Properties

Label 243.2.e.a.28.2
Level $243$
Weight $2$
Character 243.28
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 28.2
Root \(0.500000 - 2.22827i\) of defining polynomial
Character \(\chi\) \(=\) 243.28
Dual form 243.2.e.a.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.367548 + 2.08447i) q^{2} +(-2.33052 + 0.848241i) q^{4} +(2.05537 + 1.72466i) q^{5} +(-0.913694 - 0.332557i) q^{7} +(-0.508086 - 0.880031i) q^{8} +O(q^{10})\) \(q+(0.367548 + 2.08447i) q^{2} +(-2.33052 + 0.848241i) q^{4} +(2.05537 + 1.72466i) q^{5} +(-0.913694 - 0.332557i) q^{7} +(-0.508086 - 0.880031i) q^{8} +(-2.83955 + 4.91825i) q^{10} +(0.242761 - 0.203701i) q^{11} +(-0.262909 + 1.49103i) q^{13} +(0.357379 - 2.02679i) q^{14} +(-2.15207 + 1.80580i) q^{16} +(0.587342 - 1.01731i) q^{17} +(-3.11040 - 5.38737i) q^{19} +(-6.25302 - 2.27591i) q^{20} +(0.513834 + 0.431158i) q^{22} +(2.03231 - 0.739701i) q^{23} +(0.381855 + 2.16561i) q^{25} -3.20463 q^{26} +2.41147 q^{28} +(0.764905 + 4.33799i) q^{29} +(8.15017 - 2.96642i) q^{31} +(-6.11199 - 5.12857i) q^{32} +(2.33642 + 0.850386i) q^{34} +(-1.30443 - 2.25934i) q^{35} +(2.23332 - 3.86823i) q^{37} +(10.0866 - 8.46364i) q^{38} +(0.473450 - 2.68507i) q^{40} +(-1.01501 + 5.75638i) q^{41} +(4.28295 - 3.59382i) q^{43} +(-0.392973 + 0.680649i) q^{44} +(2.28885 + 3.96441i) q^{46} +(-2.32674 - 0.846865i) q^{47} +(-4.63807 - 3.89180i) q^{49} +(-4.37378 + 1.59193i) q^{50} +(-0.652037 - 3.69789i) q^{52} +10.8920 q^{53} +0.850279 q^{55} +(0.171574 + 0.973047i) q^{56} +(-8.76126 + 3.18884i) q^{58} +(1.32082 + 1.10830i) q^{59} +(-0.953579 - 0.347074i) q^{61} +(9.17898 + 15.8985i) q^{62} +(5.63455 - 9.75933i) q^{64} +(-3.11190 + 2.61119i) q^{65} +(0.148739 - 0.843538i) q^{67} +(-0.505893 + 2.86906i) q^{68} +(4.23008 - 3.54946i) q^{70} +(-4.79788 + 8.31018i) q^{71} +(7.62091 + 13.1998i) q^{73} +(8.88405 + 3.23353i) q^{74} +(11.8187 + 9.91703i) q^{76} +(-0.289552 + 0.105388i) q^{77} +(-1.94725 - 11.0434i) q^{79} -7.53771 q^{80} -12.3721 q^{82} +(-0.813530 - 4.61376i) q^{83} +(2.96172 - 1.07798i) q^{85} +(9.06538 + 7.60676i) q^{86} +(-0.302607 - 0.110140i) q^{88} +(-7.74976 - 13.4230i) q^{89} +(0.736071 - 1.27491i) q^{91} +(-4.10891 + 3.44778i) q^{92} +(0.910073 - 5.16128i) q^{94} +(2.89837 - 16.4375i) q^{95} +(-4.25115 + 3.56714i) q^{97} +(6.40762 - 11.0983i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} + 21 q^{14} + 9 q^{16} - 9 q^{17} - 3 q^{19} - 24 q^{20} + 12 q^{22} + 12 q^{23} + 12 q^{25} + 30 q^{26} - 12 q^{28} + 24 q^{29} + 12 q^{31} - 27 q^{32} - 12 q^{35} - 3 q^{37} + 30 q^{38} - 15 q^{40} - 6 q^{41} - 15 q^{43} - 3 q^{44} - 3 q^{46} - 12 q^{47} - 33 q^{49} - 21 q^{50} - 45 q^{52} + 18 q^{53} - 12 q^{55} - 30 q^{56} - 51 q^{58} + 3 q^{59} - 33 q^{61} + 12 q^{62} + 12 q^{64} - 21 q^{65} - 6 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} + 21 q^{74} + 6 q^{76} + 12 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 6 q^{83} + 36 q^{85} + 21 q^{86} + 42 q^{88} - 9 q^{89} + 6 q^{91} + 3 q^{92} + 48 q^{94} - 3 q^{95} + 39 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.367548 + 2.08447i 0.259895 + 1.47394i 0.783187 + 0.621786i \(0.213593\pi\)
−0.523291 + 0.852154i \(0.675296\pi\)
\(3\) 0 0
\(4\) −2.33052 + 0.848241i −1.16526 + 0.424121i
\(5\) 2.05537 + 1.72466i 0.919190 + 0.771292i 0.973845 0.227213i \(-0.0729614\pi\)
−0.0546547 + 0.998505i \(0.517406\pi\)
\(6\) 0 0
\(7\) −0.913694 0.332557i −0.345344 0.125695i 0.163524 0.986539i \(-0.447714\pi\)
−0.508868 + 0.860844i \(0.669936\pi\)
\(8\) −0.508086 0.880031i −0.179636 0.311138i
\(9\) 0 0
\(10\) −2.83955 + 4.91825i −0.897945 + 1.55529i
\(11\) 0.242761 0.203701i 0.0731952 0.0614181i −0.605456 0.795879i \(-0.707009\pi\)
0.678651 + 0.734461i \(0.262565\pi\)
\(12\) 0 0
\(13\) −0.262909 + 1.49103i −0.0729177 + 0.413537i 0.926398 + 0.376546i \(0.122888\pi\)
−0.999316 + 0.0369909i \(0.988223\pi\)
\(14\) 0.357379 2.02679i 0.0955135 0.541684i
\(15\) 0 0
\(16\) −2.15207 + 1.80580i −0.538018 + 0.451451i
\(17\) 0.587342 1.01731i 0.142451 0.246733i −0.785968 0.618267i \(-0.787835\pi\)
0.928419 + 0.371534i \(0.121168\pi\)
\(18\) 0 0
\(19\) −3.11040 5.38737i −0.713575 1.23595i −0.963507 0.267685i \(-0.913741\pi\)
0.249931 0.968264i \(-0.419592\pi\)
\(20\) −6.25302 2.27591i −1.39822 0.508910i
\(21\) 0 0
\(22\) 0.513834 + 0.431158i 0.109550 + 0.0919231i
\(23\) 2.03231 0.739701i 0.423766 0.154238i −0.121329 0.992612i \(-0.538716\pi\)
0.545095 + 0.838374i \(0.316493\pi\)
\(24\) 0 0
\(25\) 0.381855 + 2.16561i 0.0763710 + 0.433121i
\(26\) −3.20463 −0.628480
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) 0.764905 + 4.33799i 0.142039 + 0.805545i 0.969697 + 0.244311i \(0.0785618\pi\)
−0.827658 + 0.561233i \(0.810327\pi\)
\(30\) 0 0
\(31\) 8.15017 2.96642i 1.46381 0.532784i 0.517400 0.855743i \(-0.326900\pi\)
0.946413 + 0.322959i \(0.104678\pi\)
\(32\) −6.11199 5.12857i −1.08046 0.906611i
\(33\) 0 0
\(34\) 2.33642 + 0.850386i 0.400692 + 0.145840i
\(35\) −1.30443 2.25934i −0.220489 0.381899i
