518362i −0.897099 0.441830i \(-0.854329\pi\)
0.279338 + 0.960193i \(0.409885\pi\)
\(402\) 0 0
\(403\) −12.3396 + 4.49125i −0.614679 + 0.223725i
\(404\) 25.1458 1.25105
\(405\) 0 0
\(406\) 9.06558 0.449917
\(407\) 1.33013 0.484126i 0.0659319 0.0239972i
\(408\) 0 0
\(409\) 7.03380 5.90206i 0.347799 0.291838i −0.452107 0.891964i \(-0.649327\pi\)
0.799906 + 0.600126i \(0.204883\pi\)
\(410\) −5.76432 32.6911i −0.284680 1.61450i
\(411\) 0 0
\(412\) −18.7199 15.7078i −0.922262 0.773870i
\(413\) −0.838253 + 1.45190i −0.0412477 + 0.0714432i
\(414\) 0 0
\(415\) 6.28506 + 10.8860i 0.308522 + 0.534375i
\(416\) 2.09765 11.8964i 0.102846 0.583268i
\(417\) 0 0
\(418\) −3.92104 1.42714i −0.191784 0.0698037i
\(419\) −6.55800 2.38692i −0.320379 0.116608i 0.176824 0.984242i \(-0.443418\pi\)
−0.497204 + 0.867634i \(0.665640\pi\)
\(420\) 0 0
\(421\) 5.35021 30.3425i 0.260753 1.47880i −0.520108 0.854100i \(-0.674108\pi\)
0.780861 0.624704i \(-0.214781\pi\)
\(422\) −5.51765 9.55686i −0.268595 0.465221i
\(423\) 0 0
\(424\) −5.53405 + 9.58526i −0.268757 + 0.465502i
\(425\) −1.97881 1.66042i −0.0959862 0.0805420i
\(426\) 0 0
\(427\) 0.171339 + 0.971712i 0.00829167 + 0.0470244i
\(428\) −9.82380 + 8.24315i −0.474851 + 0.398448i
\(429\) 0 0
\(430\) −29.8370 + 10.8598i −1.43887 + 0.523704i
\(431\) −27.8971 −1.34376 −0.671879 0.740661i \(-0.734513\pi\)
−0.671879 + 0.740661i \(0.734513\pi\)
\(432\) 0 0
\(433\) 19.1706 0.921278 0.460639 0.887588i \(-0.347620\pi\)
0.460639 + 0.887588i \(0.347620\pi\)
\(434\) 16.7735 6.10507i 0.805156 0.293053i
\(435\) 0 0
\(436\) −13.8892 + 11.6544i −0.665173 + 0.558146i
\(437\) −2.33626 13.2496i −0.111759 0.633814i
\(438\) 0 0
\(439\) −18.1928 15.2656i −0.868294 0.728585i 0.0954443 0.995435i \(-0.469573\pi\)
−0.963738 + 0.266850i \(0.914017\pi\)
\(440\) −0.432015 + 0.748272i −0.0205955 + 0.0356725i
\(441\) 0 0
\(442\) −1.88221 3.26009i −0.0895278 0.155067i
\(443\) −4.05612 + 23.0034i −0.192712 + 1.09292i 0.722927 + 0.690924i \(0.242796\pi\)
−0.915639 + 0.402000i \(0.868315\pi\)
\(444\) 0 0
\(445\) −39.0787 14.2235i −1.85251 0.674258i
\(446\) −35.1925 12.8090i −1.66641 0.606525i
\(447\) 0 0
\(448\) −1.90272 + 10.7908i −0.0898950 + 0.509820i
\(449\) 2.40953 + 4.17343i 0.113713 + 0.196956i 0.917264 0.398279i \(-0.130392\pi\)
−0.803552 + 0.595235i \(0.797059\pi\)
\(450\) 0 0
\(451\) 0.926176 1.60418i 0.0436119 0.0755380i
\(452\) −19.7123 16.5406i −0.927187 0.778002i
\(453\) 0 0
\(454\) 5.79696 + 32.8762i 0.272065 + 1.54296i
