Properties

Label 243.2.e.a.28.1
Level $243$
Weight $2$
Character 243.28
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 28.1
Root \(0.500000 + 0.258654i\) of defining polynomial
Character \(\chi\) \(=\) 243.28
Dual form 243.2.e.a.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0721450 + 0.409154i) q^{2} +(1.71718 - 0.625003i) q^{4} +(-1.69693 - 1.42389i) q^{5} +(1.24005 + 0.451340i) q^{7} +(0.795075 + 1.37711i) q^{8} +O(q^{10})\) \(q+(0.0721450 + 0.409154i) q^{2} +(1.71718 - 0.625003i) q^{4} +(-1.69693 - 1.42389i) q^{5} +(1.24005 + 0.451340i) q^{7} +(0.795075 + 1.37711i) q^{8} +(0.460168 - 0.797034i) q^{10} +(3.99506 - 3.35226i) q^{11} +(-0.00313583 + 0.0177842i) q^{13} +(-0.0952046 + 0.539932i) q^{14} +(2.29363 - 1.92458i) q^{16} +(-1.56640 + 2.71308i) q^{17} +(-0.208676 - 0.361438i) q^{19} +(-3.80388 - 1.38450i) q^{20} +(1.65981 + 1.39275i) q^{22} +(-0.972005 + 0.353781i) q^{23} +(-0.0161402 - 0.0915354i) q^{25} -0.00750270 q^{26} +2.41147 q^{28} +(1.35571 + 7.68861i) q^{29} +(-3.50474 + 1.27562i) q^{31} +(3.38918 + 2.84386i) q^{32} +(-1.22308 - 0.445163i) q^{34} +(-1.46161 - 2.53159i) q^{35} +(-2.21238 + 3.83195i) q^{37} +(0.132829 - 0.111457i) q^{38} +(0.611672 - 3.46897i) q^{40} +(0.638147 - 3.61911i) q^{41} +(-6.36420 + 5.34020i) q^{43} +(4.76508 - 8.25337i) q^{44} +(-0.214876 - 0.372177i) q^{46} +(-6.66985 - 2.42763i) q^{47} +(-4.02831 - 3.38015i) q^{49} +(0.0362877 - 0.0132076i) q^{50} +(0.00573038 + 0.0324986i) q^{52} +1.30057 q^{53} -11.5526 q^{55} +(0.364385 + 2.06653i) q^{56} +(-3.04802 + 1.10939i) q^{58} +(2.83575 + 2.37948i) q^{59} +(-6.49726 - 2.36481i) q^{61} +(-0.774775 - 1.34195i) q^{62} +(2.07506 - 3.59410i) q^{64} +(0.0306441 - 0.0257134i) q^{65} +(-1.91478 + 10.8593i) q^{67} +(-0.994107 + 5.63786i) q^{68} +(0.930362 - 0.780666i) q^{70} +(-3.04214 + 5.26914i) q^{71} +(0.273486 + 0.473692i) q^{73} +(-1.72747 - 0.628748i) q^{74} +(-0.584235 - 0.490231i) q^{76} +(6.46707 - 2.35382i) q^{77} +(0.0849390 + 0.481713i) q^{79} -6.63254 q^{80} +1.52681 q^{82} +(-0.801155 - 4.54358i) q^{83} +(6.52121 - 2.37353i) q^{85} +(-2.64411 - 2.21867i) q^{86} +(7.79281 + 2.83635i) q^{88} +(-1.68653 - 2.92116i) q^{89} +(-0.0119153 + 0.0206379i) q^{91} +(-1.44800 + 1.21501i) q^{92} +(0.512078 - 2.90414i) q^{94} +(-0.160540 + 0.910468i) q^{95} +(7.61552 - 6.39018i) q^{97} +(1.09238 - 1.89206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} + 21 q^{14} + 9 q^{16} - 9 q^{17} - 3 q^{19} - 24 q^{20} + 12 q^{22} + 12 q^{23} + 12 q^{25} + 30 q^{26} - 12 q^{28} + 24 q^{29} + 12 q^{31} - 27 q^{32} - 12 q^{35} - 3 q^{37} + 30 q^{38} - 15 q^{40} - 6 q^{41} - 15 q^{43} - 3 q^{44} - 3 q^{46} - 12 q^{47} - 33 q^{49} - 21 q^{50} - 45 q^{52} + 18 q^{53} - 12 q^{55} - 30 q^{56} - 51 q^{58} + 3 q^{59} - 33 q^{61} + 12 q^{62} + 12 q^{64} - 21 q^{65} - 6 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} + 21 q^{74} + 6 q^{76} + 12 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 6 q^{83} + 36 q^{85} + 21 q^{86} + 42 q^{88} - 9 q^{89} + 6 q^{91} + 3 q^{92} + 48 q^{94} - 3 q^{95} + 39 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0721450 + 0.409154i 0.0510142 + 0.289316i 0.999633 0.0271067i \(-0.00862938\pi\)
−0.948618 + 0.316423i \(0.897518\pi\)
\(3\) 0 0
\(4\) 1.71718 0.625003i 0.858591 0.312502i
\(5\) −1.69693 1.42389i −0.758891 0.636785i 0.178947 0.983859i \(-0.442731\pi\)
−0.937838 + 0.347074i \(0.887175\pi\)
\(6\) 0 0
\(7\) 1.24005 + 0.451340i 0.468693 + 0.170590i 0.565560 0.824707i \(-0.308660\pi\)
−0.0968671 + 0.995297i \(0.530882\pi\)
\(8\) 0.795075 + 1.37711i 0.281102 + 0.486882i
\(9\) 0 0
\(10\) 0.460168 0.797034i 0.145518 0.252044i
\(11\) 3.99506 3.35226i 1.20456 1.01074i 0.205069 0.978747i \(-0.434258\pi\)
0.999488 0.0319962i \(-0.0101864\pi\)
\(12\) 0 0
\(13\) −0.00313583 + 0.0177842i −0.000869722 + 0.00493244i −0.985240 0.171181i \(-0.945242\pi\)
0.984370 + 0.176114i \(0.0563527\pi\)
\(14\) −0.0952046 + 0.539932i −0.0254445 + 0.144303i
\(15\) 0 0
\(16\) 2.29363 1.92458i 0.573408 0.481146i
\(17\) −1.56640 + 2.71308i −0.379907 + 0.658019i −0.991048 0.133503i \(-0.957377\pi\)
0.611141 + 0.791522i \(0.290711\pi\)
\(18\) 0 0
\(19\) −0.208676 0.361438i −0.0478736 0.0829195i 0.841096 0.540886i \(-0.181911\pi\)
−0.888969 + 0.457967i \(0.848578\pi\)
\(20\) −3.80388 1.38450i −0.850574 0.309583i
\(21\) 0 0
\(22\) 1.65981 + 1.39275i 0.353874 + 0.296935i
\(23\) −0.972005 + 0.353781i −0.202677 + 0.0737684i −0.441364 0.897328i \(-0.645505\pi\)
0.238687 + 0.971097i \(0.423283\pi\)
\(24\) 0 0
\(25\) −0.0161402 0.0915354i −0.00322803 0.0183071i
\(26\) −0.00750270 −0.00147140
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) 1.35571 + 7.68861i 0.251749 + 1.42774i 0.804282 + 0.594248i \(0.202550\pi\)
−0.552533 + 0.833491i \(0.686338\pi\)
\(30\) 0 0
\(31\) −3.50474 + 1.27562i −0.629470 + 0.229108i −0.637000 0.770863i \(-0.719825\pi\)
0.00753084 + 0.999972i \(0.497603\pi\)
\(32\) 3.38918 + 2.84386i 0.599128 + 0.502728i
\(33\) 0 0