\(36\) 0 0
\(37\) 2.23332 3.86823i 0.367156 0.635933i −0.621964 0.783046i \(-0.713665\pi\)
0.989120 + 0.147113i \(0.0469982\pi\)
\(38\) 10.0866 8.46364i 1.63626 1.37298i
\(39\) 0 0
\(40\) 0.473450 2.68507i 0.0748590 0.424547i
\(41\) −1.01501 + 5.75638i −0.158517 + 0.898996i 0.796982 + 0.604003i \(0.206428\pi\)
−0.955499 + 0.294993i \(0.904683\pi\)
\(42\) 0 0
\(43\) 4.28295 3.59382i 0.653143 0.548052i −0.254880 0.966973i \(-0.582036\pi\)
0.908023 + 0.418920i \(0.137591\pi\)
\(44\) −0.392973 + 0.680649i −0.0592429 + 0.102612i
\(45\) 0 0
\(46\) 2.28885 + 3.96441i 0.337473 + 0.584521i
\(47\) −2.32674 0.846865i −0.339390 0.123528i 0.166702 0.986007i \(-0.446688\pi\)
−0.506092 + 0.862479i \(0.668910\pi\)
\(48\) 0 0
\(49\) −4.63807 3.89180i −0.662581 0.555972i
\(50\) −4.37378 + 1.59193i −0.618546 + 0.225132i
\(51\) 0 0
\(52\) −0.652037 3.69789i −0.0904213 0.512805i
\(53\) 10.8920 1.49613 0.748063 0.663628i \(-0.230984\pi\)
0.748063 + 0.663628i \(0.230984\pi\)
\(54\) 0 0
\(55\) 0.850279 0.114652
\(56\) 0.171574 + 0.973047i 0.0229276 + 0.130029i
\(57\) 0 0
\(58\) −8.76126 + 3.18884i −1.15041 + 0.418715i
\(59\) 1.32082 + 1.10830i 0.171956 + 0.144289i 0.724704 0.689060i \(-0.241976\pi\)
−0.552748 + 0.833348i \(0.686421\pi\)
\(60\) 0 0
\(61\) −0.953579 0.347074i −0.122093 0.0444383i 0.280251 0.959927i \(-0.409582\pi\)
−0.402344 + 0.915488i \(0.631805\pi\)
\(62\) 9.17898 + 15.8985i 1.16573 + 2.01911i
\(63\) 0 0
\(64\) 5.63455 9.75933i 0.704319 1.21992i
\(65\) −3.11190 + 2.61119i −0.385983 + 0.323878i
\(66\) 0 0
\(67\) 0.148739 0.843538i 0.0181713 0.103055i −0.974373 0.224938i \(-0.927782\pi\)
0.992544 + 0.121883i \(0.0388933\pi\)
\(68\) −0.505893 + 2.86906i −0.0613486 + 0.347925i
\(69\) 0 0
\(70\) 4.23008 3.54946i 0.505592 0.424242i
\(71\) −4.79788 + 8.31018i −0.569404 + 0.986237i 0.427221 + 0.904147i \(0.359493\pi\)
−0.996625 + 0.0820894i \(0.973841\pi\)
\(72\) 0 0
\(73\) 7.62091 + 13.1998i 0.891960 + 1.54492i 0.837522 + 0.546404i \(0.184004\pi\)
0.0544385 + 0.998517i \(0.482663\pi\)
\(74\) 8.88405 + 3.23353i 1.03275 + 0.375890i
\(75\) 0 0
\(76\) 11.8187 + 9.91703i 1.35569 + 1.13756i
\(77\) −0.289552 + 0.105388i −0.0329975 + 0.0120101i
\(78\) 0 0
\(79\) −1.94725 11.0434i −0.219083 1.24248i −0.873680 0.486502i \(-0.838273\pi\)
0.654597 0.755978i \(-0.272838\pi\)
\(80\) −7.53771 −0.842741
\(81\) 0 0
\(82\) −12.3721 −1.36626
\(83\) −0.813530 4.61376i −0.0892965 0.506425i −0.996347 0.0854026i \(-0.972782\pi\)
0.907050 0.421023i \(-0.138329\pi\)
\(84\) 0 0
\(85\) 2.96172 1.07798i 0.321243 0.116923i
\(86\) 9.06538 + 7.60676i 0.977546 + 0.820258i
\(87\) 0 0
\(88\) −0.302607 0.110140i −0.0322580 0.0117409i
\(89\) −7.74976 13.4230i −0.821473 1.42283i −0.904586 0.426292i \(-0.859820\pi\)
0.0831130 0.996540i \(-0.473514\pi\)
\(90\) 0 0
\(91\) 0.736071 1.27491i 0.0771612 0.133647i
\(92\) −4.10891 + 3.44778i −0.428383 + 0.359456i
\(93\) 0 0
\(94\) 0.910073 5.16128i 0.0938669 0.532346i
\(95\) 2.89837 16.4375i 0.297366 1.68645i
\(96\) 0 0
\(97\) −4.25115 + 3.56714i −0.431639 + 0.362188i −0.832570 0.553920i \(-0.813131\pi\)
0.400931 + 0.916108i \(0.368687\pi\)
\(98\) 6.40762 11.0983i 0.647267 1.12110i
\(99\) 0 0
\(100\) −2.72688 4.72309i −0.272688 0.472309i
\(101\) −9.52759 3.46776i −0.948030 0.345055i −0.178698 0.983904i \(-0.557189\pi\)
−0.769332 + 0.638849i \(0.779411\pi\)
\(102\) 0 0
\(103\) −7.54806 6.33357i −0.743732 0.624065i 0.190105 0.981764i \(-0.439117\pi\)
−0.933837 + 0.357698i \(0.883562\pi\)
\(104\) 1.44573 0.526203i 0.141766 0.0515985i
\(105\) 0 0
\(106\) 4.00331 + 22.7039i 0.388836 + 2.20520i
\(107\) −5.17080 −0.499880 −0.249940 0.968261i \(-0.580411\pi\)
−0.249940 + 0.968261i \(0.580411\pi\)
\(108\) 0 0
\(109\) −7.31065 −0.700234 −0.350117 0.936706i \(-0.613858\pi\)
−0.350117 + 0.936706i \(0.613858\pi\)
\(110\) 0.312518 + 1.77238i 0.0297974 + 0.168990i
\(111\) 0 0
\(112\) 2.56687 0.934263i 0.242546 0.0882796i
\(113\) −7.94820 6.66933i −0.747704 0.627398i 0.187191 0.982324i \(-0.440062\pi\)
−0.934895 + 0.354925i \(0.884506\pi\)
\(114\) 0 0
\(115\) 5.45289 + 1.98469i 0.508485 + 0.185073i
\(116\) −5.46229 9.46096i −0.507161 0.878428i
\(117\) 0 0
\(118\) −1.82475 + 3.16056i −0.167982 + 0.290953i
\(119\) −0.874964 + 0.734182i −0.0802078 + 0.0673023i
\(120\) 0 0
\(121\) −1.89269 + 10.7340i −0.172063 + 0.975817i
\(122\) 0.372979 2.11527i 0.0337680 0.191508i
\(123\) 0 0
\(124\) −16.4779 + 13.8266i −1.47976 + 1.24167i
\(125\) 3.75766 6.50846i 0.336095 0.582134i
\(126\) 0 0
\(127\) −2.61372 4.52709i −0.231930 0.401714i 0.726446 0.687223i \(-0.241171\pi\)
−0.958376 + 0.285509i \(0.907837\pi\)
\(128\) 7.41903 + 2.70031i 0.655756 + 0.238676i
\(129\) 0 0
\(130\) −6.58671 5.52691i −0.577693 0.484742i
\(131\) −6.79802 + 2.47428i −0.593946 + 0.216179i −0.621464 0.783443i \(-0.713462\pi\)
0.0275183 + 0.999621i \(0.491240\pi\)
\(132\) 0 0
\(133\) 1.05034 + 5.95680i 0.0910764 + 0.516520i
\(134\) 1.81300 0.156619
\(135\) 0 0
\(136\) −1.19368 −0.102357