\(455\) −3.02580 + 2.53895i −0.141852 + 0.119028i
\(456\) 0 0
\(457\) 4.59848 1.67371i 0.215108 0.0782929i −0.232219 0.972664i \(-0.574598\pi\)
0.447326 + 0.894371i \(0.352376\pi\)
\(458\) −3.73978 −0.174749
\(459\) 0 0
\(460\) −14.3916 −0.671012
\(461\) 26.3024 9.57330i 1.22503 0.445873i 0.353135 0.935572i \(-0.385116\pi\)
0.871891 + 0.489699i \(0.162893\pi\)
\(462\) 0 0
\(463\) −21.0473 + 17.6608i −0.978152 + 0.820767i −0.983810 0.179217i \(-0.942644\pi\)
0.00565725 + 0.999984i \(0.498199\pi\)
\(464\) −2.14887 12.1868i −0.0997587 0.565760i
\(465\) 0 0
\(466\) 22.5352 + 18.9093i 1.04392 + 0.875957i
\(467\) −10.6232 + 18.4000i −0.491585 + 0.851450i −0.999953 0.00968963i \(-0.996916\pi\)
0.508368 + 0.861140i \(0.330249\pi\)
\(468\) 0 0
\(469\) −0.416426 0.721272i −0.0192288 0.0333052i
\(470\) 2.44182 13.8482i 0.112633 0.638771i
\(471\) 0 0
\(472\) −1.64643 0.599252i −0.0757831 0.0275828i
\(473\) −1.66494 0.605990i −0.0765542 0.0278635i
\(474\) 0 0
\(475\) 2.37544 13.4718i 0.108993 0.618129i
\(476\) 1.41636 + 2.45321i 0.0649188 + 0.112443i
\(477\) 0 0
\(478\) −20.9892 + 36.3543i −0.960022 + 1.66281i
\(479\) 31.9278 + 26.7906i 1.45882 + 1.22410i 0.925811 + 0.377986i \(0.123383\pi\)
0.533009 + 0.846109i \(0.321061\pi\)
\(480\) 0 0
\(481\) 1.17432 + 6.65990i 0.0535444 + 0.303665i
\(482\) 31.4147 26.3600i 1.43090 1.20067i
\(483\) 0 0
\(484\) 25.4017 9.24547i 1.15462 0.420249i
\(485\) −14.8898 −0.676112
\(486\) 0 0
\(487\) 4.02801 0.182527 0.0912634 0.995827i \(-0.470909\pi\)
0.0912634 + 0.995827i \(0.470909\pi\)
\(488\) −0.969001 + 0.352688i −0.0438646 + 0.0159654i
\(489\) 0 0
\(490\) −26.3401 + 22.1020i −1.18992 + 0.998465i
\(491\) 6.70653 + 38.0346i 0.302661 + 1.71648i 0.634313 + 0.773076i \(0.281283\pi\)
−0.331652 + 0.943402i \(0.607606\pi\)
\(492\) 0 0
\(493\) −3.96380 3.32603i −0.178521 0.149797i
\(494\) 9.96769 17.2645i 0.448468 0.776769i
\(495\) 0 0
\(496\) −12.1830 21.1015i −0.547032 0.947487i
\(497\) 1.62019 9.18853i 0.0726753 0.412162i
\(498\) 0 0
\(499\) 3.82629 + 1.39266i 0.171288 + 0.0623439i 0.426241 0.904610i \(-0.359838\pi\)
−0.254952 + 0.966954i \(0.582060\pi\)
\(500\) 17.5146 + 6.37480i 0.783278 + 0.285090i
\(501\) 0 0
\(502\) 2.01259 11.4140i 0.0898263 0.509430i
\(503\) −1.71297 2.96695i −0.0763775 0.132290i 0.825307 0.564684i \(-0.191002\pi\)
−0.901684 + 0.432395i \(0.857669\pi\)
\(504\) 0 0
\(505\) −13.6020 + 23.5594i −0.605282 + 1.04838i
\(506\) −1.11129 0.932483i −0.0494028 0.0414539i
\(507\) 0 0
