Properties

Label 243.2.e.a.136.2
Level $243$
Weight $2$
Character 243.136
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 136.2
Root \(0.500000 - 1.27297i\) of defining polynomial
Character \(\chi\) \(=\) 243.136
Dual form 243.2.e.a.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.614005 + 0.515212i) q^{2} +(-0.235737 - 1.33693i) q^{4} +(-2.58401 - 0.940501i) q^{5} +(0.412733 - 2.34072i) q^{7} +(1.34559 - 2.33062i) q^{8} +O(q^{10})\) \(q+(0.614005 + 0.515212i) q^{2} +(-0.235737 - 1.33693i) q^{4} +(-2.58401 - 0.940501i) q^{5} +(0.412733 - 2.34072i) q^{7} +(1.34559 - 2.33062i) q^{8} +(-1.10204 - 1.90878i) q^{10} +(-0.235072 + 0.0855594i) q^{11} +(2.00090 - 1.67895i) q^{13} +(1.45939 - 1.22457i) q^{14} +(-0.524408 + 0.190869i) q^{16} +(-0.146688 - 0.254072i) q^{17} +(1.39237 - 2.41166i) q^{19} +(-0.648239 + 3.67635i) q^{20} +(-0.188417 - 0.0685781i) q^{22} +(1.16168 + 6.58821i) q^{23} +(1.96232 + 1.64658i) q^{25} +2.09357 q^{26} -3.22668 q^{28} +(0.271990 + 0.228226i) q^{29} +(0.480218 + 2.72345i) q^{31} +(-5.47807 - 1.99386i) q^{32} +(0.0408333 - 0.231577i) q^{34} +(-3.26796 + 5.66027i) q^{35} +(3.49619 + 6.05558i) q^{37} +(2.09744 - 0.763405i) q^{38} +(-5.66895 + 4.75682i) q^{40} +(7.44412 - 6.24636i) q^{41} +(-0.244984 + 0.0891669i) q^{43} +(0.169802 + 0.294106i) q^{44} +(-2.68104 + 4.64370i) q^{46} +(1.98403 - 11.2520i) q^{47} +(1.26921 + 0.461953i) q^{49} +(0.356537 + 2.02202i) q^{50} +(-2.71632 - 2.27927i) q^{52} -5.43137 q^{53} +0.687897 q^{55} +(-4.89998 - 4.11157i) q^{56} +(0.0494182 + 0.280264i) q^{58} +(5.61647 + 2.04423i) q^{59} +(-2.05717 + 11.6668i) q^{61} +(-1.10830 + 1.91963i) q^{62} +(-1.77824 - 3.08001i) q^{64} +(-6.74938 + 2.45657i) q^{65} +(1.38677 - 1.16364i) q^{67} +(-0.305096 + 0.256006i) q^{68} +(-4.92278 + 1.79175i) q^{70} +(-0.185255 - 0.320871i) q^{71} +(-2.51339 + 4.35333i) q^{73} +(-0.973225 + 5.51943i) q^{74} +(-3.55246 - 1.29299i) q^{76} +(0.103249 + 0.585553i) q^{77} +(0.614997 + 0.516044i) q^{79} +1.53459 q^{80} +7.78892 q^{82} +(2.11095 + 1.77130i) q^{83} +(0.140089 + 0.794483i) q^{85} +(-0.196361 - 0.0714696i) q^{86} +(-0.116903 + 0.662992i) q^{88} +(5.22533 - 9.05054i) q^{89} +(-3.10412 - 5.37650i) q^{91} +(8.53412 - 3.10617i) q^{92} +(7.01535 - 5.88658i) q^{94} +(-5.86607 + 4.92221i) q^{95} +(13.9400 - 5.07373i) q^{97} +(0.541296 + 0.937552i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} + 21 q^{14} + 9 q^{16} - 9 q^{17} - 3 q^{19} - 24 q^{20} + 12 q^{22} + 12 q^{23} + 12 q^{25} + 30 q^{26} - 12 q^{28} + 24 q^{29} + 12 q^{31} - 27 q^{32} - 12 q^{35} - 3 q^{37} + 30 q^{38} - 15 q^{40} - 6 q^{41} - 15 q^{43} - 3 q^{44} - 3 q^{46} - 12 q^{47} - 33 q^{49} - 21 q^{50} - 45 q^{52} + 18 q^{53} - 12 q^{55} - 30 q^{56} - 51 q^{58} + 3 q^{59} - 33 q^{61} + 12 q^{62} + 12 q^{64} - 21 q^{65} - 6 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} + 21 q^{74} + 6 q^{76} + 12 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 6 q^{83} + 36 q^{85} + 21 q^{86} + 42 q^{88} - 9 q^{89} + 6 q^{91} + 3 q^{92} + 48 q^{94} - 3 q^{95} + 39 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.614005 + 0.515212i 0.434167 + 0.364310i 0.833521 0.552487i \(-0.186321\pi\)
−0.399354 + 0.916797i \(0.630766\pi\)
\(3\) 0 0
\(4\) −0.235737 1.33693i −0.117868 0.668465i
\(5\) −2.58401 0.940501i −1.15560 0.420605i −0.308078 0.951361i \(-0.599686\pi\)
−0.847524 + 0.530756i \(0.821908\pi\)
\(6\) 0 0
\(7\) 0.412733 2.34072i 0.155998 0.884711i −0.801869 0.597500i \(-0.796161\pi\)
0.957867 0.287211i \(-0.0927280\pi\)
\(8\) 1.34559 2.33062i 0.475736 0.823999i
\(9\) 0 0
\(10\) −1.10204 1.90878i −0.348494 0.603610i
\(11\) −0.235072 + 0.0855594i −0.0708770 + 0.0257971i −0.377215 0.926126i \(-0.623118\pi\)
0.306338 + 0.951923i \(0.400896\pi\)
\(12\) 0 0
\(13\) 2.00090 1.67895i 0.554948 0.465657i −0.321664 0.946854i \(-0.604242\pi\)
0.876613 + 0.481197i \(0.159798\pi\)
\(14\) 1.45939 1.22457i 0.390038 0.327281i
\(15\) 0 0
\(16\) −0.524408 + 0.190869i −0.131102 + 0.0477173i
\(17\) −0.146688 0.254072i −0.0355772 0.0616215i 0.847689 0.530494i \(-0.177994\pi\)
−0.883266 + 0.468873i \(0.844660\pi\)
\(18\) 0 0
\(19\) 1.39237 2.41166i 0.319432 0.553273i −0.660937 0.750441i \(-0.729841\pi\)
0.980370 + 0.197168i \(0.0631745\pi\)
\(20\) −0.648239 + 3.67635i −0.144951 + 0.822056i
\(21\) 0 0
\(22\) −0.188417 0.0685781i −0.0401706 0.0146209i
\(23\) 1.16168 + 6.58821i 0.242227 + 1.37374i 0.826846 + 0.562428i \(0.190133\pi\)
−0.584619 + 0.811308i \(0.698756\pi\)
\(24\) 0 0
\(25\) 1.96232 + 1.64658i 0.392464 + 0.329316i
\(26\) 2.09357 0.410584
\(27\) 0 0
\(28\) −3.22668 −0.609786
\(29\) 0.271990 + 0.228226i 0.0505072 + 0.0423806i 0.667692 0.744438i \(-0.267282\pi\)
−0.617185 + 0.786818i \(0.711727\pi\)
\(30\) 0 0
\(31\) 0.480218 + 2.72345i 0.0862497 + 0.489146i 0.997080 + 0.0763652i \(0.0243315\pi\)
−0.910830 + 0.412781i \(0.864557\pi\)
\(32\) −5.47807 1.99386i −0.968396 0.352467i
\(33\) 0 0
\(34\) 0.0408333 0.231577i 0.00700285 0.0397151i
\(35\) −3.26796 + 5.66027i −0.552386 + 0.956760i
\(36\) 0 0