\(137\) −1.95342 11.0784i −0.166892 0.946493i −0.947092 0.320962i \(-0.895994\pi\)
0.780200 0.625531i \(-0.215117\pi\)
\(138\) 0 0
\(139\) −8.81447 + 3.20820i −0.747634 + 0.272116i −0.687610 0.726081i \(-0.741340\pi\)
−0.0600240 + 0.998197i \(0.519118\pi\)
\(140\) 4.95648 + 4.15898i 0.418899 + 0.351498i
\(141\) 0 0
\(142\) −19.0857 6.94664i −1.60164 0.582949i
\(143\) 0.239900 + 0.415518i 0.0200614 + 0.0347474i
\(144\) 0 0
\(145\) −5.90940 + 10.2354i −0.490749 + 0.850003i
\(146\) −24.7135 + 20.7371i −2.04530 + 1.71621i
\(147\) 0 0
\(148\) −1.92362 + 10.9094i −0.158121 + 0.896747i
\(149\) −3.30821 + 18.7618i −0.271019 + 1.53703i 0.480309 + 0.877099i \(0.340525\pi\)
−0.751328 + 0.659928i \(0.770587\pi\)
\(150\) 0 0
\(151\) 3.07490 2.58015i 0.250232 0.209970i −0.509040 0.860743i \(-0.670000\pi\)
0.759272 + 0.650773i \(0.225555\pi\)
\(152\) −3.16070 + 5.47450i −0.256367 + 0.444041i
\(153\) 0 0
\(154\) −0.326102 0.564825i −0.0262780 0.0455149i
\(155\) 21.8677 + 7.95919i 1.75646 + 0.639298i
\(156\) 0 0
\(157\) 5.57368 + 4.67687i 0.444828 + 0.373255i 0.837512 0.546418i \(-0.184009\pi\)
−0.392685 + 0.919673i \(0.628454\pi\)
\(158\) 22.3039 8.11795i 1.77440 0.645830i
\(159\) 0 0
\(160\) −3.71737 21.0822i −0.293884 1.66670i
\(161\) −2.10290 −0.165732
\(162\) 0 0
\(163\) 12.4492 0.975094 0.487547 0.873097i \(-0.337892\pi\)
0.487547 + 0.873097i \(0.337892\pi\)
\(164\) −2.51731 14.2764i −0.196569 1.11480i
\(165\) 0 0
\(166\) 9.31821 3.39155i 0.723233 0.263235i
\(167\) 1.78633 + 1.49891i 0.138230 + 0.115989i 0.709281 0.704926i \(-0.249020\pi\)
−0.571051 + 0.820915i \(0.693464\pi\)
\(168\) 0 0
\(169\) 10.0620 + 3.66225i 0.773997 + 0.281712i
\(170\) 3.33558 + 5.77739i 0.255827 + 0.443106i
\(171\) 0 0
\(172\) −6.93308 + 12.0085i −0.528643 + 0.915636i
\(173\) 2.74418 2.30264i 0.208636 0.175066i −0.532482 0.846442i \(-0.678740\pi\)
0.741118 + 0.671375i \(0.234296\pi\)
\(174\) 0 0
\(175\) 0.371290 2.10569i 0.0280669 0.159175i
\(176\) −0.154596 + 0.876757i −0.0116531 + 0.0660880i
\(177\) 0 0
\(178\) 25.1313 21.0877i 1.88367 1.58059i
\(179\) −9.99785 + 17.3168i −0.747275 + 1.29432i 0.201850 + 0.979416i \(0.435305\pi\)
−0.949124 + 0.314901i \(0.898029\pi\)
\(180\) 0 0
\(181\) −4.86616 8.42844i −0.361699 0.626481i 0.626542 0.779388i \(-0.284470\pi\)
−0.988241 + 0.152907i \(0.951136\pi\)
\(182\) 2.92805 + 1.06572i 0.217042 + 0.0789967i
\(183\) 0 0
\(184\) −1.68355 1.41267i −0.124113 0.104143i
\(185\) 11.2617 4.09892i 0.827976 0.301359i
\(186\) 0 0
\(187\) −0.0646422 0.366604i −0.00472711 0.0268088i
\(188\) 6.14088 0.447869
\(189\) 0 0
\(190\) 35.3286 2.56301
\(191\) 3.08339 + 17.4868i 0.223106 + 1.26530i 0.866273 + 0.499571i \(0.166509\pi\)
−0.643167 + 0.765726i \(0.722380\pi\)
\(192\) 0 0
\(193\) −9.94602 + 3.62006i −0.715930 + 0.260577i −0.674197 0.738551i \(-0.735510\pi\)
−0.0417333 + 0.999129i \(0.513288\pi\)
\(194\) −8.99809 7.55029i −0.646025 0.542079i
\(195\) 0 0
\(196\) 14.1103 + 5.13574i 1.00788 + 0.366838i
\(197\) 7.07945 + 12.2620i 0.504390 + 0.873628i 0.999987 + 0.00507615i \(0.00161579\pi\)
−0.495597 + 0.868552i \(0.665051\pi\)
\(198\) 0 0
\(199\) −3.77010 + 6.53000i −0.267255 + 0.462899i −0.968152 0.250363i \(-0.919450\pi\)
0.700897 + 0.713263i \(0.252783\pi\)
\(200\) 1.71179 1.43636i 0.121042 0.101566i
\(201\) 0 0
\(202\) 3.72658 21.1345i 0.262201 1.48702i
\(203\) 0.743742 4.21797i 0.0522004 0.296043i
\(204\) 0 0
\(205\) −12.0140 + 10.0810i −0.839096 + 0.704085i
\(206\) 10.4278 18.0616i 0.726543 1.25841i
\(207\) 0 0
\(208\) −2.12670 3.68356i −0.147460 0.255409i
\(209\) −1.85250 0.674254i −0.128140 0.0466391i
\(210\) 0 0
\(211\) 3.99388 + 3.35126i 0.274950 + 0.230710i 0.769827 0.638253i \(-0.220342\pi\)
−0.494877 + 0.868963i \(0.664787\pi\)
\(212\) −25.3840 + 9.23901i −1.74338 + 0.634538i
\(213\) 0 0
\(214\) −1.90052 10.7784i −0.129917 0.736794i
\(215\) 15.0012 1.02307
\(216\) 0 0
\(217\) −8.43326 −0.572487
\(218\) −2.68701 15.2388i −0.181988 1.03210i
\(219\) 0 0
\(220\) −1.98160 + 0.721242i −0.133599 + 0.0486261i
\(221\) 1.36242 + 1.14320i 0.0916460 + 0.0769001i
\(222\) 0 0
\(223\) −16.6267 6.05164i −1.11341 0.405248i −0.281166 0.959659i \(-0.590721\pi\)
−0.832243 + 0.554412i \(0.812943\pi\)
\(224\) 3.87894 + 6.71853i 0.259173 + 0.448901i
\(225\) 0 0
\(226\) 10.9807 19.0191i 0.730423 1.26513i
\(227\) 12.0820 10.1380i 0.801913 0.672885i −0.146750 0.989174i \(-0.546881\pi\)
0.948663 + 0.316289i \(0.102437\pi\)
\(228\) 0 0
\(229\) −0.306813 + 1.74002i −0.0202748 + 0.114984i −0.993266 0.115860i \(-0.963038\pi\)
0.972991 + 0.230844i \(0.0741487\pi\)
\(230\) −2.13282 + 12.0958i −0.140634 + 0.797576i
\(231\) 0 0
\(232\) 3.42893 2.87721i 0.225120 0.188898i
\(233\) −6.94920 + 12.0364i −0.455257 + 0.788529i −0.998703 0.0509157i \(-0.983786\pi\)
0.543446 + 0.839444i \(0.317119\pi\)
\(234\) 0 0
\(235\) −3.32177 5.75347i −0.216688 0.375315i
\(236\) −4.01831 1.46255i −0.261570 0.0952037i
\(237\) 0 0
\(238\) −1.85197 1.55399i −0.120045 0.100730i
\(239\) −18.6366 + 6.78318i −1.20550 + 0.438767i −0.865142 0.501527i \(-0.832772\pi\)