\(508\) 2.25126 + 12.7675i 0.0998837 + 0.566468i
\(509\) 9.39432 7.88277i 0.416396 0.349398i −0.410394 0.911908i \(-0.634609\pi\)
0.826790 + 0.562511i \(0.190164\pi\)
\(510\) 0 0
\(511\) 13.9264 5.06878i 0.616066 0.224230i
\(512\) 28.1241 1.24292
\(513\) 0 0
\(514\) 24.4791 1.07973
\(515\) 24.8430 9.04210i 1.09471 0.398443i
\(516\) 0 0
\(517\) 0.601093 0.504377i 0.0264360 0.0221825i
\(518\) −1.59628 9.05298i −0.0701367 0.397765i
\(519\) 0 0
\(520\) −3.16222 2.65342i −0.138673 0.116360i
\(521\) 7.04117 12.1957i 0.308479 0.534302i −0.669551 0.742766i \(-0.733513\pi\)
0.978030 + 0.208465i \(0.0668466\pi\)
\(522\) 0 0
\(523\) −4.88956 8.46897i −0.213806 0.370322i 0.739097 0.673599i \(-0.235253\pi\)
−0.952902 + 0.303277i \(0.901919\pi\)
\(524\) 3.11555 17.6692i 0.136103 0.771881i
\(525\) 0 0
\(526\) 12.8845 + 4.68956i 0.561789 + 0.204474i
\(527\) −9.57387 3.48460i −0.417044 0.151792i
\(528\) 0 0
\(529\) −3.18168 + 18.0442i −0.138334 + 0.784530i
\(530\) −30.9283 53.5694i −1.34344 2.32691i
\(531\) 0 0
\(532\) −7.50065 + 12.9915i −0.325195 + 0.563254i
\(533\) 6.77933 + 5.68853i 0.293645 + 0.246398i
\(534\) 0 0
\(535\) −2.40915 13.6630i −0.104157 0.590703i
\(536\) 0.666768 0.559485i 0.0288000 0.0241661i
\(537\) 0 0
\(538\) −27.5247 + 10.0182i −1.18668 + 0.431915i
\(539\) −1.91871 −0.0826445
\(540\) 0 0
\(541\) 40.9454 1.76038 0.880189 0.474623i \(-0.157416\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(542\) −3.86927 + 1.40830i −0.166199 + 0.0604916i
\(543\) 0 0
\(544\) 7.17966 6.02445i 0.307825 0.258296i
\(545\) −3.40614 19.3172i −0.145903 0.827458i
\(546\) 0 0
\(547\) 0.850521 + 0.713672i 0.0363657 + 0.0305144i 0.660789 0.750571i \(-0.270222\pi\)
−0.624424 + 0.781086i \(0.714666\pi\)
\(548\) 13.9497 24.1615i 0.595900 1.03213i
\(549\) 0 0
\(550\) −0.737508 1.27740i −0.0314474 0.0544686i
\(551\) 4.75832 26.9858i 0.202711 1.14963i
\(552\) 0 0
\(553\) 10.2459 + 3.72922i 0.435702 + 0.158583i
\(554\) −24.8079 9.02932i −1.05399 0.383619i
\(555\) 0 0
\(556\) 4.03969 22.9102i 0.171321 0.971610i
\(557\) 17.5201 + 30.3458i 0.742352 + 1.28579i 0.951422 + 0.307890i \(0.0996230\pi\)
−0.209070 + 0.977901i \(0.567044\pi\)
\(558\) 0 0
\(559\) 4.23247 7.33084i 0.179014 0.310062i
\(560\) −5.61446 4.71109i −0.237254 0.199080i
\(561\) 0 0
\(562\) −3.58575 20.3358i −0.151256 0.857813i
\(563\) 29.7005 24.9216i 1.25172 1.05032i 0.255212 0.966885i \(-0.417855\pi\)
0.996513 0.0834367i \(-0.0265897\pi\)
\(564\) 0 0
\(565\) 26.1600 9.52145i 1.10056 0.400570i