\(34\) −1.22308 0.445163i −0.209756 0.0763449i
\(35\) −1.46161 2.53159i −0.247058 0.427916i
\(36\) 0 0
\(37\) −2.21238 + 3.83195i −0.363713 + 0.629969i −0.988569 0.150771i \(-0.951824\pi\)
0.624856 + 0.780740i \(0.285158\pi\)
\(38\) 0.132829 0.111457i 0.0215477 0.0180807i
\(39\) 0 0
\(40\) 0.611672 3.46897i 0.0967139 0.548492i
\(41\) 0.638147 3.61911i 0.0996618 0.565210i −0.893557 0.448950i \(-0.851798\pi\)
0.993219 0.116260i \(-0.0370907\pi\)
\(42\) 0 0
\(43\) −6.36420 + 5.34020i −0.970531 + 0.814373i −0.982634 0.185554i \(-0.940592\pi\)
0.0121027 + 0.999927i \(0.496148\pi\)
\(44\) 4.76508 8.25337i 0.718363 1.24424i
\(45\) 0 0
\(46\) −0.214876 0.372177i −0.0316818 0.0548745i
\(47\) −6.66985 2.42763i −0.972898 0.354106i −0.193823 0.981037i \(-0.562089\pi\)
−0.779075 + 0.626931i \(0.784311\pi\)
\(48\) 0 0
\(49\) −4.02831 3.38015i −0.575472 0.482878i
\(50\) 0.0362877 0.0132076i 0.00513185 0.00186784i
\(51\) 0 0
\(52\) 0.00573038 + 0.0324986i 0.000794660 + 0.00450674i
\(53\) 1.30057 0.178648 0.0893238 0.996003i \(-0.471529\pi\)
0.0893238 + 0.996003i \(0.471529\pi\)
\(54\) 0 0
\(55\) −11.5526 −1.55775
\(56\) 0.364385 + 2.06653i 0.0486930 + 0.276152i
\(57\) 0 0
\(58\) −3.04802 + 1.10939i −0.400225 + 0.145670i
\(59\) 2.83575 + 2.37948i 0.369183 + 0.309782i 0.808438 0.588581i \(-0.200313\pi\)
−0.439255 + 0.898362i \(0.644758\pi\)
\(60\) 0 0
\(61\) −6.49726 2.36481i −0.831889 0.302783i −0.109255 0.994014i \(-0.534846\pi\)
−0.722634 + 0.691231i \(0.757069\pi\)
\(62\) −0.774775 1.34195i −0.0983965 0.170428i
\(63\) 0 0
\(64\) 2.07506 3.59410i 0.259382 0.449263i
\(65\) 0.0306441 0.0257134i 0.00380093 0.00318936i
\(66\) 0 0
\(67\) −1.91478 + 10.8593i −0.233928 + 1.32667i 0.610932 + 0.791683i \(0.290795\pi\)
−0.844860 + 0.534988i \(0.820316\pi\)
\(68\) −0.994107 + 5.63786i −0.120553 + 0.683691i
\(69\) 0 0
\(70\) 0.930362 0.780666i 0.111200 0.0933075i
\(71\) −3.04214 + 5.26914i −0.361035 + 0.625332i −0.988132 0.153610i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(72\) 0 0
\(73\) 0.273486 + 0.473692i 0.0320092 + 0.0554415i 0.881586 0.472023i \(-0.156476\pi\)
−0.849577 + 0.527465i \(0.823143\pi\)
\(74\) −1.72747 0.628748i −0.200815 0.0730905i
\(75\) 0 0
\(76\) −0.584235 0.490231i −0.0670163 0.0562334i
\(77\) 6.46707 2.35382i 0.736991 0.268243i
\(78\) 0 0
\(79\) 0.0849390 + 0.481713i 0.00955638 + 0.0541969i 0.989213 0.146484i \(-0.0467957\pi\)
−0.979657 + 0.200681i \(0.935685\pi\)
\(80\) −6.63254 −0.741540
\(81\) 0 0
\(82\) 1.52681 0.168608
\(83\) −0.801155 4.54358i −0.0879382 0.498722i −0.996684 0.0813719i \(-0.974070\pi\)
0.908746 0.417351i \(-0.137041\pi\)
\(84\) 0 0
\(85\) 6.52121 2.37353i 0.707324 0.257445i
\(86\) −2.64411 2.21867i −0.285122 0.239246i
\(87\) 0 0
\(88\) 7.79281 + 2.83635i 0.830716 + 0.302356i
\(89\) −1.68653 2.92116i −0.178772 0.309642i 0.762688 0.646766i \(-0.223879\pi\)
−0.941460 + 0.337124i \(0.890546\pi\)
\(90\) 0 0
\(91\) −0.0119153 + 0.0206379i −0.00124906 + 0.00216344i
\(92\) −1.44800 + 1.21501i −0.150964 + 0.126674i
\(93\) 0 0
\(94\) 0.512078 2.90414i 0.0528168 0.299539i
\(95\) −0.160540 + 0.910468i −0.0164711 + 0.0934120i
\(96\) 0 0
\(97\) 7.61552 6.39018i 0.773239 0.648825i −0.168297 0.985736i \(-0.553827\pi\)
0.941536 + 0.336912i \(0.109382\pi\)
\(98\) 1.09238 1.89206i 0.110347 0.191127i
\(99\) 0 0
\(100\) −0.0849256 0.147095i −0.00849256 0.0147095i
\(101\) 12.9673 + 4.71970i 1.29029 + 0.469628i 0.893823 0.448420i \(-0.148013\pi\)
0.396469 + 0.918048i \(0.370235\pi\)
\(102\) 0 0
\(103\) 3.49708 + 2.93440i 0.344578 + 0.289135i 0.798608 0.601851i \(-0.205570\pi\)
−0.454031 + 0.890986i \(0.650014\pi\)
\(104\) −0.0269840 + 0.00982137i −0.00264600 + 0.000963064i
\(105\) 0 0
\(106\) 0.0938299 + 0.532136i 0.00911356 + 0.0516856i
\(107\) 11.2965 1.09207 0.546035 0.837762i \(-0.316136\pi\)
0.546035 + 0.837762i \(0.316136\pi\)
\(108\) 0 0
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) −0.833463 4.72680i −0.0794676 0.450683i
\(111\) 0 0
\(112\) 3.71285 1.35137i 0.350831 0.127692i
\(113\) −9.62031 8.07240i −0.905003 0.759388i 0.0661589 0.997809i \(-0.478926\pi\)
−0.971162 + 0.238422i \(0.923370\pi\)
\(114\) 0 0
\(115\) 2.15317 + 0.783691i 0.200784 + 0.0730796i
\(116\) 7.13341 + 12.3554i 0.662321 + 1.14717i
\(117\) 0 0
\(118\) −0.768989 + 1.33193i −0.0707912 + 0.122614i
\(119\) −3.16693 + 2.65737i −0.290312 + 0.243600i
\(120\) 0 0
\(121\) 2.81278 15.9521i 0.255708 1.45019i
\(122\) 0.498827 2.82899i 0.0451617 0.256125i
\(123\) 0 0
\(124\) −5.22101 + 4.38095i −0.468860 + 0.393421i
\(125\) −5.64092 + 9.77035i −0.504539 + 0.873887i
\(126\) 0 0
\(127\) 4.19749 + 7.27027i 0.372467 + 0.645132i 0.989944 0.141456i \(-0.0451785\pi\)
−0.617477 + 0.786589i \(0.711845\pi\)
\(128\) 9.93513 + 3.61609i 0.878150 + 0.319620i
\(129\) 0 0
\(130\) 0.0127316 + 0.0106831i 0.00111663 + 0.000936966i
\(131\) −14.5980 + 5.31325i −1.27544 + 0.464221i −0.888920 0.458062i \(-0.848544\pi\)
−0.386516 + 0.922283i \(0.626321\pi\)
\(132\) 0 0
\(133\) −0.0956368 0.542383i −0.00829276 0.0470306i
