Properties

Label 243.2.e.a.136.1
Level $243$
Weight $2$
Character 243.136
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 136.1
Root \(0.500000 - 0.0126039i\) of defining polynomial
Character \(\chi\) \(=\) 243.136
Dual form 243.2.e.a.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28765 - 1.08047i) q^{2} +(0.143341 + 0.812925i) q^{4} +(-1.06142 - 0.386327i) q^{5} +(-0.678777 + 3.84954i) q^{7} +(-0.987144 + 1.70978i) q^{8} +O(q^{10})\) \(q+(-1.28765 - 1.08047i) q^{2} +(0.143341 + 0.812925i) q^{4} +(-1.06142 - 0.386327i) q^{5} +(-0.678777 + 3.84954i) q^{7} +(-0.987144 + 1.70978i) q^{8} +(0.949332 + 1.64429i) q^{10} +(-1.75765 + 0.639734i) q^{11} +(-0.561203 + 0.470905i) q^{13} +(5.03334 - 4.22347i) q^{14} +(4.66984 - 1.69968i) q^{16} +(0.944822 + 1.63648i) q^{17} +(-1.37143 + 2.37538i) q^{19} +(0.161910 - 0.918235i) q^{20} +(2.95446 + 1.07534i) q^{22} +(1.01197 + 5.73916i) q^{23} +(-2.85285 - 2.39382i) q^{25} +1.23143 q^{26} -3.22668 q^{28} +(4.07531 + 3.41959i) q^{29} +(0.232793 + 1.32023i) q^{31} +(-4.13914 - 1.50652i) q^{32} +(0.551563 - 3.12807i) q^{34} +(2.20765 - 3.82376i) q^{35} +(-1.69806 - 2.94112i) q^{37} +(4.33245 - 1.57688i) q^{38} +(1.70831 - 1.43345i) q^{40} +(-1.37607 + 1.15466i) q^{41} +(-4.72680 + 1.72041i) q^{43} +(-0.771999 - 1.33714i) q^{44} +(4.89793 - 8.48346i) q^{46} +(-0.296709 + 1.68272i) q^{47} +(-7.78035 - 2.83182i) q^{49} +(1.08703 + 6.16483i) q^{50} +(-0.463253 - 0.388716i) q^{52} -2.84494 q^{53} +2.11276 q^{55} +(-5.91183 - 4.96061i) q^{56} +(-1.55282 - 8.80649i) q^{58} +(-10.5810 - 3.85116i) q^{59} +(0.908335 - 5.15142i) q^{61} +(1.12672 - 1.95153i) q^{62} +(-1.26751 - 2.19540i) q^{64} +(0.777597 - 0.283022i) q^{65} +(-1.44708 + 1.21424i) q^{67} +(-1.19490 + 1.00264i) q^{68} +(-6.97415 + 2.53838i) q^{70} +(-6.09193 - 10.5515i) q^{71} +(-4.94384 + 8.56298i) q^{73} +(-0.991282 + 5.62184i) q^{74} +(-2.12759 - 0.774379i) q^{76} +(-1.26962 - 7.20039i) q^{77} +(9.46285 + 7.94028i) q^{79} -5.61331 q^{80} +3.01948 q^{82} +(8.94982 + 7.50979i) q^{83} +(-0.370641 - 2.10201i) q^{85} +(7.94533 + 2.89186i) q^{86} +(0.641252 - 3.63672i) q^{88} +(-2.86437 + 4.96123i) q^{89} +(-1.43183 - 2.48001i) q^{91} +(-4.52045 + 1.64531i) q^{92} +(2.20018 - 1.84617i) q^{94} +(2.37334 - 1.99147i) q^{95} +(0.322670 - 0.117442i) q^{97} +(6.95870 + 12.0528i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} + 3 q^{13} + 21 q^{14} + 9 q^{16} - 9 q^{17} - 3 q^{19} - 24 q^{20} + 12 q^{22} + 12 q^{23} + 12 q^{25} + 30 q^{26} - 12 q^{28} + 24 q^{29} + 12 q^{31} - 27 q^{32} - 12 q^{35} - 3 q^{37} + 30 q^{38} - 15 q^{40} - 6 q^{41} - 15 q^{43} - 3 q^{44} - 3 q^{46} - 12 q^{47} - 33 q^{49} - 21 q^{50} - 45 q^{52} + 18 q^{53} - 12 q^{55} - 30 q^{56} - 51 q^{58} + 3 q^{59} - 33 q^{61} + 12 q^{62} + 12 q^{64} - 21 q^{65} - 6 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} + 21 q^{74} + 6 q^{76} + 12 q^{77} + 21 q^{79} - 42 q^{80} - 12 q^{82} + 6 q^{83} + 36 q^{85} + 21 q^{86} + 42 q^{88} - 9 q^{89} + 6 q^{91} + 3 q^{92} + 48 q^{94} - 3 q^{95} + 39 q^{97} + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28765 1.08047i −0.910508 0.764007i 0.0617072 0.998094i \(-0.480346\pi\)
−0.972216 + 0.234087i \(0.924790\pi\)
\(3\) 0 0
\(4\) 0.143341 + 0.812925i 0.0716703 + 0.406463i
\(5\) −1.06142 0.386327i −0.474683 0.172771i 0.0935894 0.995611i \(-0.470166\pi\)
−0.568273 + 0.822840i \(0.692388\pi\)
\(6\) 0 0
\(7\) −0.678777 + 3.84954i −0.256554 + 1.45499i 0.535499 + 0.844536i \(0.320124\pi\)
−0.792053 + 0.610453i \(0.790988\pi\)
\(8\) −0.987144 + 1.70978i −0.349008 + 0.604500i
\(9\) 0 0
\(10\) 0.949332 + 1.64429i 0.300205 + 0.519971i
\(11\) −1.75765 + 0.639734i −0.529953 + 0.192887i −0.593117 0.805116i \(-0.702103\pi\)
0.0631646 + 0.998003i \(0.479881\pi\)
\(12\) 0 0
\(13\) −0.561203 + 0.470905i −0.155650 + 0.130606i −0.717287 0.696778i \(-0.754616\pi\)
0.561637 + 0.827384i \(0.310172\pi\)
\(14\) 5.03334 4.22347i 1.34522 1.12877i
\(15\) 0 0
\(16\) 4.66984 1.69968i 1.16746 0.424921i
\(17\) 0.944822 + 1.63648i 0.229153 + 0.396905i 0.957557 0.288243i \(-0.0930711\pi\)
−0.728404 + 0.685147i \(0.759738\pi\)
\(18\) 0 0
\(19\) −1.37143 + 2.37538i −0.314627 + 0.544950i −0.979358 0.202133i \(-0.935213\pi\)
0.664731 + 0.747083i \(0.268546\pi\)