\(566\) 56.2413 2.36400
\(567\) 0 0
\(568\) 9.75095 0.409141
\(569\) −31.9198 + 11.6179i −1.33815 + 0.487046i −0.909229 0.416297i \(-0.863328\pi\)
−0.428919 + 0.903343i \(0.641105\pi\)
\(570\) 0 0
\(571\) 7.72852 6.48500i 0.323428 0.271389i −0.466587 0.884475i \(-0.654517\pi\)
0.790016 + 0.613086i \(0.210072\pi\)
\(572\) −0.206632 1.17187i −0.00863972 0.0489983i
\(573\) 0 0
\(574\) −9.21532 7.73257i −0.384640 0.322751i
\(575\) 2.37795 4.11873i 0.0991674 0.171763i
\(576\) 0 0
\(577\) 6.06615 + 10.5069i 0.252537 + 0.437407i 0.964224 0.265090i \(-0.0854017\pi\)
−0.711687 + 0.702497i \(0.752068\pi\)
\(578\) −5.74114 + 32.5596i −0.238800 + 1.35430i
\(579\) 0 0
\(580\) −27.5440 10.0252i −1.14370 0.416274i
\(581\) 4.28059 + 1.55801i 0.177589 + 0.0646371i
\(582\) 0 0
\(583\) 0.599379 3.39925i 0.0248237 0.140782i
\(584\) 7.74416 + 13.4133i 0.320456 + 0.555046i
\(585\) 0 0
\(586\) 12.9722 22.4685i 0.535877 0.928167i
\(587\) −24.3213 20.4080i −1.00385 0.842328i −0.0163344 0.999867i \(-0.505200\pi\)
−0.987513 + 0.157539i \(0.949644\pi\)
\(588\) 0 0
\(589\) −9.36909 53.1348i −0.386047 2.18938i
\(590\) 7.50109 6.29416i 0.308815 0.259126i
\(591\) 0 0
\(592\) −11.7915 + 4.29176i −0.484629 + 0.176390i
\(593\) −13.4906 −0.553993 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(594\) 0 0
\(595\) −3.06459 −0.125636
\(596\) 44.3994 16.1601i 1.81867 0.661942i
\(597\) 0 0
\(598\) 5.30929 4.45503i 0.217113 0.182180i
\(599\) 7.36796 + 41.7858i 0.301047 + 1.70732i 0.641554 + 0.767078i \(0.278290\pi\)
−0.340507 + 0.940242i \(0.610599\pi\)
\(600\) 0 0
\(601\) −15.1713 12.7302i −0.618851 0.519277i 0.278591 0.960410i \(-0.410132\pi\)
−0.897442 + 0.441132i \(0.854577\pi\)
\(602\) −5.75330 + 9.96501i −0.234487 + 0.406144i
\(603\) 0 0
\(604\) −4.97755 8.62136i −0.202533 0.350798i
\(605\) −5.07828 + 28.8003i −0.206461 + 1.17090i
\(606\) 0 0
\(607\) 33.8280 + 12.3124i 1.37304 + 0.499745i 0.920060 0.391778i \(-0.128140\pi\)
0.452977 + 0.891522i \(0.350362\pi\)
\(608\) 46.6403 + 16.9757i 1.89151 + 0.688454i
\(609\) 0 0
\(610\) 1.00074 5.67548i 0.0405188 0.229793i
\(611\) 1.87442 + 3.24659i 0.0758310 + 0.131343i
\(612\) 0 0
\(613\) −13.2314 + 22.9175i −0.534411 + 0.925627i 0.464780 + 0.885426i \(0.346133\pi\)
−0.999192 + 0.0402013i \(0.987200\pi\)
\(614\) −42.9256 36.0189i −1.73234 1.45360i
\(615\) 0 0
\(616\) 0.0543723 + 0.308361i 0.00219072 + 0.0124242i
\(617\) −37.6256 + 31.5716i −1.51475 + 1.27103i −0.660943 + 0.750436i \(0.729843\pi\)