\(134\) −4.58126 −0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) −2.08506 11.8250i −0.178139 1.01028i −0.934458 0.356073i \(-0.884115\pi\)
0.756319 0.654203i \(-0.226996\pi\)
\(138\) 0 0
\(139\) −5.77452 + 2.10175i −0.489789 + 0.178268i −0.575096 0.818086i \(-0.695035\pi\)
0.0853069 + 0.996355i \(0.472813\pi\)
\(140\) −4.09211 3.43369i −0.345846 0.290199i
\(141\) 0 0
\(142\) −2.37537 0.864563i −0.199336 0.0725525i
\(143\) 0.0470893 + 0.0815610i 0.00393780 + 0.00682047i
\(144\) 0 0
\(145\) 8.64723 14.9774i 0.718113 1.24381i
\(146\) −0.174083 + 0.146073i −0.0144072 + 0.0120891i
\(147\) 0 0
\(148\) −1.40408 + 7.96291i −0.115414 + 0.654547i
\(149\) −0.153300 + 0.869408i −0.0125588 + 0.0712247i −0.990443 0.137922i \(-0.955958\pi\)
0.977884 + 0.209147i \(0.0670687\pi\)
\(150\) 0 0
\(151\) 6.30108 5.28723i 0.512774 0.430269i −0.349330 0.937000i \(-0.613591\pi\)
0.862104 + 0.506731i \(0.169146\pi\)
\(152\) 0.331826 0.574740i 0.0269147 0.0466176i
\(153\) 0 0
\(154\) 1.42964 + 2.47621i 0.115204 + 0.199539i
\(155\) 7.76365 + 2.82574i 0.623591 + 0.226969i
\(156\) 0 0
\(157\) 9.62138 + 8.07330i 0.767870 + 0.644319i 0.940162 0.340726i \(-0.110673\pi\)
−0.172293 + 0.985046i \(0.555117\pi\)
\(158\) −0.190967 + 0.0695063i −0.0151925 + 0.00552962i
\(159\) 0 0
\(160\) −1.70185 9.65166i −0.134543 0.763031i
\(161\) −1.36501 −0.107578
\(162\) 0 0
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) −1.16614 6.61352i −0.0910603 0.516429i
\(165\) 0 0
\(166\) 1.80123 0.655592i 0.139802 0.0508838i
\(167\) 15.7522 + 13.2176i 1.21894 + 1.02281i 0.998880 + 0.0473242i \(0.0150694\pi\)
0.220059 + 0.975487i \(0.429375\pi\)
\(168\) 0 0
\(169\) 12.2157 + 4.44615i 0.939669 + 0.342012i
\(170\) 1.44161 + 2.49694i 0.110567 + 0.191507i
\(171\) 0 0
\(172\) −7.59085 + 13.1477i −0.578797 + 1.00251i
\(173\) −10.7501 + 9.02041i −0.817316 + 0.685809i −0.952342 0.305033i \(-0.901333\pi\)
0.135026 + 0.990842i \(0.456888\pi\)
\(174\) 0 0
\(175\) 0.0212990 0.120793i 0.00161006 0.00913108i
\(176\) 2.71150 15.3777i 0.204387 1.15914i
\(177\) 0 0
\(178\) 1.07353 0.900799i 0.0804645 0.0675177i
\(179\) 5.09500 8.82479i 0.380818 0.659596i −0.610361 0.792123i \(-0.708976\pi\)
0.991179 + 0.132527i \(0.0423091\pi\)
\(180\) 0 0
\(181\) −12.0274 20.8320i −0.893987 1.54843i −0.835054 0.550169i \(-0.814563\pi\)
−0.0589331 0.998262i \(-0.518770\pi\)
\(182\) −0.00930370 0.00338627i −0.000689636 0.000251007i
\(183\) 0 0
\(184\) −1.26001 1.05728i −0.0928894 0.0779434i
\(185\) 9.21055 3.35237i 0.677173 0.246471i
\(186\) 0 0
\(187\) 2.83708 + 16.0899i 0.207468 + 1.17661i
\(188\) −12.9706 −0.945981
\(189\) 0 0
\(190\) −0.384104 −0.0278658
\(191\) −1.90082 10.7801i −0.137538 0.780018i −0.973058 0.230559i \(-0.925945\pi\)
0.835520 0.549460i \(-0.185166\pi\)
\(192\) 0 0
\(193\) 10.1543 3.69586i 0.730922 0.266034i 0.0503667 0.998731i \(-0.483961\pi\)
0.680555 + 0.732697i \(0.261739\pi\)
\(194\) 3.16399 + 2.65490i 0.227161 + 0.190611i
\(195\) 0 0
\(196\) −9.02994 3.28663i −0.644996 0.234759i
\(197\) −11.0367 19.1161i −0.786331 1.36196i −0.928201 0.372080i \(-0.878645\pi\)
0.141870 0.989885i \(-0.454689\pi\)
\(198\) 0 0
\(199\) −6.44338 + 11.1603i −0.456759 + 0.791130i −0.998787 0.0492301i \(-0.984323\pi\)
0.542028 + 0.840360i \(0.317657\pi\)
\(200\) 0.113222 0.0950043i 0.00800599 0.00671782i
\(201\) 0 0
\(202\) −0.995564 + 5.64612i −0.0700476 + 0.397260i
\(203\) −1.78903 + 10.1461i −0.125566 + 0.712118i
\(204\) 0 0
\(205\) −6.23612 + 5.23273i −0.435550 + 0.365470i
\(206\) −0.948326 + 1.64255i −0.0660730 + 0.114442i
\(207\) 0 0
\(208\) 0.0270347 + 0.0468255i 0.00187452 + 0.00324676i
\(209\) −2.04531 0.744431i −0.141477 0.0514934i
\(210\) 0 0
\(211\) −18.3817 15.4241i −1.26545 1.06184i −0.995079 0.0990822i \(-0.968409\pi\)
−0.270371 0.962756i \(-0.587146\pi\)
\(212\) 2.23332 0.812863i 0.153385 0.0558277i
\(213\) 0 0
\(214\) 0.814983 + 4.62200i 0.0557111 + 0.315953i
\(215\) 18.4035 1.25511
\(216\) 0 0
\(217\) −4.92177 −0.334112
\(218\) 1.04633 + 5.93404i 0.0708665 + 0.401904i
\(219\) 0 0
\(220\) −19.8379 + 7.22042i −1.33747 + 0.486801i
\(221\) −0.0433379 0.0363648i −0.00291522 0.00244616i
\(222\) 0 0
\(223\) −20.3558 7.40890i −1.36312 0.496137i −0.446105 0.894981i \(-0.647189\pi\)
−0.917019 + 0.398844i \(0.869411\pi\)
\(224\) 2.91919 + 5.05618i 0.195047 + 0.337831i
\(225\) 0 0
\(226\) 2.60880 4.51858i 0.173535 0.300571i
\(227\) −16.5786 + 13.9111i −1.10036 + 0.923314i −0.997449 0.0713762i \(-0.977261\pi\)
−0.102913 + 0.994690i \(0.532816\pi\)
\(228\) 0 0
\(229\) −1.87633 + 10.6412i −0.123991 + 0.703190i 0.857910 + 0.513799i \(0.171762\pi\)
−0.981902 + 0.189391i \(0.939349\pi\)
\(230\) −0.165310 + 0.937520i −0.0109002 + 0.0618182i
\(231\) 0 0
\(232\) −9.51018 + 7.97999i −0.624374 + 0.523912i
\(233\) 3.81950 6.61557i 0.250224 0.433400i −0.713364 0.700794i \(-0.752829\pi\)
0.963587 + 0.267394i \(0.0861625\pi\)
\(234\) 0 0
\(235\) 7.86160 + 13.6167i 0.512834 + 0.888255i
\(236\) 6.35669 + 2.31364i 0.413785 + 0.150605i
\(237\) 0 0