−0.340362 + 0.940295i \(0.610549\pi\)
\(240\) 0 0
\(241\) 3.36438 + 19.0804i 0.216719 + 1.22907i 0.877899 + 0.478846i \(0.158945\pi\)
−0.661180 + 0.750227i \(0.729944\pi\)
\(242\) −23.0703 −1.48301
\(243\) 0 0
\(244\) 2.51674 0.161118
\(245\) −2.82091 15.9982i −0.180222 1.02209i
\(246\) 0 0
\(247\) 8.85048 3.22131i 0.563143 0.204967i
\(248\) −6.75153 5.66521i −0.428723 0.359741i
\(249\) 0 0
\(250\) 14.9478 + 5.44055i 0.945381 + 0.344090i
\(251\) −2.73786 4.74212i −0.172812 0.299320i 0.766590 0.642137i \(-0.221952\pi\)
−0.939402 + 0.342818i \(0.888619\pi\)
\(252\) 0 0
\(253\) 0.342689 0.593554i 0.0215447 0.0373164i
\(254\) 8.47590 7.11212i 0.531825 0.446254i
\(255\) 0 0
\(256\) 1.01187 5.73859i 0.0632418 0.358662i
\(257\) 2.00827 11.3895i 0.125272 0.710455i −0.855873 0.517186i \(-0.826980\pi\)
0.981146 0.193270i \(-0.0619092\pi\)
\(258\) 0 0
\(259\) −3.32698 + 2.79167i −0.206729 + 0.173466i
\(260\) 5.03743 8.72508i 0.312408 0.541107i
\(261\) 0 0
\(262\) −7.65614 13.2608i −0.472998 0.819257i
\(263\) 6.08727 + 2.21558i 0.375357 + 0.136619i 0.522808 0.852451i \(-0.324885\pi\)
−0.147451 + 0.989069i \(0.547107\pi\)
\(264\) 0 0
\(265\) 22.3870 + 18.7849i 1.37522 + 1.15395i
\(266\) −12.0307 + 4.37881i −0.737649 + 0.268482i
\(267\) 0 0
\(268\) 0.368885 + 2.09205i 0.0225332 + 0.127792i
\(269\) 13.8387 0.843758 0.421879 0.906652i \(-0.361371\pi\)
0.421879 + 0.906652i \(0.361371\pi\)
\(270\) 0 0
\(271\) 1.94536 0.118172 0.0590860 0.998253i \(-0.481181\pi\)
0.0590860 + 0.998253i \(0.481181\pi\)
\(272\) 0.573052 + 3.24994i 0.0347464 + 0.197057i
\(273\) 0 0
\(274\) 22.3746 8.14369i 1.35170 0.491978i
\(275\) 0.533835 + 0.447941i 0.0321915 + 0.0270118i
\(276\) 0 0
\(277\) −11.7205 4.26591i −0.704216 0.256314i −0.0350062 0.999387i \(-0.511145\pi\)
−0.669210 + 0.743073i \(0.733367\pi\)
\(278\) −9.92713 17.1943i −0.595390 1.03125i
\(279\) 0 0
\(280\) −1.32553 + 2.29588i −0.0792154 + 0.137205i
\(281\) −7.47343 + 6.27095i −0.445827 + 0.374094i −0.837885 0.545847i \(-0.816208\pi\)
0.392057 + 0.919941i \(0.371763\pi\)
\(282\) 0 0
\(283\) 4.61405 26.1676i 0.274277 1.55550i −0.466974 0.884271i \(-0.654656\pi\)
0.741250 0.671229i \(-0.234233\pi\)
\(284\) 4.13255 23.4368i 0.245221 1.39072i
\(285\) 0 0
\(286\) −0.777960 + 0.652786i −0.0460017 + 0.0386000i
\(287\) 2.84173 4.92202i 0.167742 0.290538i
\(288\) 0 0
\(289\) 7.81006 + 13.5274i 0.459415 + 0.795730i
\(290\) −23.5073 8.55596i −1.38040 0.502423i
\(291\) 0 0
\(292\) −28.9573 24.2981i −1.69460 1.42194i
\(293\) 11.5182 4.19230i 0.672903 0.244917i 0.0171059 0.999854i \(-0.494555\pi\)
0.655797 + 0.754937i \(0.272333\pi\)
\(294\) 0 0
\(295\) 0.803336 + 4.55594i 0.0467720 + 0.265257i
\(296\) −4.53888 −0.263817
\(297\) 0 0
\(298\) −40.3243 −2.33592
\(299\) 0.568603 + 3.22471i 0.0328832 + 0.186490i
\(300\) 0 0
\(301\) −5.10845 + 1.85933i −0.294446 + 0.107170i
\(302\) 6.50841 + 5.46121i 0.374517 + 0.314257i
\(303\) 0 0
\(304\) 16.4223 + 5.97724i 0.941886 + 0.342818i
\(305\) −1.36137 2.35797i −0.0779521 0.135017i
\(306\) 0 0
\(307\) 13.2370 22.9271i 0.755475 1.30852i −0.189663 0.981849i \(-0.560740\pi\)
0.945138 0.326671i \(-0.105927\pi\)
\(308\) 0.585412 0.491219i 0.0333569 0.0279898i
\(309\) 0 0
\(310\) −8.55325 + 48.5079i −0.485792 + 2.75506i
\(311\) 3.06654 17.3912i 0.173887 0.986164i −0.765533 0.643397i \(-0.777525\pi\)
0.939420 0.342768i \(-0.111364\pi\)
\(312\) 0 0
\(313\) 7.39019 6.20111i 0.417718 0.350507i −0.409576 0.912276i \(-0.634323\pi\)
0.827294 + 0.561769i \(0.189879\pi\)
\(314\) −7.70019 + 13.3371i −0.434547 + 0.752657i
\(315\) 0 0
\(316\) 13.9056 + 24.0852i 0.782250 + 1.35490i
\(317\) −3.48672 1.26906i −0.195834 0.0712777i 0.242241 0.970216i \(-0.422117\pi\)
−0.438075 + 0.898938i \(0.644340\pi\)
\(318\) 0 0
\(319\) 1.06934 + 0.897284i 0.0598716 + 0.0502382i
\(320\) 28.4126 10.3414i 1.58831 0.578099i
\(321\) 0 0
\(322\) −0.772918 4.38343i −0.0430730 0.244279i
\(323\) −7.30748 −0.406599
\(324\) 0 0
\(325\) −3.32937 −0.184680
\(326\) 4.57566 + 25.9499i 0.253422 + 1.43723i
\(327\) 0 0
\(328\) 5.58151 2.03150i 0.308187 0.112171i
\(329\) 1.84430 + 1.54755i 0.101680 + 0.0853193i
\(330\) 0 0
\(331\) 1.32759 + 0.483205i 0.0729712 + 0.0265593i 0.378248 0.925704i \(-0.376527\pi\)
−0.305277 + 0.952264i \(0.598749\pi\)
\(332\) 5.80953 + 10.0624i 0.318839 + 0.552246i
\(333\) 0 0
\(334\) −2.46786 + 4.27446i −0.135035 + 0.233888i
\(335\) 1.76053 1.47726i 0.0961881 0.0807114i
\(336\) 0 0
\(337\) −2.25570 + 12.7927i −0.122876 + 0.696864i 0.859671 + 0.510848i \(0.170669\pi\)
−0.982547 + 0.186016i \(0.940442\pi\)
\(338\) −3.93559 + 22.3199i −0.214068 + 1.21404i
\(339\) 0 0
\(340\) −5.98797 + 5.02450i −0.324743 + 0.272492i
\(341\) 1.37428 2.38033i 0.0744215 0.128902i
\(342\) 0 0
\(343\) 6.34669 + 10.9928i 0.342689 + 0.593555i
\(344\) −5.33878 1.94316i −0.287848 0.104768i
\(345\) 0 0
\(346\) 5.80839 + 4.87382i 0.312261 + 0.262018i
\(347\) −4.51096 + 1.64185i −0.242161 + 0.0881394i −0.460250 0.887790i \(-0.652240\pi\)