−0.853807 + 0.520590i \(0.825712\pi\)
\(618\) 0 0
\(619\) 22.7464 8.27901i 0.914255 0.332762i 0.158304 0.987390i \(-0.449397\pi\)
0.755950 + 0.654629i \(0.227175\pi\)
\(620\) −57.7145 −2.31787
\(621\) 0 0
\(622\) 37.3785 1.49874
\(623\) −14.1618 + 5.15448i −0.567381 + 0.206510i
\(624\) 0 0
\(625\) −23.8695 + 20.0289i −0.954780 + 0.801155i
\(626\) 3.54581 + 20.1093i 0.141719 + 0.803728i
\(627\) 0 0
\(628\) 13.8232 + 11.5991i 0.551607 + 0.462853i
\(629\) −2.62345 + 4.54395i −0.104604 + 0.181179i
\(630\) 0 0
\(631\) −8.84842 15.3259i −0.352250 0.610115i 0.634393 0.773010i \(-0.281250\pi\)
−0.986643 + 0.162895i \(0.947917\pi\)
\(632\) −1.97874 + 11.2220i −0.0787101 + 0.446387i
\(633\) 0 0
\(634\) −7.38007 2.68613i −0.293100 0.106680i
\(635\) −13.1799 4.79708i −0.523027 0.190366i
\(636\) 0 0
\(637\) 1.59180 9.02754i 0.0630693 0.357684i
\(638\) −1.47732 2.55880i −0.0584878 0.101304i
\(639\) 0 0
\(640\) 10.5917 18.3454i 0.418676 0.725167i
\(641\) −29.1483 24.4583i −1.15129 0.966046i −0.151540 0.988451i \(-0.548423\pi\)
−0.999749 + 0.0224050i \(0.992868\pi\)
\(642\) 0 0
\(643\) 8.15148 + 46.2293i 0.321463 + 1.82311i 0.533447 + 0.845834i \(0.320896\pi\)
−0.211984 + 0.977273i \(0.567992\pi\)
\(644\) −3.99523 + 3.35239i −0.157434 + 0.132103i
\(645\) 0 0
\(646\) 14.5344 5.29009i 0.571848 0.208136i
\(647\) 28.2333 1.10997 0.554983 0.831862i \(-0.312725\pi\)
0.554983 + 0.831862i \(0.312725\pi\)
\(648\) 0 0
\(649\) 0.546406 0.0214483
\(650\) 6.62204 2.41023i 0.259738 0.0945368i
\(651\) 0 0
\(652\) 23.6517 19.8461i 0.926271 0.777234i
\(653\) −6.13103 34.7708i −0.239926 1.36069i −0.831988 0.554794i \(-0.812797\pi\)
0.592062 0.805893i \(-0.298314\pi\)
\(654\) 0 0
\(655\) 14.8692 + 12.4767i 0.580987 + 0.487506i
\(656\) −8.21052 + 14.2210i −0.320567 + 0.555239i
\(657\) 0 0
\(658\) −2.54795 4.41318i −0.0993295 0.172044i
\(659\) −7.24004 + 41.0603i −0.282032 + 1.59948i 0.433667 + 0.901073i \(0.357219\pi\)
−0.715699 + 0.698409i \(0.753892\pi\)
\(660\) 0 0
\(661\) −1.19709 0.435704i −0.0465613 0.0169469i 0.318635 0.947878i \(-0.396776\pi\)
−0.365196 + 0.930931i \(0.618998\pi\)
\(662\) 2.81002 + 1.02276i 0.109214 + 0.0397508i
\(663\) 0 0
\(664\) −0.826686 + 4.68837i −0.0320817 + 0.181944i
\(665\) −8.11461 14.0549i −0.314671 0.545027i
\(666\) 0 0
\(667\) 4.76334 8.25035i 0.184437 0.319455i
\(668\) 4.43026 + 3.71743i 0.171412 + 0.143832i
\(669\) 0 0
\(670\) 0.844702 + 4.79054i 0.0326337 + 0.185075i
\(671\) 0.246349 0.206711i 0.00951018 0.00797999i