\(238\) −1.31575 1.10405i −0.0852874 0.0715647i
\(239\) −3.03661 + 1.10524i −0.196422 + 0.0714917i −0.438358 0.898800i \(-0.644440\pi\)
0.241936 + 0.970292i \(0.422218\pi\)
\(240\) 0 0
\(241\) −4.60948 26.1417i −0.296923 1.68393i −0.659283 0.751895i \(-0.729140\pi\)
0.362360 0.932038i \(-0.381971\pi\)
\(242\) 6.72979 0.432608
\(243\) 0 0
\(244\) −12.6350 −0.808873
\(245\) 2.02278 + 11.4718i 0.129231 + 0.732904i
\(246\) 0 0
\(247\) 0.00708224 0.00257773i 0.000450632 0.000164017i
\(248\) −4.54320 3.81220i −0.288494 0.242075i
\(249\) 0 0
\(250\) −4.40455 1.60312i −0.278568 0.101390i
\(251\) −2.24965 3.89651i −0.141997 0.245945i 0.786252 0.617906i \(-0.212019\pi\)
−0.928248 + 0.371961i \(0.878686\pi\)
\(252\) 0 0
\(253\) −2.69726 + 4.67179i −0.169575 + 0.293713i
\(254\) −2.67184 + 2.24194i −0.167646 + 0.140672i
\(255\) 0 0
\(256\) 0.678549 3.84824i 0.0424093 0.240515i
\(257\) −2.38513 + 13.5267i −0.148780 + 0.843775i 0.815473 + 0.578794i \(0.196477\pi\)
−0.964254 + 0.264981i \(0.914634\pi\)
\(258\) 0 0
\(259\) −4.47296 + 3.75326i −0.277936 + 0.233216i
\(260\) 0.0365505 0.0633073i 0.00226677 0.00392615i
\(261\) 0 0
\(262\) −3.22711 5.58952i −0.199372 0.345322i
\(263\) −22.7430 8.27776i −1.40239 0.510429i −0.473504 0.880792i \(-0.657011\pi\)
−0.928887 + 0.370363i \(0.879233\pi\)
\(264\) 0 0
\(265\) −2.20699 1.85188i −0.135574 0.113760i
\(266\) 0.215019 0.0782604i 0.0131836 0.00479845i
\(267\) 0 0
\(268\) 3.49905 + 19.8441i 0.213739 + 1.21217i
\(269\) −12.0062 −0.732032 −0.366016 0.930609i \(-0.619278\pi\)
−0.366016 + 0.930609i \(0.619278\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) 1.62881 + 9.23747i 0.0987614 + 0.560104i
\(273\) 0 0
\(274\) 4.68781 1.70622i 0.283201 0.103077i
\(275\) −0.371331 0.311584i −0.0223921 0.0187892i
\(276\) 0 0
\(277\) 22.0669 + 8.03170i 1.32587 + 0.482578i 0.905335 0.424697i \(-0.139620\pi\)
0.420537 + 0.907275i \(0.361842\pi\)
\(278\) −1.27654 2.21104i −0.0765621 0.132609i
\(279\) 0 0
\(280\) 2.32418 4.02560i 0.138897 0.240576i
\(281\) 15.6057 13.0947i 0.930955 0.781164i −0.0450333 0.998985i \(-0.514339\pi\)
0.975989 + 0.217821i \(0.0698950\pi\)
\(282\) 0 0
\(283\) 2.01431 11.4237i 0.119738 0.679069i −0.864556 0.502536i \(-0.832401\pi\)
0.984295 0.176533i \(-0.0564884\pi\)
\(284\) −1.93068 + 10.9494i −0.114565 + 0.649729i
\(285\) 0 0
\(286\) −0.0299738 + 0.0251510i −0.00177239 + 0.00148721i
\(287\) 2.42478 4.19984i 0.143130 0.247909i
\(288\) 0 0
\(289\) 3.59280 + 6.22291i 0.211341 + 0.366053i
\(290\) 6.75194 + 2.45750i 0.396488 + 0.144310i
\(291\) 0 0
\(292\) 0.765686 + 0.642487i 0.0448084 + 0.0375987i
\(293\) 29.6700 10.7990i 1.73334 0.630884i 0.734481 0.678630i \(-0.237426\pi\)
0.998860 + 0.0477455i \(0.0152036\pi\)
\(294\) 0 0
\(295\) −1.42395 8.07562i −0.0829056 0.470181i
\(296\) −7.03603 −0.408961
\(297\) 0 0
\(298\) −0.366782 −0.0212471
\(299\) −0.00324366 0.0183957i −0.000187586 0.00106385i
\(300\) 0 0
\(301\) −10.3021 + 3.74967i −0.593806 + 0.216128i
\(302\) 2.61789 + 2.19667i 0.150642 + 0.126404i
\(303\) 0 0
\(304\) −1.17424 0.427390i −0.0673475 0.0245125i
\(305\) 7.65816 + 13.2643i 0.438505 + 0.759513i
\(306\) 0 0
\(307\) 4.06027 7.03259i 0.231732 0.401371i −0.726586 0.687075i \(-0.758894\pi\)
0.958318 + 0.285704i \(0.0922275\pi\)
\(308\) 9.63400 8.08388i 0.548948 0.460622i
\(309\) 0 0
\(310\) −0.596055 + 3.38039i −0.0338536 + 0.191993i
\(311\) 4.14126 23.4862i 0.234829 1.33178i −0.608144 0.793827i \(-0.708086\pi\)
0.842973 0.537956i \(-0.180803\pi\)
\(312\) 0 0
\(313\) 20.6146 17.2977i 1.16521 0.977725i 0.165243 0.986253i \(-0.447159\pi\)
0.999964 + 0.00852816i \(0.00271463\pi\)
\(314\) −2.60909 + 4.51908i −0.147240 + 0.255026i
\(315\) 0 0
\(316\) 0.446928 + 0.774102i 0.0251417 + 0.0435466i
\(317\) −7.82983 2.84983i −0.439767 0.160062i 0.112641 0.993636i \(-0.464069\pi\)
−0.552408 + 0.833574i \(0.686291\pi\)
\(318\) 0 0
\(319\) 31.1904 + 26.1718i 1.74633 + 1.46534i
\(320\) −8.63886 + 3.14429i −0.482927 + 0.175771i
\(321\) 0 0
\(322\) −0.0984783 0.558498i −0.00548798 0.0311239i
\(323\) 1.30748 0.0727501
\(324\) 0 0
\(325\) 0.00167849 9.31061e−5
\(326\) 0.239136 + 1.35621i 0.0132445 + 0.0751134i
\(327\) 0 0
\(328\) 5.49129 1.99867i 0.303206 0.110358i
\(329\) −7.17524 6.02074i −0.395584 0.331934i
\(330\) 0 0
\(331\) 6.03307 + 2.19586i 0.331607 + 0.120695i 0.502458 0.864602i \(-0.332429\pi\)
−0.170850 + 0.985297i \(0.554651\pi\)
\(332\) −4.21548 7.30143i −0.231355 0.400718i
\(333\) 0 0
\(334\) −4.27161 + 7.39865i −0.233732 + 0.404836i
\(335\) 18.7117 15.7010i 1.02233 0.857837i
\(336\) 0 0
\(337\) 1.29800 7.36133i 0.0707066 0.400997i −0.928829 0.370510i \(-0.879183\pi\)
0.999535 0.0304874i \(-0.00970594\pi\)
\(338\) −0.937861 + 5.31887i −0.0510129 + 0.289309i
\(339\) 0 0
\(340\) 9.71465 8.15156i 0.526851 0.442080i
\(341\) −9.72545 + 16.8450i −0.526663 + 0.912206i
\(342\) 0 0
\(343\) −8.08839 14.0095i −0.436732 0.756442i
\(344\) −12.4141 4.51835i −0.669321 0.243613i
\(345\) 0 0
\(346\) −4.46631 3.74768i −0.240110 0.201476i