\(37\) 3.49619 + 6.05558i 0.574770 + 0.995531i 0.996067 + 0.0886080i \(0.0282418\pi\)
−0.421297 + 0.906923i \(0.638425\pi\)
\(38\) 2.09744 0.763405i 0.340250 0.123841i
\(39\) 0 0
\(40\) −5.66895 + 4.75682i −0.896340 + 0.752119i
\(41\) 7.44412 6.24636i 1.16258 0.975517i 0.162638 0.986686i \(-0.448000\pi\)
0.999938 + 0.0111686i \(0.00355516\pi\)
\(42\) 0 0
\(43\) −0.244984 + 0.0891669i −0.0373597 + 0.0135978i −0.360632 0.932708i \(-0.617439\pi\)
0.323273 + 0.946306i \(0.395217\pi\)
\(44\) 0.169802 + 0.294106i 0.0255986 + 0.0443381i
\(45\) 0 0
\(46\) −2.68104 + 4.64370i −0.395298 + 0.684677i
\(47\) 1.98403 11.2520i 0.289400 1.64127i −0.399731 0.916633i \(-0.630896\pi\)
0.689131 0.724637i \(-0.257993\pi\)
\(48\) 0 0
\(49\) 1.26921 + 0.461953i 0.181315 + 0.0659933i
\(50\) 0.356537 + 2.02202i 0.0504219 + 0.285957i
\(51\) 0 0
\(52\) −2.71632 2.27927i −0.376686 0.316077i
\(53\) −5.43137 −0.746056 −0.373028 0.927820i \(-0.621680\pi\)
−0.373028 + 0.927820i \(0.621680\pi\)
\(54\) 0 0
\(55\) 0.687897 0.0927560
\(56\) −4.89998 4.11157i −0.654787 0.549431i
\(57\) 0 0
\(58\) 0.0494182 + 0.280264i 0.00648892 + 0.0368005i
\(59\) 5.61647 + 2.04423i 0.731203 + 0.266136i 0.680674 0.732587i \(-0.261687\pi\)
0.0505288 + 0.998723i \(0.483909\pi\)
\(60\) 0 0
\(61\) −2.05717 + 11.6668i −0.263393 + 1.49378i 0.510178 + 0.860069i \(0.329580\pi\)
−0.773571 + 0.633709i \(0.781532\pi\)
\(62\) −1.10830 + 1.91963i −0.140754 + 0.243793i
\(63\) 0 0
\(64\) −1.77824 3.08001i −0.222281 0.385001i
\(65\) −6.74938 + 2.45657i −0.837157 + 0.304700i
\(66\) 0 0
\(67\) 1.38677 1.16364i 0.169421 0.142161i −0.554135 0.832427i \(-0.686951\pi\)
0.723556 + 0.690266i \(0.242506\pi\)
\(68\) −0.305096 + 0.256006i −0.0369984 + 0.0310453i
\(69\) 0 0
\(70\) −4.92278 + 1.79175i −0.588385 + 0.214154i
\(71\) −0.185255 0.320871i −0.0219857 0.0380804i 0.854823 0.518919i \(-0.173666\pi\)
−0.876809 + 0.480839i \(0.840332\pi\)
\(72\) 0 0
\(73\) −2.51339 + 4.35333i −0.294171 + 0.509518i −0.974792 0.223117i \(-0.928377\pi\)
0.680621 + 0.732636i \(0.261710\pi\)
\(74\) −0.973225 + 5.51943i −0.113135 + 0.641621i
\(75\) 0 0
\(76\) −3.55246 1.29299i −0.407495 0.148316i
\(77\) 0.103249 + 0.585553i 0.0117663 + 0.0667299i
\(78\) 0 0
\(79\) 0.614997 + 0.516044i 0.0691926 + 0.0580595i 0.676728 0.736233i \(-0.263397\pi\)
−0.607535 + 0.794293i \(0.707842\pi\)
\(80\) 1.53459 0.171572
\(81\) 0 0
\(82\) 7.78892 0.860143
\(83\) 2.11095 + 1.77130i 0.231707 + 0.194425i 0.751248 0.660021i \(-0.229452\pi\)
−0.519541 + 0.854446i \(0.673897\pi\)
\(84\) 0 0
\(85\) 0.140089 + 0.794483i 0.0151948 + 0.0861738i
\(86\) −0.196361 0.0714696i −0.0211742 0.00770677i
\(87\) 0 0
\(88\) −0.116903 + 0.662992i −0.0124619 + 0.0706752i
\(89\) 5.22533 9.05054i 0.553884 0.959356i −0.444105 0.895975i \(-0.646478\pi\)
0.997989 0.0633809i \(-0.0201883\pi\)
\(90\) 0 0
\(91\) −3.10412 5.37650i −0.325401 0.563611i
\(92\) 8.53412 3.10617i 0.889744 0.323840i
\(93\) 0 0
\(94\) 7.01535 5.88658i 0.723578 0.607154i
\(95\) −5.86607 + 4.92221i −0.601846 + 0.505009i
\(96\) 0 0
\(97\) 13.9400 5.07373i 1.41539 0.515160i 0.482683 0.875795i \(-0.339662\pi\)
0.932707 + 0.360636i \(0.117440\pi\)
\(98\) 0.541296 + 0.937552i 0.0546791 + 0.0947070i
\(99\) 0 0
\(100\) 1.73877 3.01164i 0.173877 0.301164i
\(101\) −0.695518 + 3.94448i −0.0692066 + 0.392490i 0.930453 + 0.366411i \(0.119413\pi\)
−0.999660 + 0.0260796i \(0.991698\pi\)
\(102\) 0 0
\(103\) 5.56238 + 2.02454i 0.548078 + 0.199484i 0.601192 0.799105i \(-0.294693\pi\)
−0.0531146 + 0.998588i \(0.516915\pi\)
\(104\) −1.22062 6.92250i −0.119692 0.678807i
\(105\) 0 0
\(106\) −3.33489 2.79830i −0.323913 0.271795i
\(107\) 0.258978 0.0250364 0.0125182 0.999922i \(-0.496015\pi\)
0.0125182 + 0.999922i \(0.496015\pi\)
\(108\) 0 0
\(109\) −8.55787 −0.819695 −0.409848 0.912154i \(-0.634418\pi\)
−0.409848 + 0.912154i \(0.634418\pi\)
\(110\) 0.422372 + 0.354413i 0.0402716 + 0.0337919i
\(111\) 0 0
\(112\) 0.230331 + 1.30627i 0.0217643 + 0.123431i
\(113\) −2.93107 1.06682i −0.275732 0.100358i 0.200453 0.979703i \(-0.435759\pi\)
−0.476185 + 0.879345i \(0.657981\pi\)
\(114\) 0 0
\(115\) 3.19443 18.1165i 0.297882 1.68937i
\(116\) 0.241005 0.417432i 0.0223767 0.0387576i
\(117\) 0 0
\(118\) 2.39533 + 4.14884i 0.220508 + 0.381932i
\(119\) −0.655255 + 0.238493i −0.0600671 + 0.0218627i
\(120\) 0 0
\(121\) −8.37855 + 7.03044i −0.761686 + 0.639131i
\(122\) −7.27397 + 6.10359i −0.658555 + 0.552593i
\(123\) 0 0
\(124\) 3.52786 1.28404i 0.316811 0.115310i
\(125\) 3.35257 + 5.80682i 0.299863 + 0.519378i
\(126\) 0 0
\(127\) 9.22726 15.9821i 0.818787 1.41818i −0.0877893 0.996139i \(-0.527980\pi\)
0.906576 0.422042i \(-0.138686\pi\)
\(128\) −1.52961 + 8.67484i −0.135200 + 0.766755i
\(129\) 0 0
\(130\) −5.40981 1.96901i −0.474472 0.172694i
\(131\) −2.47023 14.0094i −0.215825 1.22400i −0.879470 0.475955i \(-0.842102\pi\)
0.663645 0.748048i \(-0.269009\pi\)
\(132\) 0 0
\(133\) −5.07035 4.25453i −0.439655 0.368915i
\(134\) 1.45101 0.125348
\(135\) 0 0
\(136\) −0.789527 −0.0677014