\(20\) 0.161910 0.918235i 0.0362041 0.205324i
\(21\) 0 0
\(22\) 2.95446 + 1.07534i 0.629893 + 0.229262i
\(23\) 1.01197 + 5.73916i 0.211010 + 1.19670i 0.887697 + 0.460428i \(0.152304\pi\)
−0.676687 + 0.736271i \(0.736585\pi\)
\(24\) 0 0
\(25\) −2.85285 2.39382i −0.570570 0.478765i
\(26\) 1.23143 0.241504
\(27\) 0 0
\(28\) −3.22668 −0.609786
\(29\) 4.07531 + 3.41959i 0.756765 + 0.635002i 0.937283 0.348570i \(-0.113333\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(30\) 0 0
\(31\) 0.232793 + 1.32023i 0.0418108 + 0.237121i 0.998550 0.0538247i \(-0.0171412\pi\)
−0.956740 + 0.290946i \(0.906030\pi\)
\(32\) −4.13914 1.50652i −0.731703 0.266318i
\(33\) 0 0
\(34\) 0.551563 3.12807i 0.0945923 0.536459i
\(35\) 2.20765 3.82376i 0.373161 0.646334i
\(36\) 0 0
\(37\) −1.69806 2.94112i −0.279159 0.483517i 0.692017 0.721881i \(-0.256722\pi\)
−0.971176 + 0.238364i \(0.923389\pi\)
\(38\) 4.33245 1.57688i 0.702817 0.255804i
\(39\) 0 0
\(40\) 1.70831 1.43345i 0.270108 0.226648i
\(41\) −1.37607 + 1.15466i −0.214906 + 0.180328i −0.743886 0.668307i \(-0.767019\pi\)
0.528980 + 0.848635i \(0.322575\pi\)
\(42\) 0 0
\(43\) −4.72680 + 1.72041i −0.720830 + 0.262361i −0.676278 0.736646i \(-0.736408\pi\)
−0.0445518 + 0.999007i \(0.514186\pi\)
\(44\) −0.771999 1.33714i −0.116383 0.201582i
\(45\) 0 0
\(46\) 4.89793 8.48346i 0.722160 1.25082i
\(47\) −0.296709 + 1.68272i −0.0432794 + 0.245450i −0.998771 0.0495697i \(-0.984215\pi\)
0.955491 + 0.295019i \(0.0953261\pi\)
\(48\) 0 0
\(49\) −7.78035 2.83182i −1.11148 0.404545i
\(50\) 1.08703 + 6.16483i 0.153729 + 0.871839i
\(51\) 0 0
\(52\) −0.463253 0.388716i −0.0642417 0.0539052i
\(53\) −2.84494 −0.390783 −0.195391 0.980725i \(-0.562598\pi\)
−0.195391 + 0.980725i \(0.562598\pi\)
\(54\) 0 0
\(55\) 2.11276 0.284885
\(56\) −5.91183 4.96061i −0.790001 0.662890i
\(57\) 0 0
\(58\) −1.55282 8.80649i −0.203895 1.15635i
\(59\) −10.5810 3.85116i −1.37753 0.501379i −0.456099 0.889929i \(-0.650754\pi\)
−0.921427 + 0.388550i \(0.872976\pi\)
\(60\) 0 0
\(61\) 0.908335 5.15142i 0.116300 0.659572i −0.869798 0.493408i \(-0.835751\pi\)
0.986098 0.166164i \(-0.0531381\pi\)
\(62\) 1.12672 1.95153i 0.143093 0.247844i
\(63\) 0 0
\(64\) −1.26751 2.19540i −0.158439 0.274425i
\(65\) 0.777597 0.283022i 0.0964491 0.0351046i
\(66\) 0 0
\(67\) −1.44708 + 1.21424i −0.176789 + 0.148343i −0.726888 0.686756i \(-0.759034\pi\)
0.550099 + 0.835099i \(0.314590\pi\)
\(68\) −1.19490 + 1.00264i −0.144903 + 0.121588i
\(69\) 0 0
\(70\) −6.97415 + 2.53838i −0.833570 + 0.303395i
\(71\) −6.09193 10.5515i −0.722980 1.25224i −0.959800 0.280684i \(-0.909439\pi\)
0.236821 0.971553i \(-0.423895\pi\)
\(72\) 0 0
\(73\) −4.94384 + 8.56298i −0.578633 + 1.00222i 0.417004 + 0.908905i \(0.363080\pi\)
−0.995637 + 0.0933164i \(0.970253\pi\)
\(74\) −0.991282 + 5.62184i −0.115234 + 0.653526i
\(75\) 0 0
\(76\) −2.12759 0.774379i −0.244051 0.0888274i
\(77\) −1.26962 7.20039i −0.144687 0.820561i
\(78\) 0 0
\(79\) 9.46285 + 7.94028i 1.06465 + 0.893351i 0.994557 0.104189i \(-0.0332248\pi\)
0.0700965 + 0.997540i \(0.477669\pi\)
\(80\) −5.61331 −0.627587
\(81\) 0 0
\(82\) 3.01948 0.333445
\(83\) 8.94982 + 7.50979i 0.982371 + 0.824307i 0.984445 0.175691i \(-0.0562159\pi\)
−0.00207468 + 0.999998i \(0.500660\pi\)
\(84\) 0 0
\(85\) −0.370641 2.10201i −0.0402016 0.227995i
\(86\) 7.94533 + 2.89186i 0.856767 + 0.311838i
\(87\) 0 0
\(88\) 0.641252 3.63672i 0.0683576 0.387675i
\(89\) −2.86437 + 4.96123i −0.303622 + 0.525889i −0.976954 0.213452i \(-0.931529\pi\)
0.673331 + 0.739341i \(0.264863\pi\)
\(90\) 0 0
\(91\) −1.43183 2.48001i −0.150097 0.259976i
\(92\) −4.52045 + 1.64531i −0.471290 + 0.171535i
\(93\) 0 0
\(94\) 2.20018 1.84617i 0.226932 0.190418i
\(95\) 2.37334 1.99147i 0.243500 0.204320i
\(96\) 0 0
\(97\) 0.322670 0.117442i 0.0327622 0.0119245i −0.325587 0.945512i \(-0.605562\pi\)
0.358349 + 0.933588i \(0.383340\pi\)
\(98\) 6.95870 + 12.0528i 0.702935 + 1.21752i
\(99\) 0 0
\(100\) 1.53707 2.66228i 0.153707 0.266228i
\(101\) 3.02187 17.1379i 0.300687 1.70528i −0.342454 0.939535i \(-0.611258\pi\)
0.643141 0.765748i \(-0.277631\pi\)
\(102\) 0 0
\(103\) 14.8594 + 5.40837i 1.46414 + 0.532902i 0.946501 0.322700i \(-0.104590\pi\)
0.517635 + 0.855602i \(0.326813\pi\)