0.218089 + 0.975929i \(0.430018\pi\)
\(348\) 0 0
\(349\) −3.92055 22.2346i −0.209862 1.19019i −0.889602 0.456736i \(-0.849018\pi\)
0.679740 0.733453i \(-0.262093\pi\)
\(350\) 4.52571 0.241909
\(351\) 0 0
\(352\) −2.52845 −0.134767
\(353\) 5.15849 + 29.2553i 0.274559 + 1.55710i 0.740360 + 0.672211i \(0.234655\pi\)
−0.465801 + 0.884889i \(0.654234\pi\)
\(354\) 0 0
\(355\) −24.1937 + 8.80578i −1.28407 + 0.467362i
\(356\) 29.4469 + 24.7089i 1.56068 + 1.30957i
\(357\) 0 0
\(358\) −39.7710 14.4754i −2.10196 0.765051i
\(359\) 6.70991 + 11.6219i 0.354136 + 0.613381i 0.986970 0.160906i \(-0.0514418\pi\)
−0.632834 + 0.774288i \(0.718108\pi\)
\(360\) 0 0
\(361\) −9.84920 + 17.0593i −0.518379 + 0.897858i
\(362\) 15.7802 13.2412i 0.829392 0.695942i
\(363\) 0 0
\(364\) −0.633997 + 3.59558i −0.0332305 + 0.188459i
\(365\) −7.10140 + 40.2740i −0.371704 + 2.10804i
\(366\) 0 0
\(367\) −6.09004 + 5.11015i −0.317897 + 0.266748i −0.787747 0.615999i \(-0.788753\pi\)
0.469850 + 0.882746i \(0.344308\pi\)
\(368\) −3.03793 + 5.26184i −0.158363 + 0.274293i
\(369\) 0 0
\(370\) 12.6833 + 21.9681i 0.659372 + 1.14207i
\(371\) −9.95192 3.62220i −0.516678 0.188055i
\(372\) 0 0
\(373\) −8.74862 7.34096i −0.452986 0.380101i 0.387556 0.921846i \(-0.373319\pi\)
−0.840543 + 0.541745i \(0.817764\pi\)
\(374\) 0.740415 0.269489i 0.0382860 0.0139350i
\(375\) 0 0
\(376\) 0.436918 + 2.47789i 0.0225323 + 0.127787i
\(377\) −6.66917 −0.343480
\(378\) 0 0
\(379\) −24.1705 −1.24155 −0.620777 0.783987i \(-0.713183\pi\)
−0.620777 + 0.783987i \(0.713183\pi\)
\(380\) 7.18821 + 40.7664i 0.368748 + 2.09127i
\(381\) 0 0
\(382\) −35.3173 + 12.8544i −1.80699 + 0.657690i
\(383\) −7.23397 6.07003i −0.369639 0.310164i 0.438980 0.898497i \(-0.355340\pi\)
−0.808619 + 0.588333i \(0.799784\pi\)
\(384\) 0 0
\(385\) −0.776895 0.282767i −0.0395942 0.0144111i
\(386\) −11.2015 19.4016i −0.570143 0.987516i
\(387\) 0 0
\(388\) 6.88162 11.9193i 0.349361 0.605111i
\(389\) 1.95166 1.63763i 0.0989529 0.0830314i −0.591969 0.805961i \(-0.701649\pi\)
0.690922 + 0.722929i \(0.257205\pi\)
\(390\) 0 0
\(391\) 0.441160 2.50194i 0.0223104 0.126529i
\(392\) −1.06837 + 6.05902i −0.0539607 + 0.306027i
\(393\) 0 0
\(394\) −22.9576 + 19.2637i −1.15659 + 0.970492i
\(395\) 15.0438 26.0567i 0.756937 1.31105i
\(396\) 0 0
\(397\) −1.83759 3.18279i −0.0922258 0.159740i 0.816222 0.577739i \(-0.196065\pi\)
−0.908447 + 0.417999i \(0.862731\pi\)
\(398\) −14.9973 5.45855i −0.751744 0.273613i
\(399\) 0 0
\(400\) −4.73244 3.97098i −0.236622 0.198549i
\(401\) 15.1748 5.52319i 0.757795 0.275815i 0.0659131 0.997825i \(-0.479004\pi\)
0.691882 + 0.722010i \(0.256782\pi\)
\(402\) 0 0
\(403\) 2.28027 + 12.9320i 0.113588 + 0.644190i
\(404\) 25.1458 1.25105
\(405\) 0 0
\(406\) 9.06558 0.449917
\(407\) −0.245797 1.39399i −0.0121837 0.0690973i
\(408\) 0 0
\(409\) −8.62823 + 3.14042i −0.426639 + 0.155284i −0.546410 0.837518i \(-0.684006\pi\)
0.119772 + 0.992801i \(0.461784\pi\)
\(410\) −25.4292 21.3376i −1.25586 1.05379i
\(411\) 0 0
\(412\) 22.9633 + 8.35797i 1.13132 + 0.411767i
\(413\) −0.838253 1.45190i −0.0412477 0.0714432i
\(414\) 0 0
\(415\) 6.28506 10.8860i 0.308522 0.534375i
\(416\) 9.25374 7.76481i 0.453702 0.380701i
\(417\) 0 0
\(418\) 0.724578 4.10929i 0.0354403 0.200992i
\(419\) 1.21187 6.87285i 0.0592037 0.335761i −0.940791 0.338987i \(-0.889916\pi\)
0.999995 + 0.00322608i \(0.00102690\pi\)
\(420\) 0 0
\(421\) 23.6023 19.8047i 1.15031 0.965221i 0.150579 0.988598i \(-0.451886\pi\)
0.999727 + 0.0233767i \(0.00744170\pi\)
\(422\) −5.51765 + 9.55686i −0.268595 + 0.465221i
\(423\) 0 0
\(424\) −5.53405 9.58526i −0.268757 0.465502i
\(425\) 2.42736 + 0.883488i 0.117744 + 0.0428555i
\(426\) 0 0
\(427\) 0.755857 + 0.634240i 0.0365785 + 0.0306930i
\(428\) 12.0507 4.38609i 0.582491 0.212010i
\(429\) 0 0
\(430\) 5.51365 + 31.2694i 0.265892 + 1.50795i
\(431\) −27.8971 −1.34376 −0.671879 0.740661i \(-0.734513\pi\)
−0.671879 + 0.740661i \(0.734513\pi\)
\(432\) 0 0
\(433\) 19.1706 0.921278 0.460639 0.887588i \(-0.347620\pi\)
0.460639 + 0.887588i \(0.347620\pi\)
\(434\) −3.09963 17.5789i −0.148787 0.843812i
\(435\) 0 0
\(436\) 17.0377 6.20120i 0.815956 0.296984i
\(437\) −10.3064 8.64806i −0.493020 0.413693i
\(438\) 0 0
\(439\) 22.3167 + 8.12263i 1.06512 + 0.387672i 0.814350 0.580375i \(-0.197094\pi\)
0.250770 + 0.968047i \(0.419316\pi\)
\(440\) −0.432015 0.748272i −0.0205955 0.0356725i
\(441\) 0 0
\(442\) −1.88221 + 3.26009i −0.0895278 + 0.155067i
\(443\) −17.8935 + 15.0144i −0.850144 + 0.713356i −0.959821 0.280612i \(-0.909463\pi\)
0.109677 + 0.993967i \(0.465018\pi\)
\(444\) 0 0
\(445\) 7.22146 40.9549i 0.342330 1.94145i
\(446\) 6.50332 36.8821i 0.307941 1.74642i
\(447\) 0 0
\(448\) −8.39379 + 7.04323i −0.396569 + 0.332761i
\(449\) 2.40953 4.17343i 0.113713 0.196956i −0.803552 0.595235i \(-0.797059\pi\)
0.917264 + 0.398279i \(0.130392\pi\)
\(450\) 0 0
\(451\) 0.926176 + 1.60418i 0.0436119 + 0.0755380i
\(452\) 24.1807 + 8.80105i 1.13736 + 0.413966i
\(453\) 0 0