\(672\) 0 0
\(673\) −33.4838 + 12.1871i −1.29071 + 0.469779i −0.893959 0.448149i \(-0.852084\pi\)
−0.396748 + 0.917928i \(0.629861\pi\)
\(674\) −27.4951 −1.05907
\(675\) 0 0
\(676\) −26.5561 −1.02139
\(677\) 16.9162 6.15701i 0.650144 0.236633i 0.00416861 0.999991i \(-0.498673\pi\)
0.645975 + 0.763358i \(0.276451\pi\)
\(678\) 0 0
\(679\) −4.13353 + 3.46845i −0.158630 + 0.133107i
\(680\) −0.556154 3.15411i −0.0213275 0.120955i
\(681\) 0 0
\(682\) −4.45660 3.73953i −0.170652 0.143194i
\(683\) 19.8807 34.4344i 0.760715 1.31760i −0.181768 0.983341i \(-0.558182\pi\)
0.942483 0.334255i \(-0.108485\pi\)
\(684\) 0 0
\(685\) 15.0915 + 26.1393i 0.576617 + 0.998730i
\(686\) −4.66542 + 26.4589i −0.178127 + 1.01021i
\(687\) 0 0
\(688\) 14.7597 + 5.37209i 0.562708 + 0.204809i
\(689\) 15.4962 + 5.64017i 0.590360 + 0.214873i
\(690\) 0 0
\(691\) −2.92436 + 16.5849i −0.111248 + 0.630918i 0.877292 + 0.479957i \(0.159348\pi\)
−0.988540 + 0.150961i \(0.951763\pi\)
\(692\) −4.44218 7.69408i −0.168866 0.292485i
\(693\) 0 0
\(694\) −5.08038 + 8.79948i −0.192849 + 0.334024i
\(695\) 19.2797 + 16.1776i 0.731322 + 0.613652i
\(696\) 0 0
\(697\) 1.19231 + 6.76193i 0.0451620 + 0.256126i
\(698\) −36.6079 + 30.7177i −1.38563 + 1.16268i
\(699\) 0 0
\(700\) −4.98306 + 1.81369i −0.188342 + 0.0685509i
\(701\) 8.96921 0.338762 0.169381 0.985551i \(-0.445823\pi\)
0.169381 + 0.985551i \(0.445823\pi\)
\(702\) 0 0
\(703\) −27.7861 −1.04797
\(704\) 3.35583 1.22142i 0.126478 0.0460341i
\(705\) 0 0
\(706\) 48.1670 40.4169i 1.81279 1.52111i
\(707\) 1.71191 + 9.70875i 0.0643832 + 0.365135i
\(708\) 0 0
\(709\) 13.8973 + 11.6612i 0.521924 + 0.437946i 0.865302 0.501251i \(-0.167127\pi\)
−0.343378 + 0.939197i \(0.611571\pi\)
\(710\) −27.2477 + 47.1944i −1.02259 + 1.77117i
\(711\) 0 0
\(712\) −7.87509 13.6401i −0.295131 0.511183i
\(713\) 3.25728 18.4730i 0.121986 0.691818i
\(714\) 0 0
\(715\) 1.20971 + 0.440299i 0.0452407 + 0.0164663i
\(716\) −46.6005 16.9612i −1.74154 0.633869i
\(717\) 0 0
\(718\) −4.93243 + 27.9732i −0.184077 + 1.04395i
\(719\) 15.7860 + 27.3421i 0.588718 + 1.01969i 0.994401 + 0.105675i \(0.0337004\pi\)
−0.405683 + 0.914014i \(0.632966\pi\)
\(720\) 0 0
\(721\) 4.79034 8.29711i 0.178402 0.309001i
\(722\) 31.9395 + 26.8004i 1.18867 + 0.997409i
\(723\) 0 0
\(724\) 4.19135 + 23.7704i 0.155770 + 0.883418i
\(725\) 7.42026 6.22634i 0.275582 0.231240i
\(726\) 0 0
\(727\) −36.0929 + 13.1367i −1.33861 + 0.487215i −0.909375 0.415977i \(-0.863440\pi\)