\(104\) −0.251158 1.42439i −0.0246280 0.139673i
\(105\) 0 0
\(106\) 3.66330 + 3.07387i 0.355811 + 0.298561i
\(107\) 16.5298 1.59800 0.798999 0.601332i \(-0.205363\pi\)
0.798999 + 0.601332i \(0.205363\pi\)
\(108\) 0 0
\(109\) −4.71844 −0.451945 −0.225972 0.974134i \(-0.572556\pi\)
−0.225972 + 0.974134i \(0.572556\pi\)
\(110\) −2.72051 2.28278i −0.259390 0.217654i
\(111\) 0 0
\(112\) 3.37321 + 19.1304i 0.318738 + 1.80765i
\(113\) 18.7420 + 6.82153i 1.76310 + 0.641715i 0.999990 0.00455445i \(-0.00144973\pi\)
0.763109 + 0.646270i \(0.223672\pi\)
\(114\) 0 0
\(115\) 1.14306 6.48264i 0.106591 0.604509i
\(116\) −2.19571 + 3.80308i −0.203867 + 0.353108i
\(117\) 0 0
\(118\) 9.46357 + 16.3914i 0.871193 + 1.50895i
\(119\) −6.94101 + 2.52632i −0.636281 + 0.231588i
\(120\) 0 0
\(121\) −5.74640 + 4.82180i −0.522400 + 0.438346i
\(122\) −6.73558 + 5.65182i −0.609811 + 0.511692i
\(123\) 0 0
\(124\) −1.03988 + 0.378486i −0.0933842 + 0.0339891i
\(125\) 4.92714 + 8.53407i 0.440697 + 0.763310i
\(126\) 0 0
\(127\) −0.534728 + 0.926176i −0.0474495 + 0.0821849i −0.888775 0.458344i \(-0.848443\pi\)
0.841325 + 0.540529i \(0.181776\pi\)
\(128\) −2.26971 + 12.8721i −0.200616 + 1.13775i
\(129\) 0 0
\(130\) −1.30707 0.475736i −0.114638 0.0417248i
\(131\) −1.32672 7.52422i −0.115916 0.657395i −0.986292 0.165007i \(-0.947235\pi\)
0.870376 0.492388i \(-0.163876\pi\)
\(132\) 0 0
\(133\) −8.21323 6.89172i −0.712178 0.597588i
\(134\) 3.17529 0.274303
\(135\) 0 0
\(136\) −3.73070 −0.319905
\(137\) −11.9890 10.0599i −1.02429 0.859479i −0.0341275 0.999417i \(-0.510865\pi\)
−0.990160 + 0.139938i \(0.955310\pi\)
\(138\) 0 0
\(139\) 1.50326 + 8.52542i 0.127505 + 0.723116i 0.979788 + 0.200036i \(0.0641060\pi\)
−0.852284 + 0.523080i \(0.824783\pi\)
\(140\) 3.42488 + 1.24655i 0.289455 + 0.105353i
\(141\) 0 0
\(142\) −3.55632 + 20.1689i −0.298439 + 1.69253i
\(143\) 0.685146 1.18671i 0.0572948 0.0992375i
\(144\) 0 0
\(145\) −3.00455 5.20403i −0.249514 0.432172i
\(146\) 15.6180 5.68448i 1.29255 0.470451i
\(147\) 0 0
\(148\) 2.14751 1.80197i 0.176524 0.148121i
\(149\) 1.88740 1.58371i 0.154622 0.129743i −0.562195 0.827005i \(-0.690043\pi\)
0.716817 + 0.697262i \(0.245598\pi\)
\(150\) 0 0
\(151\) 9.87937 3.59580i 0.803972 0.292622i 0.0928406 0.995681i \(-0.470405\pi\)
0.711131 + 0.703059i \(0.248183\pi\)
\(152\) −2.70760 4.68969i −0.219615 0.380384i
\(153\) 0 0
\(154\) −6.14497 + 10.6434i −0.495176 + 0.857669i
\(155\) 0.262950 1.49126i 0.0211206 0.119781i
\(156\) 0 0
\(157\) −0.338241 0.123110i −0.0269946 0.00982522i 0.328488 0.944508i \(-0.393461\pi\)
−0.355482 + 0.934683i \(0.615683\pi\)
\(158\) −3.60565 20.4486i −0.286850 1.62681i
\(159\) 0 0
\(160\) 3.81137 + 3.19812i 0.301315 + 0.252834i
\(161\) −22.7800 −1.79532
\(162\) 0 0
\(163\) 14.6186 1.14502 0.572508 0.819899i \(-0.305971\pi\)
0.572508 + 0.819899i \(0.305971\pi\)
\(164\) −1.13590 0.953132i −0.0886988 0.0744271i
\(165\) 0 0
\(166\) −3.41017 19.3400i −0.264680 1.50108i
\(167\) 2.04463 + 0.744184i 0.158218 + 0.0575867i 0.419915 0.907563i \(-0.362060\pi\)
−0.261697 + 0.965150i \(0.584282\pi\)
\(168\) 0 0
\(169\) −2.16423 + 12.2740i −0.166479 + 0.944150i
\(170\) −1.79390 + 3.10712i −0.137586 + 0.238306i
\(171\) 0 0
\(172\) −2.07611 3.59593i −0.158302 0.274187i
\(173\) −16.5076 + 6.00828i −1.25505 + 0.456801i −0.882105 0.471053i \(-0.843874\pi\)
−0.372945 + 0.927854i \(0.621652\pi\)
\(174\) 0 0
\(175\) 11.1516 9.35728i 0.842979 0.707344i
\(176\) −7.12061 + 5.97490i −0.536736 + 0.450375i
\(177\) 0 0
\(178\) 9.04877 3.29348i 0.678234 0.246857i
\(179\) 0.502236 + 0.869898i 0.0375388 + 0.0650192i 0.884184 0.467138i \(-0.154715\pi\)
−0.846646 + 0.532157i \(0.821382\pi\)
\(180\) 0 0
\(181\) 10.5866 18.3366i 0.786898 1.36295i −0.140961 0.990015i \(-0.545019\pi\)
0.927859 0.372932i \(-0.121647\pi\)
\(182\) −0.835869 + 4.74045i −0.0619587 + 0.351385i
\(183\) 0 0
\(184\) −10.8117 3.93513i −0.797049 0.290102i
\(185\) 0.666125 + 3.77778i 0.0489745 + 0.277748i
\(186\) 0 0
\(187\) −2.70758 2.27193i −0.197998 0.166140i
\(188\) −1.41045 −0.102868
\(189\) 0 0
\(190\) −5.20776 −0.377811
\(191\) 7.52898 + 6.31756i 0.544778 + 0.457123i 0.873168 0.487419i \(-0.162062\pi\)
−0.328390 + 0.944542i \(0.606506\pi\)
\(192\) 0 0