\(454\) 25.5731 + 21.4584i 1.20021 + 1.00709i
\(455\) 3.71169 1.35095i 0.174007 0.0633333i
\(456\) 0 0
\(457\) −0.849765 4.81926i −0.0397503 0.225435i 0.958461 0.285225i \(-0.0920682\pi\)
−0.998211 + 0.0597894i \(0.980957\pi\)
\(458\) −3.73978 −0.174749
\(459\) 0 0
\(460\) −14.3916 −0.671012
\(461\) −4.86049 27.5652i −0.226376 1.28384i −0.860038 0.510230i \(-0.829560\pi\)
0.633662 0.773610i \(-0.281551\pi\)
\(462\) 0 0
\(463\) 25.8184 9.39712i 1.19988 0.436721i 0.336699 0.941612i \(-0.390690\pi\)
0.863183 + 0.504891i \(0.168467\pi\)
\(464\) −9.47968 7.95440i −0.440083 0.369274i
\(465\) 0 0
\(466\) −27.6436 10.0614i −1.28056 0.466087i
\(467\) −10.6232 18.4000i −0.491585 0.851450i 0.508368 0.861140i \(-0.330249\pi\)
−0.999953 + 0.00968963i \(0.996916\pi\)
\(468\) 0 0
\(469\) −0.416426 + 0.721272i −0.0192288 + 0.0333052i
\(470\) 10.7720 9.03879i 0.496876 0.416928i
\(471\) 0 0
\(472\) 0.304248 1.72548i 0.0140042 0.0794215i
\(473\) 0.307669 1.74488i 0.0141466 0.0802296i
\(474\) 0 0
\(475\) 10.4792 8.79310i 0.480819 0.403455i
\(476\) 1.41636 2.45321i 0.0649188 0.112443i
\(477\) 0 0
\(478\) −20.9892 36.3543i −0.960022 1.66281i
\(479\) −39.1653 14.2550i −1.78951 0.651328i −0.999257 0.0385448i \(-0.987728\pi\)
−0.790251 0.612783i \(-0.790050\pi\)
\(480\) 0 0
\(481\) 5.18048 + 4.34694i 0.236210 + 0.198203i
\(482\) −38.5358 + 14.0259i −1.75526 + 0.638861i
\(483\) 0 0
\(484\) −4.69405 26.6213i −0.213366 1.21006i
\(485\) −14.8898 −0.676112
\(486\) 0 0
\(487\) 4.02801 0.182527 0.0912634 0.995827i \(-0.470909\pi\)
0.0912634 + 0.995827i \(0.470909\pi\)
\(488\) 0.179064 + 1.01552i 0.00810585 + 0.0459706i
\(489\) 0 0
\(490\) 32.3109 11.7602i 1.45966 0.531272i
\(491\) 29.5857 + 24.8253i 1.33518 + 1.12035i 0.982836 + 0.184482i \(0.0590607\pi\)
0.352347 + 0.935869i \(0.385384\pi\)
\(492\) 0 0
\(493\) 4.86233 + 1.76974i 0.218988 + 0.0797052i
\(494\) 9.96769 + 17.2645i 0.448468 + 0.776769i
\(495\) 0 0
\(496\) −12.1830 + 21.1015i −0.547032 + 0.947487i
\(497\) 7.14741 5.99739i 0.320605 0.269020i
\(498\) 0 0
\(499\) −0.707071 + 4.01000i −0.0316528 + 0.179512i −0.996535 0.0831694i \(-0.973496\pi\)
0.964883 + 0.262682i \(0.0846069\pi\)
\(500\) −3.23657 + 18.3555i −0.144744 + 0.820884i
\(501\) 0 0
\(502\) 8.87849 7.44994i 0.396266 0.332507i
\(503\) −1.71297 + 2.96695i −0.0763775 + 0.132290i −0.901684 0.432395i \(-0.857669\pi\)
0.825307 + 0.564684i \(0.191002\pi\)
\(504\) 0 0
\(505\) −13.6020 23.5594i −0.605282 1.04838i
\(506\) 1.36320 + 0.496164i 0.0606016 + 0.0220572i
\(507\) 0 0
\(508\) 9.93139 + 8.33343i 0.440634 + 0.369736i
\(509\) −11.5238 + 4.19434i −0.510785 + 0.185911i −0.584539 0.811366i \(-0.698724\pi\)
0.0737534 + 0.997277i \(0.476502\pi\)
\(510\) 0 0
\(511\) −2.57349 14.5950i −0.113844 0.645644i
\(512\) 28.1241 1.24292
\(513\) 0 0
\(514\) 24.4791 1.07973
\(515\) −4.59080 26.0357i −0.202295 1.14727i
\(516\) 0 0
\(517\) −0.737350 + 0.268373i −0.0324286 + 0.0118030i
\(518\) −7.04196 5.90891i −0.309406 0.259623i
\(519\) 0 0
\(520\) 3.87904 + 1.41186i 0.170107 + 0.0619140i
\(521\) 7.04117 + 12.1957i 0.308479 + 0.534302i 0.978030 0.208465i \(-0.0668466\pi\)
−0.669551 + 0.742766i \(0.733513\pi\)
\(522\) 0 0
\(523\) −4.88956 + 8.46897i −0.213806 + 0.370322i −0.952902 0.303277i \(-0.901919\pi\)
0.739097 + 0.673599i \(0.235253\pi\)
\(524\) 13.7442 11.5327i 0.600416 0.503809i
\(525\) 0 0
\(526\) −2.38095 + 13.5030i −0.103814 + 0.588761i
\(527\) 1.76918 10.0335i 0.0770667 0.437067i
\(528\) 0 0
\(529\) −14.0359 + 11.7775i −0.610256 + 0.512065i
\(530\) −30.9283 + 53.5694i −1.34344 + 2.32691i
\(531\) 0 0
\(532\) −7.50065 12.9915i −0.325195 0.563254i
\(533\) −8.31608 3.02681i −0.360209 0.131105i
\(534\) 0 0
\(535\) −10.6279 8.91789i −0.459485 0.385554i
\(536\) −0.817912 + 0.297696i −0.0353284 + 0.0128585i
\(537\) 0 0
\(538\) 5.08637 + 28.8462i 0.219289 + 1.24365i
\(539\) −1.91871 −0.0826445
\(540\) 0 0
\(541\) 40.9454 1.76038 0.880189 0.474623i \(-0.157416\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(542\) 0.715012 + 4.05503i 0.0307124 + 0.174179i
\(543\) 0 0
\(544\) −8.80715 + 3.20554i −0.377604 + 0.137436i
\(545\) −15.0261 12.6084i −0.643648 0.540085i
\(546\) 0 0
\(547\) −1.04332 0.379737i −0.0446091 0.0162364i 0.319619 0.947546i \(-0.396445\pi\)
−0.364228 + 0.931310i \(0.618667\pi\)
\(548\) 13.9497 + 24.1615i 0.595900 + 1.03213i
\(549\) 0 0
\(550\) −0.737508 + 1.27740i −0.0314474 + 0.0544686i
\(551\) 20.9912 17.6137i 0.894256 0.750370i
\(552\) 0 0
\(553\) −1.89338 + 10.7379i −0.0805145 + 0.456620i
\(554\) 4.58431 25.9989i 0.194769 1.10459i
\(555\) 0 0
\(556\) 17.8210 14.9536i 0.755779 0.634174i
\(557\) 17.5201 30.3458i 0.742352 1.28579i −0.209070 0.977901i \(-0.567044\pi\)
0.951422 0.307890i \(-0.0996230\pi\)
\(558\) 0 0
\(559\) 4.23247 + 7.33084i 0.179014 + 0.310062i
\(560\) 6.88716 + 2.50672i 0.291035 + 0.105928i
\(561\) 0 0
\(562\) −15.8184 13.2732i −0.667260 0.559898i
\(563\) −36.4330 + 13.2605i −1.53547 + 0.558865i −0.964953 0.262423i \(-0.915479\pi\)