\(347\) −29.5576 + 10.7581i −1.58673 + 0.577524i −0.976654 0.214817i \(-0.931084\pi\)
−0.610079 + 0.792341i \(0.708862\pi\)
\(348\) 0 0
\(349\) 2.05824 + 11.6729i 0.110175 + 0.624835i 0.989026 + 0.147739i \(0.0471994\pi\)
−0.878851 + 0.477096i \(0.841689\pi\)
\(350\) 0.0509595 0.00272390
\(351\) 0 0
\(352\) 23.0733 1.22981
\(353\) 1.42515 + 8.08240i 0.0758528 + 0.430183i 0.998958 + 0.0456355i \(0.0145313\pi\)
−0.923105 + 0.384547i \(0.874358\pi\)
\(354\) 0 0
\(355\) 12.6650 4.60968i 0.672188 0.244657i
\(356\) −4.72182 3.96208i −0.250256 0.209990i
\(357\) 0 0
\(358\) 3.97828 + 1.44798i 0.210259 + 0.0765279i
\(359\) 8.86365 + 15.3523i 0.467806 + 0.810263i 0.999323 0.0367840i \(-0.0117114\pi\)
−0.531517 + 0.847047i \(0.678378\pi\)
\(360\) 0 0
\(361\) 9.41291 16.3036i 0.495416 0.858086i
\(362\) 7.65579 6.42397i 0.402379 0.337636i
\(363\) 0 0
\(364\) −0.00756197 + 0.0428861i −0.000396355 + 0.00224784i
\(365\) 0.210400 1.19324i 0.0110129 0.0624570i
\(366\) 0 0
\(367\) −15.5657 + 13.0611i −0.812521 + 0.681786i −0.951208 0.308550i \(-0.900156\pi\)
0.138687 + 0.990336i \(0.455712\pi\)
\(368\) −1.54854 + 2.68215i −0.0807232 + 0.139817i
\(369\) 0 0
\(370\) 2.03613 + 3.52668i 0.105853 + 0.183343i
\(371\) 1.61277 + 0.587001i 0.0837309 + 0.0304756i
\(372\) 0 0
\(373\) −7.41641 6.22311i −0.384007 0.322220i 0.430266 0.902702i \(-0.358420\pi\)
−0.814273 + 0.580482i \(0.802864\pi\)
\(374\) −6.37857 + 2.32161i −0.329828 + 0.120048i
\(375\) 0 0
\(376\) −1.95992 11.1153i −0.101075 0.573226i
\(377\) −0.140987 −0.00726119
\(378\) 0 0
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) 0.293369 + 1.66378i 0.0150495 + 0.0853500i
\(381\) 0 0
\(382\) 4.27358 1.55546i 0.218655 0.0795840i
\(383\) −3.63885 3.05336i −0.185937 0.156019i 0.545068 0.838392i \(-0.316504\pi\)
−0.731005 + 0.682372i \(0.760948\pi\)
\(384\) 0 0
\(385\) −14.3258 5.21415i −0.730109 0.265738i
\(386\) 2.24476 + 3.88803i 0.114255 + 0.197896i
\(387\) 0 0
\(388\) 9.08336 15.7328i 0.461138 0.798714i
\(389\) 16.7100 14.0213i 0.847229 0.710910i −0.111949 0.993714i \(-0.535709\pi\)
0.959178 + 0.282804i \(0.0912647\pi\)
\(390\) 0 0
\(391\) 0.562710 3.19129i 0.0284575 0.161390i
\(392\) 1.45203 8.23490i 0.0733388 0.415925i
\(393\) 0 0
\(394\) 7.02519 5.89483i 0.353924 0.296977i
\(395\) 0.541773 0.938378i 0.0272595 0.0472149i
\(396\) 0 0
\(397\) 17.4245 + 30.1802i 0.874512 + 1.51470i 0.857282 + 0.514847i \(0.172151\pi\)
0.0172294 + 0.999852i \(0.494515\pi\)
\(398\) −5.03113 1.83118i −0.252188 0.0917888i
\(399\) 0 0
\(400\) −0.213187 0.178885i −0.0106594 0.00894427i
\(401\) −17.6907 + 6.43890i −0.883433 + 0.321543i −0.743594 0.668631i \(-0.766881\pi\)
−0.139839 + 0.990174i \(0.544658\pi\)
\(402\) 0 0
\(403\) −0.0116956 0.0663290i −0.000582599 0.00330408i
\(404\) 25.2170 1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) 4.00709 + 22.7254i 0.198624 + 1.12645i
\(408\) 0 0
\(409\) 5.97640 2.17523i 0.295514 0.107558i −0.190008 0.981782i \(-0.560852\pi\)
0.485523 + 0.874224i \(0.338629\pi\)
\(410\) −2.59090 2.17402i −0.127955 0.107367i
\(411\) 0 0
\(412\) 7.83914 + 2.85322i 0.386207 + 0.140568i
\(413\) 2.44251 + 4.23055i 0.120188 + 0.208172i
\(414\) 0 0
\(415\) −5.11007 + 8.85090i −0.250843 + 0.434474i
\(416\) −0.0612035 + 0.0513559i −0.00300075 + 0.00251793i
\(417\) 0 0
\(418\) 0.157029 0.890553i 0.00768052 0.0435584i
\(419\) 4.22277 23.9485i 0.206296 1.16996i −0.689092 0.724674i \(-0.741990\pi\)
0.895388 0.445288i \(-0.146899\pi\)
\(420\) 0 0
\(421\) −6.12072 + 5.13590i −0.298306 + 0.250308i −0.779639 0.626230i \(-0.784597\pi\)
0.481333 + 0.876538i \(0.340153\pi\)
\(422\) 4.98469 8.63373i 0.242651 0.420283i
\(423\) 0 0
\(424\) 1.03405 + 1.79103i 0.0502181 + 0.0869803i
\(425\) 0.273625 + 0.0995913i 0.0132728 + 0.00483089i
\(426\) 0 0
\(427\) −6.98956 5.86494i −0.338249 0.283824i
\(428\) 19.3981 7.06033i 0.937643 0.341274i
\(429\) 0 0
\(430\) 1.32772 + 7.52987i 0.0640283 + 0.363122i
\(431\) −9.87124 −0.475481 −0.237740 0.971329i \(-0.576407\pi\)
−0.237740 + 0.971329i \(0.576407\pi\)
\(432\) 0 0
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) −0.355081 2.01377i −0.0170444 0.0966638i
\(435\) 0 0
\(436\) 24.9046 9.06454i 1.19272 0.434113i
\(437\) 0.330704 + 0.277494i 0.0158197 + 0.0132743i
\(438\) 0 0
\(439\) 14.2213 + 5.17614i 0.678747 + 0.247044i 0.658309 0.752747i \(-0.271272\pi\)
0.0204376 + 0.999791i \(0.493494\pi\)
\(440\) −9.18520 15.9092i −0.437887 0.758443i
\(441\) 0 0
\(442\) 0.0117522 0.0203554i 0.000558996 0.000968210i
\(443\) 0.553692 0.464603i 0.0263067 0.0220739i −0.629539 0.776968i \(-0.716756\pi\)
0.655846 + 0.754895i \(0.272312\pi\)
\(444\) 0 0
\(445\) −1.29749 + 7.35845i −0.0615071 + 0.348824i
\(446\) 1.56282 8.86317i 0.0740015 0.419683i
\(447\) 0 0
\(448\) 4.19533 3.52030i 0.198211 0.166318i
\(449\) 0.834224 1.44492i 0.0393695 0.0681899i −0.845669 0.533707i \(-0.820798\pi\)
0.885039 + 0.465517i \(0.154132\pi\)
\(450\) 0 0
\(451\) −9.58275 16.5978i −0.451234 0.781560i
\(452\) −21.5651 7.84906i −1.01434 0.369189i