\(193\) −1.93723 10.9866i −0.139445 0.790833i −0.971661 0.236380i \(-0.924039\pi\)
0.832215 0.554452i \(-0.187072\pi\)
\(194\) −0.542380 0.197410i −0.0389406 0.0141732i
\(195\) 0 0
\(196\) 1.18681 6.73076i 0.0847724 0.480768i
\(197\) 4.54497 7.87212i 0.323816 0.560865i −0.657456 0.753493i \(-0.728368\pi\)
0.981272 + 0.192628i \(0.0617009\pi\)
\(198\) 0 0
\(199\) 7.34694 + 12.7253i 0.520811 + 0.902071i 0.999707 + 0.0241994i \(0.00770367\pi\)
−0.478896 + 0.877872i \(0.658963\pi\)
\(200\) 6.90910 2.51471i 0.488547 0.177817i
\(201\) 0 0
\(202\) −22.4081 + 18.8026i −1.57663 + 1.32295i
\(203\) −15.9301 + 13.3669i −1.11807 + 0.938173i
\(204\) 0 0
\(205\) 1.90667 0.693971i 0.133168 0.0484691i
\(206\) −13.2901 23.0192i −0.925968 1.60382i
\(207\) 0 0
\(208\) −1.82034 + 3.15292i −0.126218 + 0.218615i
\(209\) 0.890883 5.05245i 0.0616237 0.349485i
\(210\) 0 0
\(211\) −7.38439 2.68770i −0.508362 0.185029i 0.0750892 0.997177i \(-0.476076\pi\)
−0.583451 + 0.812148i \(0.698298\pi\)
\(212\) −0.407796 2.31273i −0.0280075 0.158839i
\(213\) 0 0
\(214\) −21.2847 17.8600i −1.45499 1.22088i
\(215\) 5.68178 0.387494
\(216\) 0 0
\(217\) −5.24030 −0.355735
\(218\) 6.07572 + 5.09813i 0.411499 + 0.345289i
\(219\) 0 0
\(220\) 0.302845 + 1.71752i 0.0204178 + 0.115795i
\(221\) −1.30086 0.473475i −0.0875055 0.0318494i
\(222\) 0 0
\(223\) −1.51784 + 8.60809i −0.101642 + 0.576440i 0.890867 + 0.454265i \(0.150098\pi\)
−0.992509 + 0.122175i \(0.961013\pi\)
\(224\) 8.60897 14.9112i 0.575211 0.996295i
\(225\) 0 0
\(226\) −16.7627 29.0339i −1.11504 1.93131i
\(227\) 3.82306 1.39148i 0.253745 0.0923558i −0.212016 0.977266i \(-0.568003\pi\)
0.465761 + 0.884910i \(0.345781\pi\)
\(228\) 0 0
\(229\) 12.3761 10.3848i 0.817837 0.686247i −0.134628 0.990896i \(-0.542984\pi\)
0.952464 + 0.304650i \(0.0985394\pi\)
\(230\) −8.47616 + 7.11235i −0.558902 + 0.468974i
\(231\) 0 0
\(232\) −9.86968 + 3.59227i −0.647976 + 0.235844i
\(233\) 8.60658 + 14.9070i 0.563836 + 0.976592i 0.997157 + 0.0753527i \(0.0240083\pi\)
−0.433321 + 0.901240i \(0.642658\pi\)
\(234\) 0 0
\(235\) 0.965013 1.67145i 0.0629505 0.109034i
\(236\) 1.61402 9.15357i 0.105064 0.595847i
\(237\) 0 0
\(238\) 11.6672 + 4.24652i 0.756274 + 0.275261i
\(239\) 0.266626 + 1.51211i 0.0172466 + 0.0978104i 0.992216 0.124529i \(-0.0397419\pi\)
−0.974969 + 0.222339i \(0.928631\pi\)
\(240\) 0 0
\(241\) −4.22985 3.54926i −0.272468 0.228628i 0.496307 0.868147i \(-0.334689\pi\)
−0.768775 + 0.639519i \(0.779134\pi\)
\(242\) 12.6092 0.810549
\(243\) 0 0
\(244\) 4.31792 0.276427
\(245\) 7.16425 + 6.01152i 0.457707 + 0.384062i
\(246\) 0 0
\(247\) −0.348931 1.97888i −0.0222019 0.125913i
\(248\) −2.48712 0.905236i −0.157932 0.0574826i
\(249\) 0 0
\(250\) 2.87634 16.3125i 0.181916 1.03170i
\(251\) −10.7204 + 18.5683i −0.676668 + 1.17202i 0.299310 + 0.954156i \(0.403244\pi\)
−0.975978 + 0.217868i \(0.930090\pi\)
\(252\) 0 0
\(253\) −5.45023 9.44007i −0.342653 0.593492i
\(254\) 1.68925 0.614837i 0.105993 0.0385783i
\(255\) 0 0
\(256\) 12.9467 10.8635i 0.809167 0.678971i
\(257\) 11.3271 9.50456i 0.706565 0.592878i −0.217068 0.976156i \(-0.569649\pi\)
0.923633 + 0.383278i \(0.125205\pi\)
\(258\) 0 0
\(259\) 12.4746 4.54037i 0.775131 0.282125i
\(260\) 0.341537 + 0.591560i 0.0211812 + 0.0366870i
\(261\) 0 0
\(262\) −6.42133 + 11.1221i −0.396711 + 0.687124i
\(263\) −0.486694 + 2.76018i −0.0300108 + 0.170200i −0.996129 0.0878987i \(-0.971985\pi\)
0.966119 + 0.258099i \(0.0830959\pi\)
\(264\) 0 0
\(265\) 3.01969 + 1.09908i 0.185498 + 0.0675158i
\(266\) 3.12950 + 17.7483i 0.191882 + 1.08822i
\(267\) 0 0
\(268\) −1.19451 1.00232i −0.0729666 0.0612262i
\(269\) 0.356528 0.0217379 0.0108689 0.999941i \(-0.496540\pi\)
0.0108689 + 0.999941i \(0.496540\pi\)
\(270\) 0 0
\(271\) −12.1467 −0.737857 −0.368928 0.929458i \(-0.620275\pi\)
−0.368928 + 0.929458i \(0.620275\pi\)
\(272\) 7.19366 + 6.03620i 0.436180 + 0.365998i
\(273\) 0 0
\(274\) 4.56818 + 25.9075i 0.275974 + 1.56513i
\(275\) 6.54573 + 2.38245i 0.394722 + 0.143667i
\(276\) 0 0
\(277\) 4.33946 24.6103i 0.260733 1.47869i −0.520183 0.854055i \(-0.674136\pi\)
0.780916 0.624636i \(-0.214752\pi\)
\(278\) 7.27577 12.6020i 0.436372 0.755818i
\(279\) 0 0
\(280\) 4.35854 + 7.54921i 0.260473 + 0.451152i
\(281\) 6.88125 2.50457i 0.410501 0.149410i −0.128511 0.991708i \(-0.541020\pi\)