−0.429237 + 0.903192i \(0.641217\pi\)
\(728\) −1.49595 −0.0554436
\(729\) 0 0
\(730\) −86.5599 −3.20373
\(731\) 6.17157 2.24627i 0.228264 0.0830812i
\(732\) 0 0
\(733\) −23.2344 + 19.4959i −0.858181 + 0.720099i −0.961575 0.274541i \(-0.911474\pi\)
0.103395 + 0.994640i \(0.467030\pi\)
\(734\) −2.92200 16.5715i −0.107853 0.611664i
\(735\) 0 0
\(736\) 13.2187 + 11.0918i 0.487246 + 0.408848i
\(737\) −0.135721 + 0.235076i −0.00499936 + 0.00865915i
\(738\) 0 0
\(739\) −5.00127 8.66245i −0.183975 0.318653i 0.759256 0.650792i \(-0.225563\pi\)
−0.943230 + 0.332139i \(0.892230\pi\)
\(740\) −5.16126 + 29.2710i −0.189732 + 1.07602i
\(741\) 0 0
\(742\) −21.0645 7.66683i −0.773300 0.281458i
\(743\) 34.0862 + 12.4064i 1.25050 + 0.455145i 0.880571 0.473914i \(-0.157159\pi\)
0.369931 + 0.929059i \(0.379381\pi\)
\(744\) 0 0
\(745\) −8.87626 + 50.3398i −0.325201 + 1.84431i
\(746\) 12.0865 + 20.9344i 0.442517 + 0.766461i
\(747\) 0 0
\(748\) 0.461619 0.799548i 0.0168785 0.0292344i
\(749\) −3.85147 3.23177i −0.140730 0.118086i
\(750\) 0 0
\(751\) −2.52734 14.3332i −0.0922239 0.523028i −0.995563 0.0941000i \(-0.970003\pi\)
0.903339 0.428928i \(-0.141108\pi\)
\(752\) −5.32868 + 4.47129i −0.194317 + 0.163051i
\(753\) 0 0
\(754\) 13.2648 4.82799i 0.483076 0.175825i
\(755\) 10.7700 0.391959
\(756\) 0 0
\(757\) −45.5754 −1.65646 −0.828232 0.560385i \(-0.810653\pi\)
−0.828232 + 0.560385i \(0.810653\pi\)
\(758\) 48.0745 17.4977i 1.74614 0.635544i
\(759\) 0 0
\(760\) 12.9928 10.9023i 0.471300 0.395468i
\(761\) −3.86290 21.9076i −0.140030 0.794150i −0.971224 0.238167i \(-0.923453\pi\)
0.831194 0.555982i \(-0.187658\pi\)
\(762\) 0 0
\(763\) −5.44534 4.56918i −0.197135 0.165416i
\(764\) −22.0189 + 38.1379i −0.796616 + 1.37978i
\(765\) 0 0
\(766\) 9.99393 + 17.3100i 0.361096 + 0.625436i
\(767\) −0.453310 + 2.57085i −0.0163681 + 0.0928279i
\(768\) 0 0
\(769\) −12.8408 4.67368i −0.463053 0.168537i 0.0999501 0.994992i \(-0.468132\pi\)
−0.563003 + 0.826455i \(0.690354\pi\)
\(770\) −1.64439 0.598510i −0.0592598 0.0215688i
\(771\) 0 0
\(772\) 4.55829 25.8513i 0.164056 0.930410i
\(773\) −10.3270 17.8869i −0.371436 0.643345i 0.618351 0.785902i \(-0.287801\pi\)
−0.989787 + 0.142557i \(0.954468\pi\)
\(774\) 0 0
\(775\) 9.53628 16.5173i 0.342553 0.593319i
\(776\) −4.31990 3.62483i −0.155076 0.130124i
\(777\) 0 0
\(778\) 0.936404 + 5.31061i 0.0335717 + 0.190395i
\(779\) −27.8547 + 23.3729i −0.997999 + 0.837420i
\(780\) 0 0
\(781\) −2.85753 + 1.04006i −0.102250 +