\(453\) 0 0
\(454\) −6.88786 5.77960i −0.323263 0.271250i
\(455\) 0.0496055 0.0180549i 0.00232554 0.000846429i
\(456\) 0 0
\(457\) 1.92462 + 10.9151i 0.0900299 + 0.510585i 0.996157 + 0.0875805i \(0.0279135\pi\)
−0.906128 + 0.423005i \(0.860975\pi\)
\(458\) −4.48926 −0.209769
\(459\) 0 0
\(460\) 4.18720 0.195229
\(461\) 3.80018 + 21.5519i 0.176992 + 1.00377i 0.935819 + 0.352480i \(0.114662\pi\)
−0.758827 + 0.651292i \(0.774227\pi\)
\(462\) 0 0
\(463\) −23.3530 + 8.49979i −1.08531 + 0.395019i −0.821880 0.569661i \(-0.807075\pi\)
−0.263426 + 0.964680i \(0.584852\pi\)
\(464\) 17.9069 + 15.0257i 0.831306 + 0.697549i
\(465\) 0 0
\(466\) 2.98235 + 1.08549i 0.138154 + 0.0502841i
\(467\) −5.91777 10.2499i −0.273842 0.474308i 0.696001 0.718041i \(-0.254961\pi\)
−0.969842 + 0.243734i \(0.921628\pi\)
\(468\) 0 0
\(469\) −7.27564 + 12.6018i −0.335958 + 0.581896i
\(470\) −5.00415 + 4.19898i −0.230824 + 0.193685i
\(471\) 0 0
\(472\) −1.02217 + 5.79701i −0.0470491 + 0.266829i
\(473\) −7.52367 + 42.6689i −0.345939 + 1.96192i
\(474\) 0 0
\(475\) −0.0297163 + 0.0249349i −0.00136348 + 0.00114409i
\(476\) −3.77733 + 6.54252i −0.173134 + 0.299876i
\(477\) 0 0
\(478\) −0.671288 1.16270i −0.0307040 0.0531809i
\(479\) 2.71322 + 0.987532i 0.123970 + 0.0451215i 0.403260 0.915085i \(-0.367877\pi\)
−0.279290 + 0.960207i \(0.590099\pi\)
\(480\) 0 0
\(481\) −0.0612104 0.0513617i −0.00279096 0.00234189i
\(482\) 10.3634 3.77198i 0.472041 0.171809i
\(483\) 0 0
\(484\) −5.14005 29.1506i −0.233638 1.32503i
\(485\) −22.0220 −0.999966
\(486\) 0 0
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) −1.90921 10.8276i −0.0864257 0.490144i
\(489\) 0 0
\(490\) −4.54779 + 1.65526i −0.205448 + 0.0747770i
\(491\) 17.2920 + 14.5097i 0.780375 + 0.654812i 0.943343 0.331819i \(-0.107662\pi\)
−0.162968 + 0.986631i \(0.552107\pi\)
\(492\) 0 0
\(493\) −22.9834 8.36528i −1.03512 0.376753i
\(494\) 0.00156564 + 0.00271176i 7.04413e−5 + 0.000122008i
\(495\) 0 0
\(496\) −5.58354 + 9.67097i −0.250708 + 0.434239i
\(497\) −6.15056 + 5.16094i −0.275890 + 0.231500i
\(498\) 0 0
\(499\) −4.39900 + 24.9479i −0.196926 + 1.11682i 0.712723 + 0.701446i \(0.247462\pi\)
−0.909649 + 0.415378i \(0.863649\pi\)
\(500\) −3.57998 + 20.3031i −0.160102 + 0.907981i
\(501\) 0 0
\(502\) 1.43197 1.20157i 0.0639120 0.0536286i
\(503\) 1.87207 3.24252i 0.0834714 0.144577i −0.821267 0.570543i \(-0.806733\pi\)
0.904739 + 0.425967i \(0.140066\pi\)
\(504\) 0 0
\(505\) −15.2842 26.4731i −0.680139 1.17804i
\(506\) −2.10608 0.766549i −0.0936265 0.0340773i
\(507\) 0 0
\(508\) 11.7518 + 9.86094i 0.521402 + 0.437508i
\(509\) 22.8814 8.32815i 1.01420 0.369139i 0.219156 0.975690i \(-0.429670\pi\)
0.795045 + 0.606551i \(0.207447\pi\)
\(510\) 0 0
\(511\) 0.125340 + 0.710836i 0.00554469 + 0.0314455i
\(512\) 22.7690 1.00626
\(513\) 0 0
\(514\) −5.70660 −0.251707
\(515\) −1.75603 9.95896i −0.0773801 0.438844i
\(516\) 0 0
\(517\) −34.7845 + 12.6605i −1.52982 + 0.556810i
\(518\) −1.85836 1.55935i −0.0816519 0.0685141i
\(519\) 0 0
\(520\) 0.0597746 + 0.0217562i 0.00262129 + 0.000954071i
\(521\) 9.81046 + 16.9922i 0.429804 + 0.744443i 0.996856 0.0792397i \(-0.0252492\pi\)
−0.567051 + 0.823682i \(0.691916\pi\)
\(522\) 0 0
\(523\) −10.4077 + 18.0267i −0.455097 + 0.788251i −0.998694 0.0510956i \(-0.983729\pi\)
0.543597 + 0.839346i \(0.317062\pi\)
\(524\) −21.7467 + 18.2476i −0.950008 + 0.797152i
\(525\) 0 0
\(526\) 1.74609 9.90258i 0.0761333 0.431773i
\(527\) 2.02895 11.5068i 0.0883826 0.501243i
\(528\) 0 0
\(529\) −16.7994 + 14.0964i −0.730408 + 0.612885i
\(530\) 0.598482 1.03660i 0.0259964 0.0450271i
\(531\) 0 0
\(532\) −0.503217 0.871598i −0.0218172 0.0377886i
\(533\) 0.0623617 + 0.0226978i 0.00270119 + 0.000983152i
\(534\) 0 0
\(535\) −19.1693 16.0850i −0.828763 0.695414i
\(536\) −16.4768 + 5.99707i −0.711690 + 0.259034i
\(537\) 0 0
\(538\) −0.866188 4.91240i −0.0373440 0.211788i
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) 0.268219 + 1.52114i 0.0115210 + 0.0653387i
\(543\) 0 0
\(544\) −13.0244 + 4.74050i −0.558417 + 0.203247i
\(545\) −24.6109 20.6510i −1.05422 0.884592i
\(546\) 0 0
\(547\) −21.2819 7.74596i −0.909946 0.331193i −0.155715 0.987802i \(-0.549768\pi\)
−0.754231 + 0.656609i \(0.771990\pi\)
\(548\) −10.9711 19.0025i −0.468661 0.811745i
\(549\) 0 0
\(550\) 0.100696 0.174411i 0.00429370 0.00743691i
\(551\) 2.49605 2.09444i 0.106335 0.0892259i
\(552\) 0 0
\(553\) −0.112088 + 0.635682i −0.00476646 + 0.0270320i
\(554\) −1.69419 + 9.60822i −0.0719792 + 0.408214i
\(555\) 0 0
\(556\) −8.60231 + 7.21819i −0.364819 + 0.306120i
\(557\) 18.2259 31.5682i 0.772256 1.33759i −0.164067 0.986449i \(-0.552461\pi\)
0.936324 0.351138i \(-0.114205\pi\)
\(558\) 0 0
\(559\) −0.0750139 0.129928i −0.00317275 0.00549537i
\(560\) −8.22465 2.99353i −0.347555 0.126500i
\(561\) 0 0
\(562\) 6.48362 + 5.44041i 0.273495 + 0.229490i
\(563\) 24.9171 9.06909i 1.05013 0.382216i 0.241419 0.970421i \(-0.422387\pi\)
0.808712 + 0.588205i \(0.200165\pi\)