0.539012 + 0.842298i \(0.318798\pi\)
\(282\) 0 0
\(283\) −11.0219 + 9.24848i −0.655185 + 0.549765i −0.908639 0.417582i \(-0.862878\pi\)
0.253454 + 0.967347i \(0.418433\pi\)
\(284\) 7.70439 6.46475i 0.457171 0.383612i
\(285\) 0 0
\(286\) −2.16443 + 0.787789i −0.127986 + 0.0465829i
\(287\) −3.51086 6.08099i −0.207240 0.358950i
\(288\) 0 0
\(289\) 6.71462 11.6301i 0.394978 0.684122i
\(290\) −1.75398 + 9.94732i −0.102997 + 0.584127i
\(291\) 0 0
\(292\) −7.66971 2.79155i −0.448836 0.163363i
\(293\) 2.50323 + 14.1965i 0.146240 + 0.829369i 0.966363 + 0.257182i \(0.0827938\pi\)
−0.820123 + 0.572187i \(0.806095\pi\)
\(294\) 0 0
\(295\) 9.74310 + 8.17543i 0.567265 + 0.475992i
\(296\) 6.70491 0.389715
\(297\) 0 0
\(298\) −4.14147 −0.239909
\(299\) −3.27052 2.74429i −0.189139 0.158707i
\(300\) 0 0
\(301\) −3.41435 19.3638i −0.196800 1.11611i
\(302\) −16.6064 6.04422i −0.955589 0.347806i
\(303\) 0 0
\(304\) −2.36695 + 13.4236i −0.135754 + 0.769899i
\(305\) −2.95426 + 5.11693i −0.169161 + 0.292995i
\(306\) 0 0
\(307\) 15.2163 + 26.3554i 0.868440 + 1.50418i 0.863591 + 0.504193i \(0.168210\pi\)
0.00484869 + 0.999988i \(0.498457\pi\)
\(308\) 5.67139 2.06422i 0.323157 0.117620i
\(309\) 0 0
\(310\) −1.94985 + 1.63612i −0.110744 + 0.0929254i
\(311\) 10.7213 8.99620i 0.607947 0.510128i −0.286042 0.958217i \(-0.592340\pi\)
0.893989 + 0.448089i \(0.147895\pi\)
\(312\) 0 0
\(313\) −20.7555 + 7.55439i −1.17317 + 0.426999i −0.853785 0.520625i \(-0.825699\pi\)
−0.319386 + 0.947625i \(0.603477\pi\)
\(314\) 0.302521 + 0.523982i 0.0170722 + 0.0295700i
\(315\) 0 0
\(316\) −5.09844 + 8.83075i −0.286810 + 0.496769i
\(317\) −3.01952 + 17.1245i −0.169593 + 0.961810i 0.774608 + 0.632441i \(0.217947\pi\)
−0.944201 + 0.329369i \(0.893164\pi\)
\(318\) 0 0
\(319\) −9.35060 3.40334i −0.523533 0.190551i
\(320\) 0.497229 + 2.81993i 0.0277959 + 0.157639i
\(321\) 0 0
\(322\) 29.3328 + 24.6131i 1.63465 + 1.37164i
\(323\) −5.18302 −0.288391
\(324\) 0 0
\(325\) 2.72829 0.151338
\(326\) −18.8237 15.7949i −1.04255 0.874800i
\(327\) 0 0
\(328\) −0.615840 3.49260i −0.0340041 0.192847i
\(329\) −6.27629 2.28438i −0.346023 0.125942i
\(330\) 0 0
\(331\) 0.150058 0.851019i 0.00824791 0.0467762i −0.980406 0.196987i \(-0.936884\pi\)
0.988654 + 0.150211i \(0.0479953\pi\)
\(332\) −4.82203 + 8.35199i −0.264643 + 0.458375i
\(333\) 0 0
\(334\) −1.82870 3.16741i −0.100062 0.173313i
\(335\) 2.00506 0.729782i 0.109548 0.0398723i
\(336\) 0 0
\(337\) 0.320612 0.269025i 0.0174648 0.0146547i −0.634013 0.773322i \(-0.718594\pi\)
0.651478 + 0.758667i \(0.274149\pi\)
\(338\) 16.0484 13.4662i 0.872918 0.732466i
\(339\) 0 0
\(340\) 1.65565 0.602606i 0.0897901 0.0326809i
\(341\) −1.25377 2.17159i −0.0678953 0.117598i
\(342\) 0 0
\(343\) 2.50108 4.33199i 0.135046 0.233906i
\(344\) 1.72450 9.78010i 0.0929786 0.527308i
\(345\) 0 0
\(346\) 27.7478 + 10.0994i 1.49173 + 0.542946i
\(347\) −4.06506 23.0541i −0.218224 1.23761i −0.875224 0.483718i \(-0.839286\pi\)
0.657000 0.753891i \(-0.271825\pi\)
\(348\) 0 0
\(349\) 16.2221 + 13.6119i 0.868347 + 0.728630i 0.963749 0.266809i \(-0.0859693\pi\)
−0.0954022 + 0.995439i \(0.530414\pi\)
\(350\) −24.4696 −1.30796
\(351\) 0 0
\(352\) 8.23894 0.439137
\(353\) −18.0361 15.1341i −0.959965 0.805506i 0.0209824 0.999780i \(-0.493321\pi\)
−0.980947 + 0.194274i \(0.937765\pi\)
\(354\) 0 0
\(355\) 2.38978 + 13.5531i 0.126837 + 0.719326i
\(356\) −4.44369 1.61737i −0.235515 0.0857204i
\(357\) 0 0
\(358\) 0.293192 1.66278i 0.0154957 0.0878805i
\(359\) −5.23047 + 9.05943i −0.276053 + 0.478139i −0.970400 0.241502i \(-0.922360\pi\)
0.694347 + 0.719640i \(0.255693\pi\)
\(360\) 0 0
\(361\) 5.73837 + 9.93915i 0.302019 + 0.523113i
\(362\) −33.4440 + 12.1726i −1.75778 + 0.639779i
\(363\) 0 0
\(364\) 1.81082 1.51946i 0.0949129 0.0796414i
\(365\) 8.55562 7.17902i 0.447822 0.375767i
\(366\) 0 0
\(367\) −19.9762 + 7.27076i −1.04275 + 0.379530i −0.805923 0.592021i \(-0.798330\pi\)
−0.236829 + 0.971551i \(0.576108\pi\)
\(368\) 14.4805 + 25.0809i 0.754848 + 1.30743i
\(369\) 0 0
\(370\) 3.22404 5.58420i 0.167610 0.290309i
\(371\) 1.93108 10.9517i 0.100257 0.568585i
\(372\) 0 0
\(373\) −2.17077 0.790096i −0.112398 0.0409096i 0.285209 0.958465i \(-0.407937\pi\)