\(137\) 15.0800 + 12.6536i 1.28837 + 1.08107i 0.992031 + 0.125993i \(0.0402116\pi\)
0.296343 + 0.955082i \(0.404233\pi\)
\(138\) 0 0
\(139\) −3.11021 17.6388i −0.263804 1.49611i −0.772419 0.635113i \(-0.780953\pi\)
0.508615 0.860994i \(-0.330158\pi\)
\(140\) 8.33776 + 3.03470i 0.704670 + 0.256479i
\(141\) 0 0
\(142\) 0.0515689 0.292462i 0.00432757 0.0245429i
\(143\) −0.326705 + 0.565870i −0.0273205 + 0.0473205i
\(144\) 0 0
\(145\) −0.488175 0.845544i −0.0405408 0.0702186i
\(146\) −3.78612 + 1.37804i −0.313342 + 0.114047i
\(147\) 0 0
\(148\) 7.27171 6.10169i 0.597730 0.501555i
\(149\) −12.4784 + 10.4707i −1.02227 + 0.857790i −0.989912 0.141686i \(-0.954748\pi\)
−0.0323628 + 0.999476i \(0.510303\pi\)
\(150\) 0 0
\(151\) −13.4140 + 4.88229i −1.09161 + 0.397315i −0.824219 0.566271i \(-0.808385\pi\)
−0.267396 + 0.963587i \(0.586163\pi\)
\(152\) −3.74711 6.49019i −0.303931 0.526424i
\(153\) 0 0
\(154\) −0.238288 + 0.412728i −0.0192018 + 0.0332585i
\(155\) 1.32052 7.48906i 0.106067 0.601536i
\(156\) 0 0
\(157\) −0.717319 0.261083i −0.0572483 0.0208367i 0.313237 0.949675i \(-0.398586\pi\)
−0.370486 + 0.928838i \(0.620809\pi\)
\(158\) 0.111740 + 0.633707i 0.00888953 + 0.0504150i
\(159\) 0 0
\(160\) 12.2801 + 10.3043i 0.970831 + 0.814624i
\(161\) 15.9006 1.25315
\(162\) 0 0
\(163\) 5.12834 0.401682 0.200841 0.979624i \(-0.435632\pi\)
0.200841 + 0.979624i \(0.435632\pi\)
\(164\) −10.1058 8.47977i −0.789130 0.662159i
\(165\) 0 0
\(166\) 0.383542 + 2.17517i 0.0297686 + 0.168826i
\(167\) 8.36432 + 3.04436i 0.647251 + 0.235580i 0.644722 0.764417i \(-0.276973\pi\)
0.00252824 + 0.999997i \(0.499195\pi\)
\(168\) 0 0
\(169\) −1.07272 + 6.08369i −0.0825169 + 0.467976i
\(170\) −0.323312 + 0.559992i −0.0247969 + 0.0429495i
\(171\) 0 0
\(172\) 0.176962 + 0.306507i 0.0134932 + 0.0233709i
\(173\) −6.40047 + 2.32958i −0.486619 + 0.177115i −0.573666 0.819089i \(-0.694479\pi\)
0.0870471 + 0.996204i \(0.472257\pi\)
\(174\) 0 0
\(175\) 4.66411 3.91365i 0.352573 0.295844i
\(176\) 0.106943 0.0897361i 0.00806115 0.00676411i
\(177\) 0 0
\(178\) 7.87133 2.86493i 0.589981 0.214735i
\(179\) −9.17382 15.8895i −0.685684 1.18764i −0.973221 0.229870i \(-0.926170\pi\)
0.287538 0.957769i \(-0.407163\pi\)
\(180\) 0 0
\(181\) −5.66282 + 9.80830i −0.420914 + 0.729045i −0.996029 0.0890276i \(-0.971624\pi\)
0.575115 + 0.818073i \(0.304957\pi\)
\(182\) 0.864087 4.90048i 0.0640504 0.363248i
\(183\) 0 0
\(184\) 16.9178 + 6.15756i 1.24719 + 0.453941i
\(185\) −3.33890 18.9358i −0.245480 1.39219i
\(186\) 0 0
\(187\) 0.0562206 + 0.0471747i 0.00411126 + 0.00344976i
\(188\) −15.5108 −1.13124
\(189\) 0 0
\(190\) −6.13778 −0.445281
\(191\) −5.25385 4.40850i −0.380155 0.318988i 0.432608 0.901582i \(-0.357593\pi\)
−0.812763 + 0.582594i \(0.802038\pi\)
\(192\) 0 0
\(193\) 3.54465 + 20.1027i 0.255149 + 1.44702i 0.795690 + 0.605705i \(0.207109\pi\)
−0.540540 + 0.841318i \(0.681780\pi\)
\(194\) 11.1733 + 4.06673i 0.802193 + 0.291975i
\(195\) 0 0
\(196\) 0.318401 1.80574i 0.0227429 0.128981i
\(197\) 1.51786 2.62902i 0.108143 0.187310i −0.806875 0.590723i \(-0.798843\pi\)
0.915018 + 0.403413i \(0.132176\pi\)
\(198\) 0 0
\(199\) 1.13124 + 1.95936i 0.0801912 + 0.138895i 0.903332 0.428942i \(-0.141114\pi\)
−0.823141 + 0.567837i \(0.807780\pi\)
\(200\) 6.47803 2.35781i 0.458066 0.166722i
\(201\) 0 0
\(202\) −2.45929 + 2.06359i −0.173035 + 0.145194i
\(203\) 0.646474 0.542456i 0.0453736 0.0380729i
\(204\) 0 0
\(205\) −25.1103 + 9.13942i −1.75378 + 0.638325i
\(206\) 2.37226 + 4.10888i 0.165283 + 0.286279i
\(207\) 0 0
\(208\) −0.728826 + 1.26236i −0.0505350 + 0.0875292i
\(209\) −0.120968 + 0.686045i −0.00836755 + 0.0474547i
\(210\) 0 0
\(211\) −23.8971 8.69785i −1.64515 0.598785i −0.657219 0.753700i \(-0.728267\pi\)
−0.987928 + 0.154915i \(0.950490\pi\)
\(212\) 1.28037 + 7.26136i 0.0879364 + 0.498712i
\(213\) 0 0
\(214\) 0.159014 + 0.133429i 0.0108700 + 0.00912100i
\(215\) 0.716901 0.0488923
\(216\) 0 0
\(217\) 6.57305 0.446208
\(218\) −5.25458 4.40911i −0.355885 0.298623i
\(219\) 0 0
\(220\) −0.162163 0.919670i −0.0109330 0.0620042i
\(221\) −0.720082 0.262088i −0.0484380 0.0176300i
\(222\) 0 0
\(223\) −0.665305 + 3.77313i −0.0445521 + 0.252668i −0.998947 0.0458797i \(-0.985391\pi\)
0.954395 + 0.298547i \(0.0965020\pi\)
\(224\) −6.92805 + 11.9997i −0.462900 + 0.801766i
\(225\) 0 0
\(226\) −1.25005 2.16515i −0.0831523 0.144024i
\(227\) 2.36426 0.860520i 0.156921 0.0571147i −0.262365 0.964969i \(-0.584502\pi\)
0.419287 + 0.907854i \(0.362280\pi\)
\(228\) 0 0
\(229\) −12.2105 + 10.2458i −0.806890 + 0.677061i −0.949863 0.312666i \(-0.898778\pi\)
0.142974 + 0.989727i \(0.454334\pi\)
\(230\) 11.2952 9.47783i 0.744786 0.624950i
\(231\) 0 0
\(232\) 0.897894 0.326807i 0.0589496 0.0214559i
\(233\) 14.0641 + 24.3598i 0.921372 + 1.59586i 0.797295 + 0.603590i \(0.206264\pi\)
0.124077 + 0.992273i \(0.460403\pi\)
\(234\) 0 0
\(235\) −15.7092 + 27.2092i −1.02476 + 1.77493i
\(236\) 1.40898 7.99073i 0.0917169 0.520153i
\(237\) 0 0
\(238\) −0.525205 0.191159i −0.0340440 0.0123910i