−0.570515 + 0.821287i \(0.693256\pi\)
\(564\) 0 0
\(565\) −4.83417 27.4159i −0.203375 1.15340i
\(566\) 56.2413 2.36400
\(567\) 0 0
\(568\) 9.75095 0.409141
\(569\) 5.89854 + 33.4523i 0.247280 + 1.40239i 0.815138 + 0.579266i \(0.196661\pi\)
−0.567859 + 0.823126i \(0.692228\pi\)
\(570\) 0 0
\(571\) −9.48043 + 3.45060i −0.396744 + 0.144403i −0.532684 0.846314i \(-0.678817\pi\)
0.135940 + 0.990717i \(0.456594\pi\)
\(572\) −0.911552 0.764883i −0.0381139 0.0319814i
\(573\) 0 0
\(574\) 11.3043 + 4.11442i 0.471831 + 0.171732i
\(575\) 2.37795 + 4.11873i 0.0991674 + 0.171763i
\(576\) 0 0
\(577\) 6.06615 10.5069i 0.252537 0.437407i −0.711687 0.702497i \(-0.752068\pi\)
0.964224 + 0.265090i \(0.0854017\pi\)
\(578\) −25.3269 + 21.2518i −1.05346 + 0.883957i
\(579\) 0 0
\(580\) 5.08993 28.8664i 0.211348 1.19861i
\(581\) −0.791021 + 4.48611i −0.0328171 + 0.186115i
\(582\) 0 0
\(583\) 2.64414 2.21870i 0.109509 0.0918892i
\(584\) 7.74416 13.4133i 0.320456 0.555046i
\(585\) 0 0
\(586\) 12.9722 + 22.4685i 0.535877 + 0.928167i
\(587\) 29.8345 + 10.8589i 1.23140 + 0.448193i 0.874077 0.485787i \(-0.161467\pi\)
0.357324 + 0.933981i \(0.383689\pi\)
\(588\) 0 0
\(589\) −41.3315 34.6812i −1.70303 1.42902i
\(590\) −9.20145 + 3.34905i −0.378818 + 0.137878i
\(591\) 0 0
\(592\) 2.17899 + 12.3576i 0.0895558 + 0.507896i
\(593\) −13.4906 −0.553993 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(594\) 0 0
\(595\) −3.06459 −0.125636
\(596\) −8.20467 46.5310i −0.336077 1.90598i
\(597\) 0 0
\(598\) −6.51281 + 2.37047i −0.266329 + 0.0969357i
\(599\) 32.5036 + 27.2737i 1.32806 + 1.11437i 0.984527 + 0.175233i \(0.0560679\pi\)
0.343532 + 0.939141i \(0.388377\pi\)
\(600\) 0 0
\(601\) 18.6104 + 6.77362i 0.759133 + 0.276302i 0.692444 0.721472i \(-0.256534\pi\)
0.0666892 + 0.997774i \(0.478756\pi\)
\(602\) −5.75330 9.96501i −0.234487 0.406144i
\(603\) 0 0
\(604\) −4.97755 + 8.62136i −0.202533 + 0.350798i
\(605\) −22.4027 + 18.7981i −0.910798 + 0.764251i
\(606\) 0 0
\(607\) −6.25117 + 35.4521i −0.253727 + 1.43896i 0.545592 + 0.838051i \(0.316305\pi\)
−0.799319 + 0.600906i \(0.794806\pi\)
\(608\) −8.61877 + 48.8795i −0.349537 + 1.98232i
\(609\) 0 0
\(610\) 4.41474 3.70441i 0.178748 0.149987i
\(611\) 1.87442 3.24659i 0.0758310 0.131343i
\(612\) 0 0
\(613\) −13.2314 22.9175i −0.534411 0.925627i −0.999192 0.0402013i \(-0.987200\pi\)
0.464780 0.885426i \(-0.346133\pi\)
\(614\) 52.6561 + 19.1652i 2.12503 + 0.773446i
\(615\) 0 0
\(616\) 0.239862 + 0.201268i 0.00966431 + 0.00810932i
\(617\) 46.1546 16.7989i 1.85812 0.676299i 0.877747 0.479124i \(-0.159045\pi\)
0.980368 0.197175i \(-0.0631768\pi\)
\(618\) 0 0
\(619\) −4.20336 23.8385i −0.168947 0.958149i −0.944900 0.327358i \(-0.893842\pi\)
0.775953 0.630791i \(-0.217269\pi\)
\(620\) −57.7145 −2.31787
\(621\) 0 0
\(622\) 37.3785 1.49874
\(623\) 2.61700 + 14.8417i 0.104848 + 0.594621i
\(624\) 0 0
\(625\) 29.2803 10.6571i 1.17121 0.426286i
\(626\) 15.6422 + 13.1254i 0.625190 + 0.524597i
\(627\) 0 0
\(628\) −16.9567 6.17173i −0.676646 0.246279i
\(629\) −2.62345 4.54395i −0.104604 0.181179i
\(630\) 0 0
\(631\) −8.84842 + 15.3259i −0.352250 + 0.610115i −0.986643 0.162895i \(-0.947917\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(632\) −8.72917 + 7.32464i −0.347228 + 0.291359i
\(633\) 0 0
\(634\) 1.36378 7.73439i 0.0541627 0.307172i
\(635\) 2.43554 13.8126i 0.0966514 0.548137i
\(636\) 0 0
\(637\) 7.02218 5.89231i 0.278229 0.233462i
\(638\) −1.47732 + 2.55880i −0.0584878 + 0.101304i
\(639\) 0 0
\(640\) 10.5917 + 18.3454i 0.418676 + 0.725167i
\(641\) 35.7557 + 13.0140i 1.41226 + 0.514022i 0.931794 0.362988i \(-0.118243\pi\)
0.480471 + 0.877011i \(0.340466\pi\)
\(642\) 0 0
\(643\) 35.9600 + 30.1741i 1.41813 + 1.18995i 0.952335 + 0.305053i \(0.0986743\pi\)
0.465790 + 0.884895i \(0.345770\pi\)
\(644\) 4.90087 1.78377i 0.193121 0.0702904i
\(645\) 0 0
\(646\) −2.68585 15.2322i −0.105673 0.599303i
\(647\) 28.2333 1.10997 0.554983 0.831862i \(-0.312725\pi\)
0.554983 + 0.831862i \(0.312725\pi\)
\(648\) 0 0
\(649\) 0.546406 0.0214483
\(650\) −1.22370 6.93997i −0.0479976 0.272208i
\(651\) 0 0
\(652\) −29.0131 + 10.5599i −1.13624 + 0.413557i
\(653\) −27.0469 22.6950i −1.05843 0.888125i −0.0644721 0.997920i \(-0.520536\pi\)
−0.993954 + 0.109794i \(0.964981\pi\)
\(654\) 0 0
\(655\) −18.2398 6.63873i −0.712686 0.259397i
\(656\) −8.21052 14.2210i −0.320567 0.555239i
\(657\) 0 0
\(658\) −2.54795 + 4.41318i −0.0993295 + 0.172044i
\(659\) −31.9392 + 26.8002i −1.24418 + 1.04399i −0.246990 + 0.969018i \(0.579442\pi\)
−0.997186 + 0.0749700i \(0.976114\pi\)
\(660\) 0 0
\(661\) 0.221213 1.25456i 0.00860418 0.0487967i −0.980203 0.197993i \(-0.936558\pi\)
0.988808 + 0.149197i \(0.0476687\pi\)
\(662\) −0.519270 + 2.94493i −0.0201820 + 0.114458i
\(663\) 0 0
\(664\) −3.64691 + 3.06012i −0.141527 + 0.118756i
\(665\) −8.11461 + 14.0549i −0.314671 + 0.545027i
\(666\) 0 0
\(667\) 4.76334 + 8.25035i 0.184437 + 0.319455i
\(668\) −5.43452 1.97800i −0.210268 0.0765312i
\(669\) 0 0