−0.397607 + 0.917556i \(0.630159\pi\)
\(374\) 1.03167 + 5.85092i 0.0533466 + 0.302544i
\(375\) 0 0
\(376\) −2.58419 2.16839i −0.133270 0.111826i
\(377\) −3.89737 −0.200725
\(378\) 0 0
\(379\) 12.5539 0.644850 0.322425 0.946595i \(-0.395502\pi\)
0.322425 + 0.946595i \(0.395502\pi\)
\(380\) 1.95911 + 1.64389i 0.100500 + 0.0843298i
\(381\) 0 0
\(382\) −2.86878 16.2697i −0.146780 0.832428i
\(383\) −18.4692 6.72225i −0.943733 0.343491i −0.176094 0.984373i \(-0.556346\pi\)
−0.767639 + 0.640883i \(0.778569\pi\)
\(384\) 0 0
\(385\) −1.43410 + 8.13316i −0.0730883 + 0.414504i
\(386\) −9.37620 + 16.2401i −0.477236 + 0.826597i
\(387\) 0 0
\(388\) 0.141724 + 0.245472i 0.00719492 + 0.0124620i
\(389\) −17.7062 + 6.44454i −0.897742 + 0.326751i −0.749348 0.662177i \(-0.769633\pi\)
−0.148394 + 0.988928i \(0.547411\pi\)
\(390\) 0 0
\(391\) −8.43589 + 7.07855i −0.426621 + 0.357978i
\(392\) 12.5221 10.5073i 0.632463 0.530699i
\(393\) 0 0
\(394\) −14.3579 + 5.22586i −0.723342 + 0.263275i
\(395\) −6.97656 12.0838i −0.351029 0.608000i
\(396\) 0 0
\(397\) −10.0589 + 17.4225i −0.504841 + 0.874410i 0.495143 + 0.868811i \(0.335116\pi\)
−0.999984 + 0.00559897i \(0.998218\pi\)
\(398\) 4.28896 24.3239i 0.214986 1.21925i
\(399\) 0 0
\(400\) −17.3911 6.32984i −0.869554 0.316492i
\(401\) 5.34935 + 30.3377i 0.267134 + 1.51499i 0.762889 + 0.646529i \(0.223780\pi\)
−0.495755 + 0.868462i \(0.665109\pi\)
\(402\) 0 0
\(403\) −0.752349 0.631295i −0.0374772 0.0314471i
\(404\) 14.3650 0.714684
\(405\) 0 0
\(406\) 34.9549 1.73478
\(407\) 4.86613 + 4.08317i 0.241205 + 0.202395i
\(408\) 0 0
\(409\) 6.89245 + 39.0891i 0.340810 + 1.93283i 0.359849 + 0.933010i \(0.382828\pi\)
−0.0190394 + 0.999819i \(0.506061\pi\)
\(410\) −3.20495 1.16650i −0.158281 0.0576096i
\(411\) 0 0
\(412\) −2.26665 + 12.8548i −0.111670 + 0.633310i
\(413\) 22.0073 38.1178i 1.08291 1.87565i
\(414\) 0 0
\(415\) −6.59832 11.4286i −0.323899 0.561010i
\(416\) 3.03232 1.10368i 0.148672 0.0541122i
\(417\) 0 0
\(418\) −6.60617 + 5.54323i −0.323118 + 0.271128i
\(419\) −11.8286 + 9.92537i −0.577865 + 0.484886i −0.884245 0.467023i \(-0.845326\pi\)
0.306380 + 0.951909i \(0.400882\pi\)
\(420\) 0 0
\(421\) 17.0025 6.18839i 0.828649 0.301604i 0.107345 0.994222i \(-0.465765\pi\)
0.721304 + 0.692618i \(0.243543\pi\)
\(422\) 6.60456 + 11.4394i 0.321505 + 0.556863i
\(423\) 0 0
\(424\) 2.80837 4.86424i 0.136386 0.236228i
\(425\) 1.22201 6.93037i 0.0592762 0.336172i
\(426\) 0 0
\(427\) 19.2140 + 6.99334i 0.929833 + 0.338431i
\(428\) 2.36939 + 13.4375i 0.114529 + 0.649526i
\(429\) 0 0
\(430\) −7.31616 6.13899i −0.352817 0.296048i
\(431\) 28.9683 1.39535 0.697677 0.716412i \(-0.254217\pi\)
0.697677 + 0.716412i \(0.254217\pi\)
\(432\) 0 0
\(433\) −37.5902 −1.80647 −0.903235 0.429146i \(-0.858815\pi\)
−0.903235 + 0.429146i \(0.858815\pi\)
\(434\) 6.74770 + 5.66199i 0.323900 + 0.271784i
\(435\) 0 0
\(436\) −0.676344 3.83574i −0.0323910 0.183699i
\(437\) −15.0206 5.46704i −0.718531 0.261524i
\(438\) 0 0
\(439\) 1.78224 10.1076i 0.0850619 0.482410i −0.912281 0.409564i \(-0.865681\pi\)
0.997343 0.0728458i \(-0.0232081\pi\)
\(440\) −2.08560 + 3.61237i −0.0994272 + 0.172213i
\(441\) 0 0
\(442\) 1.16348 + 2.01521i 0.0553413 + 0.0958540i
\(443\) 20.5873 7.49315i 0.978130 0.356010i 0.197017 0.980400i \(-0.436875\pi\)
0.781113 + 0.624390i \(0.214652\pi\)
\(444\) 0 0
\(445\) 4.95696 4.15939i 0.234983 0.197174i
\(446\) 11.2552 9.44426i 0.532951 0.447199i
\(447\) 0 0
\(448\) 9.31164 3.38916i 0.439933 0.160123i
\(449\) 4.98565 + 8.63540i 0.235287 + 0.407530i 0.959356 0.282198i \(-0.0910635\pi\)
−0.724069 + 0.689728i \(0.757730\pi\)
\(450\) 0 0
\(451\) 1.67998 2.90981i 0.0791072 0.137018i
\(452\) −2.85890 + 16.2136i −0.134471 + 0.762625i
\(453\) 0 0
\(454\) −6.42623 2.33896i −0.301598 0.109773i
\(455\) 0.561689 + 3.18550i 0.0263324 + 0.149338i
\(456\) 0 0
\(457\) −5.83580 4.89682i −0.272987 0.229064i 0.496008 0.868318i \(-0.334799\pi\)
−0.768995 + 0.639254i \(0.779243\pi\)
\(458\) −27.1566 −1.26894
\(459\) 0 0
\(460\) 5.43375 0.253350
\(461\) 17.4662 + 14.6559i 0.813483 + 0.682593i 0.951436 0.307845i \(-0.0996080\pi\)
−0.137953 + 0.990439i \(0.544052\pi\)
\(462\) 0 0
\(463\) −1.52736 8.66211i −0.0709826 0.402562i −0.999510 0.0312986i \(-0.990036\pi\)