\(239\) 2.55363 + 14.4824i 0.165181 + 0.936787i 0.948878 + 0.315644i \(0.102220\pi\)
−0.783697 + 0.621143i \(0.786668\pi\)
\(240\) 0 0
\(241\) 6.46767 + 5.42702i 0.416619 + 0.349585i 0.826875 0.562385i \(-0.190116\pi\)
−0.410256 + 0.911970i \(0.634561\pi\)
\(242\) −8.76664 −0.563541
\(243\) 0 0
\(244\) 16.0826 1.02958
\(245\) −2.84517 2.38738i −0.181771 0.152524i
\(246\) 0 0
\(247\) −1.26307 7.16320i −0.0803670 0.455784i
\(248\) 6.99351 + 2.54543i 0.444088 + 0.161635i
\(249\) 0 0
\(250\) −0.933246 + 5.29270i −0.0590237 + 0.334740i
\(251\) −11.6102 + 20.1095i −0.732832 + 1.26930i 0.222835 + 0.974856i \(0.428469\pi\)
−0.955668 + 0.294447i \(0.904865\pi\)
\(252\) 0 0
\(253\) −0.836762 1.44931i −0.0526067 0.0911176i
\(254\) 13.8997 5.05909i 0.872147 0.317436i
\(255\) 0 0
\(256\) −10.8574 + 9.11046i −0.678589 + 0.569404i
\(257\) −5.25905 + 4.41286i −0.328050 + 0.275267i −0.791905 0.610644i \(-0.790910\pi\)
0.463855 + 0.885911i \(0.346466\pi\)
\(258\) 0 0
\(259\) 15.6174 5.68428i 0.970420 0.353204i
\(260\) 4.87534 + 8.44434i 0.302356 + 0.523696i
\(261\) 0 0
\(262\) 5.70105 9.87451i 0.352212 0.610049i
\(263\) −0.582232 + 3.30200i −0.0359019 + 0.203610i −0.997483 0.0709128i \(-0.977409\pi\)
0.961581 + 0.274523i \(0.0885199\pi\)
\(264\) 0 0
\(265\) 14.0347 + 5.10821i 0.862144 + 0.313795i
\(266\) −0.921240 5.22461i −0.0564848 0.320341i
\(267\) 0 0
\(268\) −1.88262 1.57970i −0.114999 0.0964958i
\(269\) −12.7416 −0.776869 −0.388434 0.921476i \(-0.626984\pi\)
−0.388434 + 0.921476i \(0.626984\pi\)
\(270\) 0 0
\(271\) −23.5566 −1.43096 −0.715481 0.698632i \(-0.753792\pi\)
−0.715481 + 0.698632i \(0.753792\pi\)
\(272\) 0.125419 + 0.105239i 0.00760465 + 0.00638106i
\(273\) 0 0
\(274\) 2.73991 + 15.5388i 0.165524 + 0.938734i
\(275\) −0.602168 0.219171i −0.0363121 0.0132165i
\(276\) 0 0
\(277\) 0.726061 4.11770i 0.0436248 0.247408i −0.955195 0.295977i \(-0.904355\pi\)
0.998820 + 0.0485686i \(0.0154660\pi\)
\(278\) 7.17806 12.4328i 0.430511 0.745667i
\(279\) 0 0
\(280\) 8.79463 + 15.2327i 0.525580 + 0.910331i
\(281\) −20.3312 + 7.39995i −1.21286 + 0.441444i −0.867694 0.497098i \(-0.834399\pi\)
−0.345164 + 0.938542i \(0.612177\pi\)
\(282\) 0 0
\(283\) 4.00437 3.36007i 0.238035 0.199735i −0.515965 0.856610i \(-0.672566\pi\)
0.754000 + 0.656875i \(0.228122\pi\)
\(284\) −0.385311 + 0.323314i −0.0228640 + 0.0191852i
\(285\) 0 0
\(286\) −0.492142 + 0.179125i −0.0291010 + 0.0105919i
\(287\) −11.5486 20.0027i −0.681690 1.18072i
\(288\) 0 0
\(289\) 8.45697 14.6479i 0.497469 0.861641i
\(290\) 0.135892 0.770682i 0.00797986 0.0452560i
\(291\) 0 0
\(292\) 6.41259 + 2.33399i 0.375269 + 0.136587i
\(293\) 1.06658 + 6.04885i 0.0623100 + 0.353378i 0.999983 + 0.00585836i \(0.00186479\pi\)
−0.937673 + 0.347519i \(0.887024\pi\)
\(294\) 0 0
\(295\) −12.5904 10.5646i −0.733041 0.615095i
\(296\) 18.8177 1.09376
\(297\) 0 0
\(298\) −13.0564 −0.756339
\(299\) 13.3857 + 11.2319i 0.774113 + 0.649558i
\(300\) 0 0
\(301\) 0.107602 + 0.610242i 0.00620208 + 0.0351738i
\(302\) −10.7517 3.91329i −0.618689 0.225184i
\(303\) 0 0
\(304\) −0.269861 + 1.53046i −0.0154776 + 0.0877776i
\(305\) 16.2884 28.2123i 0.932669 1.61543i
\(306\) 0 0
\(307\) −9.50194 16.4578i −0.542304 0.939298i −0.998771 0.0495580i \(-0.984219\pi\)
0.456467 0.889740i \(-0.349115\pi\)
\(308\) 0.758504 0.276073i 0.0432198 0.0157307i
\(309\) 0 0
\(310\) 4.66926 3.91797i 0.265196 0.222526i
\(311\) 16.5059 13.8501i 0.935963 0.785366i −0.0409150 0.999163i \(-0.513027\pi\)
0.976878 + 0.213796i \(0.0685829\pi\)
\(312\) 0 0
\(313\) 3.58363 1.30433i 0.202559 0.0737253i −0.238749 0.971081i \(-0.576737\pi\)
0.441307 + 0.897356i \(0.354515\pi\)
\(314\) −0.305925 0.529877i −0.0172643 0.0299027i
\(315\) 0 0
\(316\) 0.544937 0.943859i 0.0306551 0.0530962i
\(317\) −0.738784 + 4.18985i −0.0414942 + 0.235325i −0.998501 0.0547416i \(-0.982566\pi\)
0.957006 + 0.290067i \(0.0936776\pi\)
\(318\) 0 0
\(319\) −0.0834641 0.0303785i −0.00467309 0.00170087i
\(320\) 1.69824 + 9.63120i 0.0949346 + 0.538401i
\(321\) 0 0
\(322\) 9.76308 + 8.19219i 0.544075 + 0.456533i
\(323\) −0.816980 −0.0454580
\(324\) 0 0
\(325\) 6.69092 0.371146
\(326\) 3.14883 + 2.64218i 0.174397 + 0.146337i
\(327\) 0 0
\(328\) −4.54120 25.7544i −0.250746 1.42205i
\(329\) −25.5189 9.28812i −1.40690 0.512071i
\(330\) 0 0
\(331\) −2.48209 + 14.0766i −0.136428 + 0.773722i 0.837427 + 0.546550i \(0.184059\pi\)
−0.973855 + 0.227172i \(0.927052\pi\)
\(332\) 1.87047 3.23976i 0.102656 0.177805i
\(333\) 0 0
\(334\) 3.56725 + 6.17865i 0.195191 + 0.338081i
\(335\) −4.67783 + 1.70259i −0.255577 + 0.0930225i
\(336\) 0 0
\(337\) 27.3620 22.9594i 1.49050 1.25068i 0.596500 0.802613i \(-0.296557\pi\)
0.894000 0.448066i \(-0.147887\pi\)
\(338\) −3.79304 + 3.18274i −0.206314 + 0.173118i
\(339\) 0 0
\(340\) 1.02914 0.374578i 0.0558132 0.0203143i
\(341\) −0.345903 0.599121i −0.0187317 0.0324442i
\(342\) 0 0
\(343\) 9.92407 17.1890i 0.535849 0.928118i
\(344\) −0.121833 + 0.690947i −0.00656877 + 0.0372533i
\(345\) 0 0
\(346\) −5.13015 1.86722i −0.275799 0.100382i
\(347\) 3.37599 + 19.1462i 0.181232 + 1.02782i 0.930701 + 0.365780i \(0.119198\pi\)