\(564\) 0 0
\(565\) 4.83076 + 27.3966i 0.203232 + 1.15258i
\(566\) 4.81938 0.202574
\(567\) 0 0
\(568\) −9.67492 −0.405950
\(569\) −3.98825 22.6185i −0.167196 0.948216i −0.946771 0.321907i \(-0.895676\pi\)
0.779575 0.626309i \(-0.215435\pi\)
\(570\) 0 0
\(571\) 4.50865 1.64101i 0.188681 0.0686743i −0.245952 0.969282i \(-0.579100\pi\)
0.434633 + 0.900608i \(0.356878\pi\)
\(572\) 0.131837 + 0.110624i 0.00551237 + 0.00462543i
\(573\) 0 0
\(574\) 1.89332 + 0.689112i 0.0790256 + 0.0287630i
\(575\) 0.0480718 + 0.0832628i 0.00200473 + 0.00347230i
\(576\) 0 0
\(577\) 2.15666 3.73545i 0.0897831 0.155509i −0.817636 0.575735i \(-0.804716\pi\)
0.907419 + 0.420226i \(0.138049\pi\)
\(578\) −2.28693 + 1.91896i −0.0951237 + 0.0798182i
\(579\) 0 0
\(580\) 5.48792 31.1236i 0.227874 1.29234i
\(581\) 1.05723 5.99584i 0.0438612 0.248749i
\(582\) 0 0
\(583\) 5.19588 4.35986i 0.215191 0.180567i
\(584\) −0.434885 + 0.753242i −0.0179957 + 0.0311694i
\(585\) 0 0
\(586\) 6.55900 + 11.3605i 0.270950 + 0.469299i
\(587\) 39.3000 + 14.3040i 1.62209 + 0.590391i 0.983778 0.179391i \(-0.0574126\pi\)
0.638308 + 0.769781i \(0.279635\pi\)
\(588\) 0 0
\(589\) 1.19241 + 1.00055i 0.0491325 + 0.0412271i
\(590\) 3.20145 1.16523i 0.131801 0.0479718i
\(591\) 0 0
\(592\) 2.30054 + 13.0470i 0.0945515 + 0.536228i
\(593\) 31.5370 1.29507 0.647536 0.762035i \(-0.275800\pi\)
0.647536 + 0.762035i \(0.275800\pi\)
\(594\) 0 0
\(595\) 9.15786 0.375436
\(596\) 0.280139 + 1.58875i 0.0114749 + 0.0650776i
\(597\) 0 0
\(598\) 0.00729267 0.00265431i 0.000298219 0.000108543i
\(599\) 9.67537 + 8.11860i 0.395325 + 0.331717i 0.818683 0.574245i \(-0.194704\pi\)
−0.423358 + 0.905962i \(0.639149\pi\)
\(600\) 0 0
\(601\) −19.3041 7.02611i −0.787430 0.286601i −0.0831627 0.996536i \(-0.526502\pi\)
−0.704267 + 0.709935i \(0.748724\pi\)
\(602\) −2.27744 3.94465i −0.0928216 0.160772i
\(603\) 0 0
\(604\) 7.51556 13.0173i 0.305804 0.529668i
\(605\) −27.4872 + 23.0645i −1.11751 + 0.937705i
\(606\) 0 0
\(607\) 2.24224 12.7164i 0.0910098 0.516142i −0.904887 0.425651i \(-0.860045\pi\)
0.995897 0.0904914i \(-0.0288437\pi\)
\(608\) 0.320637 1.81842i 0.0130035 0.0737467i
\(609\) 0 0
\(610\) −4.87466 + 4.09033i −0.197369 + 0.165612i
\(611\) 0.0640889 0.111005i 0.00259276 0.00449079i
\(612\) 0 0
\(613\) 15.5799 + 26.9851i 0.629265 + 1.08992i 0.987699 + 0.156364i \(0.0499774\pi\)
−0.358434 + 0.933555i \(0.616689\pi\)
\(614\) 3.17034 + 1.15391i 0.127945 + 0.0465680i
\(615\) 0 0
\(616\) 8.38328 + 7.03441i 0.337772 + 0.283424i
\(617\) −6.71014 + 2.44229i −0.270140 + 0.0983230i −0.473539 0.880773i \(-0.657024\pi\)
0.203398 + 0.979096i \(0.434801\pi\)
\(618\) 0 0
\(619\) −1.74185 9.87851i −0.0700108 0.397051i −0.999595 0.0284422i \(-0.990945\pi\)
0.929585 0.368609i \(-0.120166\pi\)
\(620\) 15.0977 0.606338
\(621\) 0 0
\(622\) 9.90827 0.397285
\(623\) −0.772942 4.38357i −0.0309673 0.175624i
\(624\) 0 0
\(625\) 23.0475 8.38860i 0.921899 0.335544i
\(626\) 8.56468 + 7.18662i 0.342313 + 0.287235i
\(627\) 0 0
\(628\) 21.5675 + 7.84993i 0.860637 + 0.313246i
\(629\) −6.93093 12.0047i −0.276354 0.478660i
\(630\) 0 0
\(631\) 3.53780 6.12765i 0.140838 0.243938i −0.786975 0.616985i \(-0.788354\pi\)
0.927812 + 0.373047i \(0.121687\pi\)
\(632\) −0.595839 + 0.499968i −0.0237012 + 0.0198877i
\(633\) 0 0
\(634\) 0.601136 3.40921i 0.0238741 0.135397i
\(635\) 3.22924 18.3139i 0.128149 0.726767i
\(636\) 0 0
\(637\) 0.0727452 0.0610405i 0.00288227 0.00241851i
\(638\) −8.45809 + 14.6498i −0.334859 + 0.579993i
\(639\) 0 0
\(640\) −11.7103 20.2828i −0.462890 0.801750i
\(641\) −4.70900 1.71394i −0.185994 0.0676964i 0.247344 0.968928i \(-0.420442\pi\)
−0.433338 + 0.901231i \(0.642664\pi\)
\(642\) 0 0
\(643\) 1.25509 + 1.05315i 0.0494959 + 0.0415320i 0.667200 0.744879i \(-0.267493\pi\)
−0.617704 + 0.786411i \(0.711937\pi\)
\(644\) −2.34397 + 0.853134i −0.0923652 + 0.0336182i
\(645\) 0 0
\(646\) 0.0943280 + 0.534961i 0.00371129 + 0.0210478i
\(647\) −34.4927 −1.35605 −0.678024 0.735040i \(-0.737164\pi\)
−0.678024 + 0.735040i \(0.737164\pi\)
\(648\) 0 0
\(649\) 19.3056 0.757813
\(650\) 0.000121095 0 0.000686763i 4.74973e−6 0 2.69371e-5i
\(651\) 0 0
\(652\) 5.69188 2.07167i 0.222911 0.0811330i
\(653\) −29.6923 24.9148i −1.16195 0.974993i −0.162021 0.986787i \(-0.551801\pi\)
−0.999930 + 0.0117946i \(0.996246\pi\)
\(654\) 0 0
\(655\) 32.3374 + 11.7698i 1.26353 + 0.459886i
\(656\) −5.50161 9.52907i −0.214802 0.372048i
\(657\) 0 0
\(658\) 1.94575 3.37015i 0.0758534 0.131382i
\(659\) −7.19463 + 6.03701i −0.280263 + 0.235169i −0.772073 0.635534i \(-0.780780\pi\)
0.491810 + 0.870703i \(0.336336\pi\)
\(660\) 0 0
\(661\) −4.19316 + 23.7806i −0.163095 + 0.924957i 0.787912 + 0.615788i \(0.211162\pi\)
−0.951007 + 0.309169i \(0.899949\pi\)
\(662\) −0.463189 + 2.62688i −0.0180024 + 0.102096i
\(663\) 0 0
\(664\) 5.62003 4.71577i 0.218100 0.183007i
\(665\) −0.610007 + 1.05656i −0.0236551 + 0.0409718i
\(666\) 0 0
\(667\) −4.03784 6.99375i −0.156346 0.270799i
\(668\) 35.3104 + 12.8519i 1.36620 + 0.497256i