0.928527 0.371264i \(-0.121075\pi\)
\(464\) 24.8432 + 9.04220i 1.15332 + 0.419774i
\(465\) 0 0
\(466\) 5.02430 28.4942i 0.232746 1.31997i
\(467\) −5.49878 + 9.52416i −0.254453 + 0.440726i −0.964747 0.263180i \(-0.915229\pi\)
0.710294 + 0.703905i \(0.248562\pi\)
\(468\) 0 0
\(469\) −3.69203 6.39479i −0.170482 0.295284i
\(470\) −3.04856 + 1.10958i −0.140619 + 0.0511813i
\(471\) 0 0
\(472\) 17.0296 14.2895i 0.783852 0.657730i
\(473\) 7.20747 6.04778i 0.331400 0.278077i
\(474\) 0 0
\(475\) 9.59873 3.49365i 0.440420 0.160300i
\(476\) −3.04864 5.28040i −0.139734 0.242027i
\(477\) 0 0
\(478\) 1.29047 2.23516i 0.0590247 0.102234i
\(479\) −4.46146 + 25.3022i −0.203849 + 1.15609i 0.695391 + 0.718632i \(0.255231\pi\)
−0.899240 + 0.437455i \(0.855880\pi\)
\(480\) 0 0
\(481\) 2.33794 + 0.850941i 0.106601 + 0.0387996i
\(482\) 1.61171 + 9.14044i 0.0734112 + 0.416336i
\(483\) 0 0
\(484\) −4.74346 3.98023i −0.215612 0.180920i
\(485\) −0.387861 −0.0176119
\(486\) 0 0
\(487\) −30.3800 −1.37665 −0.688325 0.725402i \(-0.741654\pi\)
−0.688325 + 0.725402i \(0.741654\pi\)
\(488\) 7.91117 + 6.63826i 0.358122 + 0.300500i
\(489\) 0 0
\(490\) −2.72981 15.4815i −0.123320 0.699383i
\(491\) 8.18310 + 2.97840i 0.369298 + 0.134414i 0.520001 0.854166i \(-0.325932\pi\)
−0.150703 + 0.988579i \(0.548154\pi\)
\(492\) 0 0
\(493\) −1.74565 + 9.90006i −0.0786200 + 0.445876i
\(494\) −1.68882 + 2.92512i −0.0759837 + 0.131608i
\(495\) 0 0
\(496\) 3.33108 + 5.76961i 0.149570 + 0.259063i
\(497\) 44.7536 16.2890i 2.00747 0.730661i
\(498\) 0 0
\(499\) 8.91329 7.47914i 0.399014 0.334812i −0.421099 0.907015i \(-0.638355\pi\)
0.820112 + 0.572203i \(0.193911\pi\)
\(500\) −6.23130 + 5.22868i −0.278672 + 0.233834i
\(501\) 0 0
\(502\) 33.8667 12.3265i 1.51155 0.550158i
\(503\) −18.8996 32.7350i −0.842689 1.45958i −0.887613 0.460590i \(-0.847638\pi\)
0.0449234 0.998990i \(-0.485696\pi\)
\(504\) 0 0
\(505\) −9.82831 + 17.0231i −0.437354 + 0.757519i
\(506\) −3.18170 + 18.0443i −0.141444 + 0.802169i
\(507\) 0 0
\(508\) −0.829560 0.301935i −0.0368058 0.0133962i
\(509\) −4.09352 23.2155i −0.181442 1.02901i −0.930442 0.366439i \(-0.880577\pi\)
0.749000 0.662570i \(-0.230534\pi\)
\(510\) 0 0
\(511\) −29.6078 24.8439i −1.30977 1.09903i
\(512\) −2.26711 −0.100193
\(513\) 0 0
\(514\) −24.8548 −1.09630
\(515\) −13.6827 11.4811i −0.602931 0.505919i
\(516\) 0 0
\(517\) −0.554981 3.14745i −0.0244080 0.138425i
\(518\) −20.9686 7.63196i −0.921309 0.335329i
\(519\) 0 0
\(520\) −0.283694 + 1.60891i −0.0124408 + 0.0705553i
\(521\) 3.93474 6.81517i 0.172384 0.298578i −0.766869 0.641804i \(-0.778186\pi\)
0.939253 + 0.343226i \(0.111520\pi\)
\(522\) 0 0
\(523\) −16.6467 28.8330i −0.727911 1.26078i −0.957765 0.287554i \(-0.907158\pi\)
0.229854 0.973225i \(-0.426175\pi\)
\(524\) 5.92646 2.15705i 0.258898 0.0942313i
\(525\) 0 0
\(526\) 3.60898 3.02829i 0.157359 0.132040i
\(527\) −1.94059 + 1.62835i −0.0845333 + 0.0709319i
\(528\) 0 0
\(529\) −10.3010 + 3.74925i −0.447869 + 0.163011i
\(530\) −2.70080 4.67792i −0.117315 0.203196i
\(531\) 0 0
\(532\) 4.42516 7.66461i 0.191855 0.332303i
\(533\) 0.228519 1.29600i 0.00989826 0.0561358i
\(534\) 0 0
\(535\) −17.5452 6.38591i −0.758543 0.276087i
\(536\) −0.647619 3.67283i −0.0279729 0.158642i
\(537\) 0 0
\(538\) −0.459084 0.385217i −0.0197925 0.0166079i
\(539\) 15.4868 0.667062
\(540\) 0 0
\(541\) 22.4283 0.964266 0.482133 0.876098i \(-0.339862\pi\)
0.482133 + 0.876098i \(0.339862\pi\)
\(542\) 15.6407 + 13.1241i 0.671825 + 0.563728i
\(543\) 0 0
\(544\) −1.44535 8.19701i −0.0619690 0.351444i
\(545\) 5.00827 + 1.82286i 0.214531 + 0.0780827i
\(546\) 0 0
\(547\) −3.62771 + 20.5738i −0.155110 + 0.879671i 0.803576 + 0.595202i \(0.202928\pi\)
−0.958685 + 0.284468i \(0.908183\pi\)
\(548\) 6.45948 11.1881i 0.275935 0.477934i
\(549\) 0 0
\(550\) −5.85447 10.1402i −0.249635 0.432381i
\(551\) −13.7118 + 4.99070i −0.584143 + 0.212611i
\(552\) 0 0
\(553\) −36.9896 + 31.0379i −1.57296 + 1.31987i
\(554\) −32.1784 + 27.0009i −1.36713 + 1.14716i
\(555\) 0 0
\(556\) −6.71505 + 2.44408i −0.284781 + 0.103652i
\(557\) 4.28920 + 7.42911i 0.181739 + 0.314782i 0.942473 0.334283i \(-0.108494\pi\)
−0.760734 + 0.649064i \(0.775161\pi\)
\(558\) 0 0
\(559\) 1.84254 3.19137i 0.0779311 0.134981i