−0.749469 + 0.662040i \(0.769691\pi\)
\(348\) 0 0
\(349\) −6.14422 5.15561i −0.328892 0.275973i 0.463356 0.886172i \(-0.346645\pi\)
−0.792248 + 0.610199i \(0.791090\pi\)
\(350\) 4.88014 0.260855
\(351\) 0 0
\(352\) 1.45834 0.0777296
\(353\) −6.70581 5.62684i −0.356914 0.299487i 0.446645 0.894711i \(-0.352619\pi\)
−0.803559 + 0.595225i \(0.797063\pi\)
\(354\) 0 0
\(355\) 0.176920 + 1.00336i 0.00938995 + 0.0532531i
\(356\) −13.3317 4.85236i −0.706581 0.257175i
\(357\) 0 0
\(358\) 2.55369 14.4827i 0.134967 0.765435i
\(359\) −4.13896 + 7.16888i −0.218446 + 0.378359i −0.954333 0.298745i \(-0.903432\pi\)
0.735887 + 0.677104i \(0.236765\pi\)
\(360\) 0 0
\(361\) 5.62260 + 9.73862i 0.295926 + 0.512559i
\(362\) −8.53035 + 3.10479i −0.448345 + 0.163184i
\(363\) 0 0
\(364\) −6.45625 + 5.41744i −0.338400 + 0.283951i
\(365\) 10.5889 8.88517i 0.554250 0.465071i
\(366\) 0 0
\(367\) 13.9073 5.06185i 0.725956 0.264226i 0.0475039 0.998871i \(-0.484873\pi\)
0.678452 + 0.734645i \(0.262651\pi\)
\(368\) −1.86668 3.23318i −0.0973074 0.168541i
\(369\) 0 0
\(370\) 7.70585 13.3469i 0.400608 0.693874i
\(371\) −2.24170 + 12.7133i −0.116383 + 0.660044i
\(372\) 0 0
\(373\) −23.9935 8.73294i −1.24234 0.452174i −0.364533 0.931191i \(-0.618771\pi\)
−0.877806 + 0.479016i \(0.840993\pi\)
\(374\) 0.0102148 + 0.0579310i 0.000528195 + 0.00299554i
\(375\) 0 0
\(376\) −23.5544 19.7645i −1.21473 1.01928i
\(377\) 0.927403 0.0477637
\(378\) 0 0
\(379\) 20.1244 1.03372 0.516861 0.856070i \(-0.327101\pi\)
0.516861 + 0.856070i \(0.327101\pi\)
\(380\) 7.96351 + 6.68218i 0.408519 + 0.342788i
\(381\) 0 0
\(382\) −0.954579 5.41369i −0.0488405 0.276988i
\(383\) −22.4222 8.16103i −1.14572 0.417009i −0.301746 0.953388i \(-0.597569\pi\)
−0.843977 + 0.536379i \(0.819792\pi\)
\(384\) 0 0
\(385\) 0.283918 1.61018i 0.0144698 0.0820622i
\(386\) −8.18070 + 14.1694i −0.416387 + 0.721203i
\(387\) 0 0
\(388\) −10.0694 17.4407i −0.511196 0.885418i
\(389\) 35.6832 12.9876i 1.80921 0.658499i 0.812018 0.583632i \(-0.198369\pi\)
0.997193 0.0748675i \(-0.0238534\pi\)
\(390\) 0 0
\(391\) 1.50347 1.26156i 0.0760339 0.0638000i
\(392\) 2.78446 2.33644i 0.140637 0.118008i
\(393\) 0 0
\(394\) 2.28648 0.832210i 0.115191 0.0419261i
\(395\) −1.10382 1.91187i −0.0555390 0.0961964i
\(396\) 0 0
\(397\) −10.1747 + 17.6230i −0.510651 + 0.884474i 0.489272 + 0.872131i \(0.337262\pi\)
−0.999924 + 0.0123433i \(0.996071\pi\)
\(398\) −0.314899 + 1.78588i −0.0157845 + 0.0895182i
\(399\) 0 0
\(400\) −1.34334 0.488935i −0.0671669 0.0244468i
\(401\) −1.20598 6.83946i −0.0602238 0.341546i 0.939776 0.341791i \(-0.111033\pi\)
−1.00000 0.000244329i \(0.999922\pi\)
\(402\) 0 0
\(403\) 5.53341 + 4.64308i 0.275639 + 0.231288i
\(404\) 5.43745 0.270523
\(405\) 0 0
\(406\) 0.676418 0.0335701
\(407\) −1.33997 1.12437i −0.0664198 0.0557328i
\(408\) 0 0
\(409\) −1.89380 10.7403i −0.0936423 0.531072i −0.995155 0.0983191i \(-0.968653\pi\)
0.901513 0.432753i \(-0.142458\pi\)
\(410\) −20.1266 7.32549i −0.993983 0.361780i
\(411\) 0 0
\(412\) 1.39541 7.91377i 0.0687470 0.389884i
\(413\) 7.10308 12.3029i 0.349520 0.605386i
\(414\) 0 0
\(415\) −3.78880 6.56240i −0.185985 0.322135i
\(416\) −14.3086 + 5.20792i −0.701539 + 0.255339i
\(417\) 0 0
\(418\) −0.427734 + 0.358911i −0.0209211 + 0.0175549i
\(419\) 7.71344 6.47235i 0.376826 0.316195i −0.434629 0.900610i \(-0.643120\pi\)
0.811455 + 0.584415i \(0.198676\pi\)
\(420\) 0 0
\(421\) 2.92016 1.06285i 0.142320 0.0518001i −0.269878 0.962894i \(-0.586983\pi\)
0.412198 + 0.911094i \(0.364761\pi\)
\(422\) −10.1917 17.6526i −0.496126 0.859315i
\(423\) 0 0
\(424\) −7.30837 + 12.6585i −0.354926 + 0.614750i
\(425\) 0.130500 0.740104i 0.00633020 0.0359003i
\(426\) 0 0
\(427\) 26.4597 + 9.63053i 1.28047 + 0.466054i
\(428\) −0.0610508 0.346236i −0.00295100 0.0167360i
\(429\) 0 0
\(430\) 0.440181 + 0.369356i 0.0212274 + 0.0178119i
\(431\) 28.0701 1.35209 0.676044 0.736862i \(-0.263693\pi\)
0.676044 + 0.736862i \(0.263693\pi\)
\(432\) 0 0
\(433\) 19.5251 0.938317 0.469158 0.883114i \(-0.344557\pi\)
0.469158 + 0.883114i \(0.344557\pi\)
\(434\) 4.03589 + 3.38651i 0.193729 + 0.162558i
\(435\) 0 0
\(436\) 2.01741 + 11.4413i 0.0966162 + 0.547938i
\(437\) 17.5060 + 6.37167i 0.837426 + 0.304798i
\(438\) 0 0
\(439\) 2.54040 14.4073i 0.121247 0.687624i −0.862220 0.506534i \(-0.830926\pi\)
0.983467 0.181090i \(-0.0579625\pi\)
\(440\) 0.925624 1.60323i 0.0441274 0.0764309i
\(441\) 0 0
\(442\) −0.307103 0.531918i −0.0146074 0.0253008i
\(443\) 17.2489 6.27810i 0.819522 0.298282i 0.101971 0.994787i \(-0.467485\pi\)
0.717551 + 0.696506i \(0.245263\pi\)
\(444\) 0 0
\(445\) −22.0143 + 18.4722i −1.04358 + 0.875667i
\(446\) −2.35246 + 1.97395i −0.111392 + 0.0934692i
\(447\) 0 0
\(448\) −7.94339 + 2.89116i −0.375290 + 0.136594i
\(449\) 6.92969 + 12.0026i 0.327032 + 0.566437i 0.981922 0.189288i \(-0.0606180\pi\)
−0.654889 + 0.755725i \(0.727285\pi\)
\(450\) 0 0
\(451\) −1.21547 + 2.10526i −0.0572344 + 0.0991328i
\(452\) −0.735305 + 4.17012i −0.0345859 + 0.196146i