\(669\) 0 0
\(670\) 7.77409 + 6.52323i 0.300339 + 0.252014i
\(671\) −33.8844 + 12.3329i −1.30809 + 0.476107i
\(672\) 0 0
\(673\) −4.59580 26.0641i −0.177155 1.00470i −0.935627 0.352990i \(-0.885165\pi\)
0.758472 0.651705i \(-0.225946\pi\)
\(674\) 3.10557 0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) −5.39470 30.5949i −0.207335 1.17586i −0.893723 0.448620i \(-0.851916\pi\)
0.686387 0.727236i \(-0.259196\pi\)
\(678\) 0 0
\(679\) 12.3277 4.48693i 0.473095 0.172193i
\(680\) 8.45346 + 7.09330i 0.324175 + 0.272015i
\(681\) 0 0
\(682\) −7.59384 2.76393i −0.290783 0.105836i
\(683\) 19.0681 + 33.0268i 0.729619 + 1.26374i 0.957044 + 0.289942i \(0.0936359\pi\)
−0.227425 + 0.973796i \(0.573031\pi\)
\(684\) 0 0
\(685\) −13.2993 + 23.0351i −0.508140 + 0.880125i
\(686\) 5.14851 4.32011i 0.196571 0.164943i
\(687\) 0 0
\(688\) −4.31946 + 24.4969i −0.164678 + 0.933935i
\(689\) −0.00407838 + 0.0231296i −0.000155374 + 0.000881169i
\(690\) 0 0
\(691\) 25.2255 21.1667i 0.959623 0.805219i −0.0212689 0.999774i \(-0.506771\pi\)
0.980892 + 0.194555i \(0.0623262\pi\)
\(692\) −12.8221 + 22.2085i −0.487424 + 0.844242i
\(693\) 0 0
\(694\) −6.53414 11.3175i −0.248033 0.429605i
\(695\) 12.7916 + 4.65578i 0.485215 + 0.176604i
\(696\) 0 0
\(697\) 8.81934 + 7.40031i 0.334056 + 0.280307i
\(698\) −4.62751 + 1.68428i −0.175154 + 0.0637509i
\(699\) 0 0
\(700\) −0.0389216 0.220735i −0.00147110 0.00834301i
\(701\) 2.30710 0.0871381 0.0435690 0.999050i \(-0.486127\pi\)
0.0435690 + 0.999050i \(0.486127\pi\)
\(702\) 0 0
\(703\) 1.84668 0.0696490
\(704\) −3.75838 21.3148i −0.141649 0.803332i
\(705\) 0 0
\(706\) −3.20413 + 1.16621i −0.120589 + 0.0438908i
\(707\) 13.9498 + 11.7053i 0.524637 + 0.440223i
\(708\) 0 0
\(709\) 10.4795 + 3.81423i 0.393566 + 0.143246i 0.531220 0.847234i \(-0.321734\pi\)
−0.137653 + 0.990480i \(0.543956\pi\)
\(710\) 2.79979 + 4.84937i 0.105074 + 0.181994i
\(711\) 0 0
\(712\) 2.68184 4.64508i 0.100506 0.174082i
\(713\) 2.95533 2.47982i 0.110678 0.0928700i
\(714\) 0 0
\(715\) 0.0362270 0.205454i 0.00135481 0.00768353i
\(716\) 3.23351 18.3382i 0.120842 0.685330i
\(717\) 0 0
\(718\) −5.64199 + 4.73419i −0.210557 + 0.176679i
\(719\) −16.0850 + 27.8600i −0.599869 + 1.03900i 0.392971 + 0.919551i \(0.371447\pi\)
−0.992840 + 0.119453i \(0.961886\pi\)
\(720\) 0 0
\(721\) 3.01213 + 5.21717i 0.112178 + 0.194297i
\(722\) 7.34980 + 2.67511i 0.273531 + 0.0995572i
\(723\) 0 0
\(724\) −33.6733 28.2552i −1.25146 1.05010i
\(725\) 0.681899 0.248191i 0.0253251 0.00921758i
\(726\) 0 0
\(727\) −0.931711 5.28399i −0.0345552 0.195973i 0.962643 0.270773i \(-0.0872792\pi\)
−0.997199 + 0.0748002i \(0.976168\pi\)
\(728\) −0.0378942 −0.00140445
\(729\) 0 0
\(730\) 0.503399 0.0186316
\(731\) −4.51952 25.6315i −0.167160 0.948014i
\(732\) 0 0
\(733\) 13.7161 4.99225i 0.506615 0.184393i −0.0760518 0.997104i \(-0.524231\pi\)
0.582667 + 0.812711i \(0.302009\pi\)
\(734\) −6.46701 5.42646i −0.238702 0.200294i
\(735\) 0 0
\(736\) −4.30040 1.56522i −0.158515 0.0576947i
\(737\) 28.7534 + 49.8023i 1.05915 + 1.83449i
\(738\) 0 0
\(739\) 21.6083 37.4266i 0.794873 1.37676i −0.128047 0.991768i \(-0.540871\pi\)
0.922920 0.384992i \(-0.125796\pi\)
\(740\) 13.7210 11.5133i 0.504392 0.423236i
\(741\) 0 0
\(742\) −0.123821 + 0.702222i −0.00454560 + 0.0257794i
\(743\) −1.40867 + 7.98896i −0.0516791 + 0.293087i −0.999683 0.0251716i \(-0.991987\pi\)
0.948004 + 0.318258i \(0.103098\pi\)
\(744\) 0 0
\(745\) 1.49809 1.25704i 0.0548856 0.0460545i
\(746\) 2.01116 3.48342i 0.0736336 0.127537i
\(747\) 0 0
\(748\) 14.9280 + 25.8561i 0.545823 + 0.945393i
\(749\) 14.0081 + 5.09855i 0.511846 + 0.186297i
\(750\) 0 0
\(751\) 6.70707 + 5.62790i 0.244744 + 0.205365i 0.756905 0.653525i \(-0.226710\pi\)
−0.512161 + 0.858890i \(0.671155\pi\)
\(752\) −19.9704 + 7.26861i −0.728244 + 0.265059i
\(753\) 0 0
\(754\) −0.0101715 0.0576854i −0.000370424 0.00210078i
\(755\) −18.2210 −0.663129
\(756\) 0 0
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) −0.297890 1.68942i −0.0108199 0.0613625i
\(759\) 0 0
\(760\) −1.38146 + 0.502809i −0.0501107 + 0.0182388i
\(761\) 18.8033 + 15.7778i 0.681618 + 0.571945i 0.916479 0.400084i \(-0.131019\pi\)
−0.234861 + 0.972029i \(0.575463\pi\)
\(762\) 0 0
\(763\) 17.9846 + 6.54586i 0.651087 + 0.236976i
\(764\) −10.0016 17.3233i −0.361846 0.626736i
\(765\) 0 0
\(766\) 0.986770 1.70914i 0.0356535 0.0617536i
\(767\) −0.0512095 + 0.0429699i −0.00184907 + 0.00155155i
\(768\) 0 0
\(769\) 5.45505 30.9371i 0.196714 1.11562i −0.713242 0.700918i \(-0.752774\pi\)
0.909956 0.414704i \(-0.136115\pi\)
\(770\) 1.09986 6.23763i 0.0396363 0.224788i
\(771\) 0 0
\(772\) 15.1268 12.6929i 0.544427 0.456828i
\(773\) 14.3573 24.8675i 0.516395 0.894422i −0.483424 0.875386i \(-0.660607\pi\)
0.999819 0.0190355i \(-0.00605954\pi\)
\(774\) 0 0
\(775\) 0.173332 + 0.300219i 0.00622625 + 0.0107842i
\(776\) 14.8549 + 5.40674i 0.533260 + 0.194091i
\(777\) 0 0
\(778\) 6.94243 + 5.82539i 0.248898 + 0.208850i
\(779\) −1.44125 + 0.524572i