\(670\) 3.72638 + 3.12680i 0.143963 + 0.120799i
\(671\) −0.302191 + 0.109989i −0.0116660 + 0.00424606i
\(672\) 0 0
\(673\) 6.18756 + 35.0914i 0.238513 + 1.35267i 0.835088 + 0.550117i \(0.185417\pi\)
−0.596575 + 0.802558i \(0.703472\pi\)
\(674\) −27.4951 −1.05907
\(675\) 0 0
\(676\) −26.5561 −1.02139
\(677\) −3.12600 17.7284i −0.120142 0.681358i −0.984075 0.177752i \(-0.943118\pi\)
0.863934 0.503606i \(-0.167994\pi\)
\(678\) 0 0
\(679\) 5.07053 1.84552i 0.194589 0.0708246i
\(680\) −2.45346 2.05870i −0.0940859 0.0789474i
\(681\) 0 0
\(682\) 5.46682 + 1.98976i 0.209336 + 0.0761919i
\(683\) 19.8807 + 34.4344i 0.760715 + 1.31760i 0.942483 + 0.334255i \(0.108485\pi\)
−0.181768 + 0.983341i \(0.558182\pi\)
\(684\) 0 0
\(685\) 15.0915 26.1393i 0.576617 0.998730i
\(686\) −20.5814 + 17.2698i −0.785801 + 0.659366i
\(687\) 0 0
\(688\) −2.72748 + 15.4683i −0.103984 + 0.589724i
\(689\) −2.86359 + 16.2402i −0.109094 + 0.618703i
\(690\) 0 0
\(691\) −12.9007 + 10.8250i −0.490767 + 0.411802i −0.854301 0.519779i \(-0.826014\pi\)
0.363534 + 0.931581i \(0.381570\pi\)
\(692\) −4.44218 + 7.69408i −0.168866 + 0.292485i
\(693\) 0 0
\(694\) −5.08038 8.79948i −0.192849 0.334024i
\(695\) −23.6501 8.60793i −0.897099 0.326517i
\(696\) 0 0
\(697\) 5.25985 + 4.41354i 0.199231 + 0.167175i
\(698\) 44.9062 16.3445i 1.69973 0.618649i
\(699\) 0 0
\(700\) 0.920833 + 5.22230i 0.0348042 + 0.197385i
\(701\) 8.96921 0.338762 0.169381 0.985551i \(-0.445823\pi\)
0.169381 + 0.985551i \(0.445823\pi\)
\(702\) 0 0
\(703\) −27.7861 −1.04797
\(704\) −0.620133 3.51695i −0.0233721 0.132550i
\(705\) 0 0
\(706\) −59.0856 + 21.5054i −2.22372 + 0.809366i
\(707\) 7.55207 + 6.33694i 0.284025 + 0.238325i
\(708\) 0 0
\(709\) −17.0476 6.20480i −0.640235 0.233026i 0.00144523 0.999999i \(-0.499540\pi\)
−0.641680 + 0.766973i \(0.721762\pi\)
\(710\) −27.2477 47.1944i −1.02259 1.77117i
\(711\) 0 0
\(712\) −7.87509 + 13.6401i −0.295131 + 0.511183i
\(713\) 14.3694 12.0574i 0.538139 0.451552i
\(714\) 0 0
\(715\) −0.223546 + 1.26779i −0.00836014 + 0.0474127i
\(716\) 8.61142 48.8378i 0.321824 1.82515i
\(717\) 0 0
\(718\) −21.7593 + 18.2582i −0.812049 + 0.681390i
\(719\) 15.7860 27.3421i 0.588718 1.01969i −0.405683 0.914014i \(-0.632966\pi\)
0.994401 0.105675i \(-0.0337004\pi\)
\(720\) 0 0
\(721\) 4.79034 + 8.29711i 0.178402 + 0.309001i
\(722\) −39.1796 14.2602i −1.45811 0.530710i
\(723\) 0 0
\(724\) 18.4901 + 15.5150i 0.687177 + 0.576610i
\(725\) −9.10230 + 3.31296i −0.338051 + 0.123040i
\(726\) 0 0
\(727\) 6.66970 + 37.8257i 0.247365 + 1.40288i 0.814934 + 0.579553i \(0.196773\pi\)
−0.567569 + 0.823326i \(0.692116\pi\)
\(728\) −1.49595 −0.0554436
\(729\) 0 0
\(730\) −86.5599 −3.20373
\(731\) −1.14046 6.46787i −0.0421814 0.239223i
\(732\) 0 0
\(733\) 28.5012 10.3736i 1.05271 0.383157i 0.243028 0.970019i \(-0.421859\pi\)
0.809686 + 0.586863i \(0.199637\pi\)
\(734\) −12.8903 10.8163i −0.475790 0.399235i
\(735\) 0 0
\(736\) −16.2151 5.90181i −0.597696 0.217543i
\(737\) −0.135721 0.235076i −0.00499936 0.00865915i
\(738\) 0 0
\(739\) −5.00127 + 8.66245i −0.183975 + 0.318653i −0.943230 0.332139i \(-0.892230\pi\)
0.759256 + 0.650792i \(0.225563\pi\)
\(740\) −22.7688 + 19.1053i −0.836997 + 0.702324i
\(741\) 0 0
\(742\) 3.89255 22.0758i 0.142900 0.810427i
\(743\) −6.29888 + 35.7227i −0.231083 + 1.31054i 0.619624 + 0.784899i \(0.287285\pi\)
−0.850707 + 0.525640i \(0.823826\pi\)
\(744\) 0 0
\(745\) −39.1574 + 32.8570i −1.43462 + 1.20379i
\(746\) 12.0865 20.9344i 0.442517 0.766461i
\(747\) 0 0
\(748\) 0.461619 + 0.799548i 0.0168785 + 0.0292344i
\(749\) 4.72453 + 1.71959i 0.172631 + 0.0628324i
\(750\) 0 0
\(751\) −11.1493 9.35536i −0.406843 0.341382i 0.416288 0.909233i \(-0.363331\pi\)
−0.823132 + 0.567851i \(0.807775\pi\)
\(752\) 6.53659 2.37912i 0.238365 0.0867577i
\(753\) 0 0
\(754\) −2.45124 13.9017i −0.0892688 0.506268i
\(755\) 10.7700 0.391959
\(756\) 0 0
\(757\) −45.5754 −1.65646 −0.828232 0.560385i \(-0.810653\pi\)
−0.828232 + 0.560385i \(0.810653\pi\)
\(758\) −8.88380 50.3826i −0.322674 1.82998i
\(759\) 0 0
\(760\) −15.9381 + 5.80099i −0.578135 + 0.210424i
\(761\) −17.0411 14.2992i −0.617739 0.518344i 0.279353 0.960188i \(-0.409880\pi\)
−0.897092 + 0.441844i \(0.854324\pi\)
\(762\) 0 0
\(763\) 6.67970 + 2.43121i 0.241821 + 0.0880158i
\(764\) −22.0189 38.1379i −0.796616 1.37978i
\(765\) 0 0
\(766\) 9.99393 17.3100i 0.361096 0.625436i
\(767\) −1.99976 + 1.67800i −0.0722073 + 0.0605891i
\(768\) 0 0
\(769\) 2.37289 13.4573i 0.0855686 0.485284i −0.911664 0.410937i \(-0.865202\pi\)
0.997232 0.0743470i \(-0.0236872\pi\)
\(770\) 0.303872 1.72334i 0.0109508 0.0621049i
\(771\) 0 0
\(772\) 20.1088 16.8733i 0.723730 0.607282i
\(773\) −10.3270 + 17.8869i −0.371436 + 0.643345i −0.989787 0.142557i \(-0.954468\pi\)
0.618351 + 0.785902i \(0.287801\pi\)
\(774\) 0 0
\(775\) 9.53628 + 16.5173i 0.342553 + 0.593319i
\(776\) 5.29915 + 1.92873i 0.190228 + 0.0692374i
\(777\) 0 0
\(778\) 4.13092 + 3.46625i 0.148101 + 0.124271i
\(779\) 34.1689 12.4364i 1.22423 0.445582i