\(453\) 0 0
\(454\) 1.89502 + 0.689730i 0.0889375 + 0.0323706i
\(455\) 2.96447 + 16.8123i 0.138976 + 0.788175i
\(456\) 0 0
\(457\) 13.5193 + 11.3440i 0.632404 + 0.530650i 0.901675 0.432415i \(-0.142338\pi\)
−0.269271 + 0.963064i \(0.586783\pi\)
\(458\) −12.7760 −0.596985
\(459\) 0 0
\(460\) −24.9736 −1.16440
\(461\) −19.6399 16.4798i −0.914720 0.767541i 0.0582911 0.998300i \(-0.481435\pi\)
−0.973011 + 0.230758i \(0.925879\pi\)
\(462\) 0 0
\(463\) 3.18600 + 18.0687i 0.148066 + 0.839723i 0.964854 + 0.262786i \(0.0846412\pi\)
−0.816788 + 0.576937i \(0.804248\pi\)
\(464\) −0.186195 0.0677694i −0.00864388 0.00314612i
\(465\) 0 0
\(466\) −3.91500 + 22.2030i −0.181359 + 1.02854i
\(467\) −8.13092 + 14.0832i −0.376254 + 0.651692i −0.990514 0.137412i \(-0.956121\pi\)
0.614260 + 0.789104i \(0.289455\pi\)
\(468\) 0 0
\(469\) −2.15139 3.72632i −0.0993421 0.172066i
\(470\) −23.6640 + 8.61301i −1.09154 + 0.397288i
\(471\) 0 0
\(472\) 12.3218 10.3392i 0.567155 0.475900i
\(473\) 0.0499599 0.0419213i 0.00229716 0.00192755i
\(474\) 0 0
\(475\) 6.70328 2.43979i 0.307567 0.111945i
\(476\) 0.473317 + 0.819809i 0.0216944 + 0.0375759i
\(477\) 0 0
\(478\) −5.89354 + 10.2079i −0.269564 + 0.466899i
\(479\) 1.64475 9.32781i 0.0751503 0.426199i −0.923900 0.382633i \(-0.875017\pi\)
0.999051 0.0435653i \(-0.0138716\pi\)
\(480\) 0 0
\(481\) 17.1625 + 6.24665i 0.782544 + 0.284823i
\(482\) 1.17512 + 6.66444i 0.0535253 + 0.303557i
\(483\) 0 0
\(484\) 11.3743 + 9.54420i 0.517015 + 0.433827i
\(485\) −40.7928 −1.85231
\(486\) 0 0
\(487\) −0.467564 −0.0211874 −0.0105937 0.999944i \(-0.503372\pi\)
−0.0105937 + 0.999944i \(0.503372\pi\)
\(488\) 24.4228 + 20.4931i 1.10557 + 0.927680i
\(489\) 0 0
\(490\) −0.516943 2.93173i −0.0233531 0.132442i
\(491\) 23.5365 + 8.56657i 1.06219 + 0.386604i 0.813249 0.581916i \(-0.197697\pi\)
0.248937 + 0.968520i \(0.419919\pi\)
\(492\) 0 0
\(493\) 0.0180882 0.102583i 0.000814649 0.00462011i
\(494\) 2.91504 5.04899i 0.131154 0.227165i
\(495\) 0 0
\(496\) −0.771653 1.33654i −0.0346482 0.0600125i
\(497\) −0.827531 + 0.301197i −0.0371198 + 0.0135105i
\(498\) 0 0
\(499\) −10.7508 + 9.02098i −0.481271 + 0.403835i −0.850886 0.525351i \(-0.823934\pi\)
0.369615 + 0.929185i \(0.379490\pi\)
\(500\) 6.97299 5.85103i 0.311842 0.261666i
\(501\) 0 0
\(502\) −17.4894 + 6.36563i −0.780591 + 0.284112i
\(503\) 14.1558 + 24.5186i 0.631176 + 1.09323i 0.987312 + 0.158794i \(0.0507607\pi\)
−0.356136 + 0.934434i \(0.615906\pi\)
\(504\) 0 0
\(505\) 5.50701 9.53842i 0.245059 0.424454i
\(506\) 0.232927 1.32100i 0.0103549 0.0587254i
\(507\) 0 0
\(508\) −23.5421 8.56864i −1.04451 0.380172i
\(509\) 4.98152 + 28.2516i 0.220802 + 1.25223i 0.870549 + 0.492081i \(0.163764\pi\)
−0.649747 + 0.760150i \(0.725125\pi\)
\(510\) 0 0
\(511\) 9.15258 + 7.67992i 0.404886 + 0.339740i
\(512\) 6.25700 0.276523
\(513\) 0 0
\(514\) −5.50264 −0.242711
\(515\) −12.4691 10.4628i −0.549456 0.461048i
\(516\) 0 0
\(517\) 0.496322 + 2.81478i 0.0218282 + 0.123794i
\(518\) 12.5178 + 4.55610i 0.550000 + 0.200184i
\(519\) 0 0
\(520\) −3.35652 + 19.0358i −0.147193 + 0.834774i
\(521\) −12.4548 + 21.5724i −0.545655 + 0.945102i 0.452910 + 0.891556i \(0.350386\pi\)
−0.998565 + 0.0535462i \(0.982948\pi\)
\(522\) 0 0
\(523\) 12.9324 + 22.3995i 0.565494 + 0.979464i 0.997004 + 0.0773554i \(0.0246476\pi\)
−0.431510 + 0.902108i \(0.642019\pi\)
\(524\) −18.1472 + 6.60504i −0.792765 + 0.288543i
\(525\) 0 0
\(526\) −2.05872 + 1.72747i −0.0897645 + 0.0753214i
\(527\) 0.621510 0.521509i 0.0270734 0.0227173i
\(528\) 0 0
\(529\) −20.4421 + 7.44030i −0.888785 + 0.323491i
\(530\) 5.98556 + 10.3673i 0.259996 + 0.450327i
\(531\) 0 0
\(532\) −4.49274 + 7.78166i −0.194785 + 0.337378i
\(533\) 4.40758 24.9966i 0.190913 1.08272i
\(534\) 0 0
\(535\) −0.669202 0.243569i −0.0289321 0.0105304i
\(536\) −0.845985 4.79782i −0.0365410 0.207234i
\(537\) 0 0
\(538\) −7.82341 6.56462i −0.337291 0.283021i
\(539\) −0.337880 −0.0145535
\(540\) 0 0
\(541\) −21.9158 −0.942232 −0.471116 0.882071i \(-0.656149\pi\)
−0.471116 + 0.882071i \(0.656149\pi\)
\(542\) −14.4639 12.1366i −0.621277 0.521313i
\(543\) 0 0
\(544\) 0.296987 + 1.68430i 0.0127332 + 0.0722137i
\(545\) 22.1136 + 8.04869i 0.947242 + 0.344768i
\(546\) 0 0
\(547\) −1.73232 + 9.82449i −0.0740688 + 0.420065i 0.925116 + 0.379685i \(0.123968\pi\)
−0.999184 + 0.0403794i \(0.987143\pi\)
\(548\) 13.3621 23.1439i 0.570802 0.988658i
\(549\) 0 0
\(550\) −0.256815 0.444816i −0.0109506 0.0189670i
\(551\) 0.929115 0.338170i 0.0395816 0.0144065i
\(552\) 0 0
\(553\) 1.46175 1.22655i 0.0621598 0.0521582i
\(554\) 2.56729 2.15421i 0.109074 0.0915237i
\(555\) 0 0
\(556\) −22.8487 + 8.31625i −0.969002 + 0.352688i
\(557\) −9.26650 16.0500i −0.392634 0.680062i 0.600162 0.799879i \(-0.295103\pi\)
−0.992796 + 0.119816i \(0.961769\pi\)
\(558\) 0 0
\(559\) −0.340480 + 0.589729i −0.0144008 + 0.0249429i
\(560\) 0.633374 3.59204i 0.0267649 0.151792i
\(561\) 0 0
\(562\) −16.2960 5.93126i −0.687406 0.250195i
\(563\) −7.58549 43.0194i −0.319690 1.81305i −0.544625 0.838680i \(-0.683328\pi\)
0.224935 0.974374i \(-0.427783\pi\)
\(564\) 0 0
\(565\) 6.57055 + 5.51335i 0.276425 + 0.231948i
\(566\) 4.18985 0.176113
\(567\) 0 0
\(568\) −0.997105 −0.0418376
\(569\) −10.3927 8.72050i −0.435684 0.365582i 0.398407 0.917209i \(-0.369563\pi\)
−0.834091 + 0.551626i \(0.814007\pi\)
\(570\) 0 0
\(571\) 4.12392 + 23.3879i 0.172581 + 0.978754i 0.940899 + 0.338686i \(0.109983\pi\)
−0.768319 + 0.640068i \(0.778906\pi\)
\(572\) 0.833546 + 0.303386i 0.0348523 + 0.0126852i
\(573\) 0 0
\(574\) 3.21474 18.2317i 0.134181 0.760977i
\(575\) −8.56844 + 14.8410i −0.357329 + 0.618911i
\(576\) 0 0
\(577\) 4.05951 + 7.03128i 0.169000 + 0.292716i 0.938068 0.346450i \(-0.112613\pi\)
−0.769069 + 0.639166i \(0.779280\pi\)
\(578\) 12.7394 4.63676i 0.529889 0.192864i
\(579\) 0 0
\(580\) −1.01535 + 0.851982i −0.0421602 + 0.0353766i
\(581\) 5.01738 4.21008i 0.208156 0.174664i
\(582\) 0 0
\(583\) 1.27677 0.464704i 0.0528782 0.0192461i
\(584\) 6.76397 + 11.7155i 0.279895 + 0.484793i
\(585\) 0 0
\(586\) −2.46156 + 4.26354i −0.101686 + 0.176125i
\(587\) 0.641108 3.63590i 0.0264614 0.150070i −0.968714 0.248178i \(-0.920168\pi\)
0.995176 + 0.0981085i \(0.0312792\pi\)
\(588\) 0 0
\(589\) 7.23668 + 2.63394i 0.298182 + 0.108530i
\(590\) −2.28757 12.9734i −0.0941777 0.534108i
\(591\) 0 0
\(592\) −2.98925 2.50828i −0.122858 0.103090i
\(593\) −29.4590 −1.20974 −0.604869 0.796325i \(-0.706774\pi\)
−0.604869 + 0.796325i \(0.706774\pi\)
\(594\) 0 0
\(595\) 1.91749 0.0786093
\(596\) 16.9402 + 14.2145i 0.693897 + 0.582248i
\(597\) 0 0
\(598\) 2.43206 + 13.7929i 0.0994544 + 0.564034i
\(599\) −20.5561 7.48182i −0.839901 0.305699i −0.113985 0.993482i \(-0.536362\pi\)
−0.725916 + 0.687783i \(0.758584\pi\)
\(600\) 0 0
\(601\) 6.34175 35.9658i 0.258685 1.46708i −0.527748 0.849401i \(-0.676963\pi\)
0.786433 0.617676i \(-0.211926\pi\)
\(602\) −0.248335 + 0.430130i −0.0101214 + 0.0175308i
\(603\) 0 0
\(604\) 9.68946 + 16.7826i 0.394258 + 0.682876i
\(605\) 28.2624 10.2867i 1.14903 0.418212i
\(606\) 0 0
\(607\) −5.04120 + 4.23007i −0.204616 + 0.171693i −0.739337 0.673335i \(-0.764861\pi\)
0.534721 + 0.845029i \(0.320417\pi\)
\(608\) −12.4360 + 10.4351i −0.504347 + 0.423198i
\(609\) 0 0
\(610\) 24.5364 8.93053i 0.993451 0.361586i
\(611\) −14.9217 25.8451i −0.603667 1.04558i
\(612\) 0 0
\(613\) 3.57434 6.19093i 0.144366 0.250049i −0.784770 0.619787i \(-0.787219\pi\)
0.929136 + 0.369737i \(0.120552\pi\)
\(614\) 2.64503 15.0007i 0.106745 0.605379i
\(615\) 0 0
\(616\) 1.50363 + 0.547277i 0.0605831 + 0.0220504i
\(617\) −2.87170 16.2862i −0.115610 0.655659i −0.986446 0.164085i \(-0.947533\pi\)
0.870836 0.491574i \(-0.163578\pi\)
\(618\) 0 0
\(619\) −1.14857 0.963764i −0.0461649 0.0387369i 0.619413 0.785065i \(-0.287371\pi\)
−0.665578 + 0.746328i \(0.731815\pi\)
\(620\) −10.3236 −0.414608
\(621\) 0 0
\(622\) 17.2704 0.692481
\(623\) −19.0282 15.9665i −0.762347 0.639685i
\(624\) 0 0
\(625\) −5.42585 30.7715i −0.217034 1.23086i
\(626\) 2.87237 + 1.04546i 0.114803 + 0.0417849i
\(627\) 0 0
\(628\) −0.179951 + 1.02055i −0.00718082 + 0.0407244i
\(629\) 1.02570 1.77657i 0.0408974 0.0708363i
\(630\) 0 0
\(631\) 17.9456 + 31.0827i 0.714404 + 1.23738i 0.963189 + 0.268826i \(0.0866356\pi\)
−0.248785 + 0.968559i \(0.580031\pi\)
\(632\) 2.03023 0.738945i 0.0807584 0.0293936i
\(633\) 0 0
\(634\) −2.61228 + 2.19196i −0.103747 + 0.0870539i
\(635\) −38.8745 + 32.6195i −1.54269 + 1.29447i
\(636\) 0 0
\(637\) 3.31515 1.20661i 0.131351 0.0478078i
\(638\) −0.0355961 0.0616542i −0.00140926 0.00244091i
\(639\) 0 0
\(640\) 12.1112 20.9772i 0.478738 0.829198i
\(641\) −6.81186 + 38.6320i −0.269052 + 1.52587i 0.488190 + 0.872738i \(0.337657\pi\)
−0.757242 + 0.653134i \(0.773454\pi\)
\(642\) 0 0
\(643\) 9.79019 + 3.56334i 0.386087 + 0.140524i 0.527769 0.849388i \(-0.323029\pi\)
−0.141682 + 0.989912i \(0.545251\pi\)
\(644\) −3.74837 21.2580i −0.147706 0.837684i
\(645\) 0 0
\(646\) −0.501630 0.420917i −0.0197364 0.0165608i
\(647\) 39.1517 1.53921 0.769606 0.638519i \(-0.220453\pi\)
0.769606 + 0.638519i \(0.220453\pi\)
\(648\) 0 0
\(649\) −1.49518 −0.0586910
\(650\) 4.10826 + 3.44724i 0.161139 + 0.135212i
\(651\) 0 0
\(652\) −1.20894 6.85623i −0.0473457 0.268511i
\(653\) 30.9252 + 11.2558i 1.21020 + 0.440475i 0.866772 0.498705i \(-0.166191\pi\)
0.343424 + 0.939180i \(0.388413\pi\)
\(654\) 0 0
\(655\) −6.79273 + 38.5235i −0.265414 + 1.50524i
\(656\) −2.71152 + 4.69649i −0.105867 + 0.183367i
\(657\) 0 0
\(658\) −10.8834 18.8506i −0.424279 0.734873i
\(659\) −20.2677 + 7.37683i −0.789517 + 0.287361i −0.705135 0.709073i \(-0.749114\pi\)
−0.0843816 + 0.996434i \(0.526891\pi\)
\(660\) 0 0
\(661\) 20.1442 16.9030i 0.783518 0.657450i −0.160614 0.987017i \(-0.551347\pi\)
0.944132 + 0.329568i \(0.106903\pi\)
\(662\) −8.77646 + 7.36433i −0.341107 + 0.286223i
\(663\) 0 0
\(664\) 6.96869 2.53640i 0.270438 0.0984313i
\(665\) 9.10043 + 15.7624i 0.352900 + 0.611240i
\(666\) 0 0
\(667\) −1.18764 + 2.05705i −0.0459855 + 0.0796493i
\(668\) 2.09832 11.9002i 0.0811866 0.460432i
\(669\) 0 0
\(670\) −3.74941 1.36467i −0.144852 0.0527219i
\(671\) −0.514619 2.91855i −0.0198666 0.112669i
\(672\) 0 0
\(673\) 8.82645 + 7.40627i 0.340235 + 0.285491i 0.796855 0.604171i \(-0.206496\pi\)
−0.456620 + 0.889662i \(0.650940\pi\)
\(674\) 28.6293 1.10276
\(675\) 0 0
\(676\) 8.38635 0.322552
\(677\) 25.9881 + 21.8066i 0.998803 + 0.838095i 0.986818 0.161833i \(-0.0517407\pi\)
0.0119845 + 0.999928i \(0.496185\pi\)
\(678\) 0 0
\(679\) −6.12273 34.7237i −0.234969 1.33257i
\(680\) 2.04014 + 0.742551i 0.0782359 + 0.0284755i
\(681\) 0 0
\(682\) 0.0962881 0.546077i 0.00368706 0.0209104i
\(683\) 18.3777 31.8310i 0.703201 1.21798i −0.264135 0.964486i \(-0.585087\pi\)
0.967337 0.253495i \(-0.0815801\pi\)
\(684\) 0 0
\(685\) −27.0661 46.8799i −1.03414 1.79119i
\(686\) 14.9494 5.44113i 0.570771 0.207743i
\(687\) 0 0
\(688\) 0.111452 0.0935197i 0.00424908 0.00356540i
\(689\) −10.8676 + 9.11900i −0.414023 + 0.347406i
\(690\) 0 0
\(691\) −12.5713 + 4.57559i −0.478236 + 0.174064i −0.569879 0.821728i \(-0.693010\pi\)
0.0916438 + 0.995792i \(0.470788\pi\)
\(692\) 4.62331 + 8.00781i 0.175752 + 0.304411i
\(693\) 0 0
\(694\) −7.79146 + 13.4952i −0.295760 + 0.512271i
\(695\) −8.55257 + 48.5040i −0.324417 + 1.83986i
\(696\) 0 0
\(697\) −2.67899 0.975072i −0.101474 0.0369335i
\(698\) −1.11635 6.33114i −0.0422545 0.239637i
\(699\) 0 0
\(700\) −6.33178 5.31299i −0.239319 0.200812i
\(701\) −5.00452 −0.189018 −0.0945091 0.995524i \(-0.530128\pi\)
−0.0945091 + 0.995524i \(0.530128\pi\)
\(702\) 0 0
\(703\) 19.4720 0.734400
\(704\) 0.681540 + 0.571880i 0.0256865 + 0.0215535i
\(705\) 0 0
\(706\) −1.21839 6.90982i −0.0458546 0.260055i
\(707\) 8.94587 + 3.25603i 0.336444 + 0.122456i
\(708\) 0 0
\(709\) 2.97700 16.8834i 0.111804 0.634069i −0.876480 0.481439i \(-0.840114\pi\)
0.988283 0.152631i \(-0.0487745\pi\)
\(710\) −0.408315 + 0.707223i −0.0153238 + 0.0265416i
\(711\) 0 0
\(712\) −14.0623 24.3566i −0.527006 0.912800i
\(713\) −17.3848 + 6.32755i −0.651066 + 0.236969i
\(714\) 0 0
\(715\) 1.37641 1.15495i 0.0514748 0.0431925i
\(716\) −19.0806 + 16.0105i −0.713075 + 0.598341i
\(717\) 0 0
\(718\) −6.23483 + 2.26929i −0.232682 + 0.0846893i
\(719\) −21.6760 37.5439i −0.808377 1.40015i −0.913987 0.405742i \(-0.867013\pi\)
0.105610 0.994408i \(-0.466320\pi\)
\(720\) 0 0
\(721\) 7.03467 12.1844i 0.261985 0.453771i
\(722\) −1.56515 + 8.87639i −0.0582488 + 0.330345i
\(723\) 0 0
\(724\) 14.4479 + 5.25862i 0.536954 + 0.195435i
\(725\) 0.157937 + 0.895706i 0.00586564 + 0.0332657i
\(726\) 0 0
\(727\) −27.8410 23.3614i −1.03257 0.866427i −0.0414130 0.999142i \(-0.513186\pi\)
−0.991154 + 0.132715i \(0.957630\pi\)
\(728\) −16.7075 −0.619220
\(729\) 0 0
\(730\) 11.0794 0.410067
\(731\) 0.0585911 + 0.0491638i 0.00216707 + 0.00181839i
\(732\) 0 0
\(733\) 0.672992 + 3.81673i 0.0248575 + 0.140974i 0.994711 0.102716i \(-0.0327532\pi\)
−0.969853 + 0.243690i \(0.921642\pi\)
\(734\) 11.1471 + 4.05721i 0.411447 + 0.149754i
\(735\) 0 0
\(736\) 6.77217 38.4069i 0.249626 1.41570i
\(737\) −0.226432 + 0.392191i −0.00834071 + 0.0144465i
\(738\) 0 0
\(739\) −13.2241 22.9048i −0.486456 0.842567i 0.513422 0.858136i \(-0.328377\pi\)
−0.999879 + 0.0155689i \(0.995044\pi\)
\(740\) −24.5288 + 8.92774i −0.901695 + 0.328190i
\(741\) 0 0
\(742\) −7.92648 + 6.65110i −0.290990 + 0.244170i
\(743\) 10.3135 8.65408i 0.378367 0.317487i −0.433694 0.901060i \(-0.642790\pi\)
0.812061 + 0.583573i \(0.198346\pi\)
\(744\) 0 0
\(745\) 42.0921 15.3203i 1.54213 0.561291i
\(746\) −10.2329 17.7238i −0.374651 0.648915i
\(747\) 0 0
\(748\) 0.0498160 0.0862839i 0.00182145 0.00315485i
\(749\) 0.106889 0.606197i 0.00390564 0.0221500i
\(750\) 0 0
\(751\) −3.54105 1.28884i −0.129215 0.0470303i 0.276603 0.960984i \(-0.410791\pi\)
−0.405818 + 0.913954i \(0.633013\pi\)
\(752\) 1.10721 + 6.27932i 0.0403759 + 0.228983i
\(753\) 0 0
\(754\) 0.569430 + 0.477809i 0.0207374 + 0.0174008i
\(755\) 39.2536 1.42859
\(756\) 0 0
\(757\) −33.7073 −1.22511 −0.612556 0.790427i \(-0.709859\pi\)
−0.612556 + 0.790427i \(0.709859\pi\)
\(758\) 12.3565 + 10.3683i 0.448808 + 0.376595i
\(759\) 0 0
\(760\) 3.57853 + 20.2948i 0.129807 + 0.736171i
\(761\) −9.07314 3.30235i −0.328901 0.119710i 0.172292 0.985046i \(-0.444883\pi\)
−0.501192 + 0.865336i \(0.667105\pi\)
\(762\) 0 0
\(763\) −3.53211 + 20.0316i −0.127871 + 0.725193i
\(764\) −4.65533 + 8.06327i −0.168424 + 0.291719i
\(765\) 0 0
\(766\) −9.56272 16.5631i −0.345515 0.598450i
\(767\) 14.6701 5.33949i 0.529708 0.192798i
\(768\) 0 0
\(769\) 29.6544 24.8830i 1.06936 0.897302i 0.0743687 0.997231i \(-0.476306\pi\)
0.994995 + 0.0999284i \(0.0318614\pi\)
\(770\) 1.00391 0.842380i 0.0361784 0.0303573i
\(771\) 0 0
\(772\) 26.0403 9.47789i 0.937210 0.341117i
\(773\) 12.1519 + 21.0478i 0.437075 + 0.757036i 0.997462 0.0711944i \(-0.0226811\pi\)
−0.560387 + 0.828231i \(0.689348\pi\)
\(774\) 0 0
\(775\) −3.54205 + 6.13500i −0.127234 + 0.220376i
\(776\) 6.93246 39.3159i 0.248861 1.41136i
\(777\) 0 0
\(778\) 28.6011 + 10.4099i 1.02540 + 0.373214i
\(779\) −4.69910 26.6499i −0.168363 0.954833i<