\(560\) 3.81019 21.6087i 0.161010 0.913132i
\(561\) 0 0
\(562\) −11.5668 4.20996i −0.487915 0.177586i
\(563\) 2.72886 + 15.4761i 0.115008 + 0.652241i 0.986746 + 0.162270i \(0.0518816\pi\)
−0.871739 + 0.489971i \(0.837007\pi\)
\(564\) 0 0
\(565\) −17.2579 14.4811i −0.726044 0.609223i
\(566\) 24.1851 1.01658
\(567\) 0 0
\(568\) 24.0545 1.00930
\(569\) −9.70792 8.14591i −0.406977 0.341494i 0.416206 0.909270i \(-0.363360\pi\)
−0.823183 + 0.567776i \(0.807804\pi\)
\(570\) 0 0
\(571\) −4.57089 25.9228i −0.191286 1.08483i −0.917610 0.397483i \(-0.869884\pi\)
0.726324 0.687352i \(-0.241227\pi\)
\(572\) 1.06291 + 0.386869i 0.0444427 + 0.0161758i
\(573\) 0 0
\(574\) −2.04955 + 11.6236i −0.0855467 + 0.485159i
\(575\) 10.8516 18.7954i 0.452541 0.783824i
\(576\) 0 0
\(577\) 11.0577 + 19.1525i 0.460338 + 0.797329i 0.998978 0.0452074i \(-0.0143949\pi\)
−0.538640 + 0.842536i \(0.681062\pi\)
\(578\) −21.2120 + 7.72055i −0.882305 + 0.321133i
\(579\) 0 0
\(580\) 3.79982 3.18842i 0.157779 0.132392i
\(581\) −34.9842 + 29.3552i −1.45139 + 1.21786i
\(582\) 0 0
\(583\) 5.00042 1.82001i 0.207096 0.0753769i
\(584\) −9.76057 16.9058i −0.403895 0.699567i
\(585\) 0 0
\(586\) 12.1156 20.9848i 0.500491 0.866876i
\(587\) −2.48371 + 14.0858i −0.102514 + 0.581385i 0.889670 + 0.456603i \(0.150934\pi\)
−0.992184 + 0.124781i \(0.960177\pi\)
\(588\) 0 0
\(589\) −3.45532 1.25763i −0.142374 0.0518199i
\(590\) −3.71243 21.0543i −0.152838 0.866790i
\(591\) 0 0
\(592\) −12.9286 10.8484i −0.531363 0.445866i
\(593\) −47.7300 −1.96004 −0.980018 0.198908i \(-0.936260\pi\)
−0.980018 + 0.198908i \(0.936260\pi\)
\(594\) 0 0
\(595\) 8.34334 0.342044
\(596\) 1.55798 + 1.30730i 0.0638174 + 0.0535492i
\(597\) 0 0
\(598\) 1.24617 + 7.06739i 0.0509598 + 0.289007i
\(599\) −0.469442 0.170863i −0.0191809 0.00698127i 0.332412 0.943134i \(-0.392138\pi\)
−0.351593 + 0.936153i \(0.614360\pi\)
\(600\) 0 0
\(601\) −2.93936 + 16.6699i −0.119899 + 0.679980i 0.864309 + 0.502962i \(0.167756\pi\)
−0.984208 + 0.177019i \(0.943355\pi\)
\(602\) −16.5254 + 28.6229i −0.673527 + 1.16658i
\(603\) 0 0
\(604\) 4.33923 + 7.51577i 0.176561 + 0.305812i
\(605\) 7.96216 2.89799i 0.323708 0.117820i
\(606\) 0 0
\(607\) 0.532119 0.446501i 0.0215981 0.0181229i −0.631925 0.775030i \(-0.717735\pi\)
0.653523 + 0.756907i \(0.273290\pi\)
\(608\) 9.25510 7.76595i 0.375344 0.314951i
\(609\) 0 0
\(610\) 9.33276 3.39685i 0.377872 0.137534i
\(611\) −0.625887 1.08407i −0.0253207 0.0438567i
\(612\) 0 0
\(613\) 16.3317 28.2873i 0.659630 1.14251i −0.321081 0.947052i \(-0.604046\pi\)
0.980711 0.195461i \(-0.0626204\pi\)
\(614\) 8.88288 50.3773i 0.358484 2.03306i
\(615\) 0 0
\(616\) 13.5644 + 4.93704i 0.546526 + 0.198919i
\(617\) −3.97384 22.5368i −0.159981 0.907296i −0.954090 0.299521i \(-0.903173\pi\)
0.794109 0.607775i \(-0.207938\pi\)
\(618\) 0 0
\(619\) 6.50045 + 5.45453i 0.261275 + 0.219236i 0.764009 0.645205i \(-0.223228\pi\)
−0.502734 + 0.864441i \(0.667673\pi\)
\(620\) 1.24998 0.0502002
\(621\) 0 0
\(622\) −23.5254 −0.943282
\(623\) −17.1542 14.3941i −0.687267 0.576686i
\(624\) 0 0
\(625\) 1.30059 + 7.37601i 0.0520236 + 0.295040i
\(626\) 34.8882 + 12.6983i 1.39441 + 0.507525i
\(627\) 0 0
\(628\) 0.0515953 0.292611i 0.00205887 0.0116765i
\(629\) 3.20872 5.55767i 0.127940 0.221599i
\(630\) 0 0
\(631\) −0.795865 1.37848i −0.0316829 0.0548763i 0.849749 0.527187i \(-0.176753\pi\)
−0.881432 + 0.472311i \(0.843420\pi\)
\(632\) −22.9174 + 8.34124i −0.911604 + 0.331797i
\(633\) 0 0
\(634\) 22.3906 18.7880i 0.889246 0.746166i
\(635\) 0.925380 0.776486i 0.0367226 0.0308139i
\(636\) 0 0
\(637\) 5.69987 2.07458i 0.225837 0.0821980i
\(638\) 8.36313 + 14.4854i 0.331099 + 0.573481i
\(639\) 0 0
\(640\) 7.38198 12.7860i 0.291798 0.505409i
\(641\) −3.76377 + 21.3454i −0.148660 + 0.843092i 0.815696 + 0.578481i \(0.196354\pi\)
−0.964355 + 0.264610i \(0.914757\pi\)
\(642\) 0 0
\(643\) 6.48582 + 2.36064i 0.255776 + 0.0930947i 0.466726 0.884402i \(-0.345434\pi\)
−0.210950 + 0.977497i \(0.567656\pi\)
\(644\) −3.26530 18.5185i −0.128671 0.729729i
\(645\) 0 0
\(646\) 6.67393 + 5.60010i 0.262582 + 0.220333i
\(647\) 6.18972 0.243343 0.121671 0.992570i \(-0.461175\pi\)
0.121671 + 0.992570i \(0.461175\pi\)
\(648\) 0 0
\(649\) 21.0614 0.826733
\(650\) −3.51309 2.94783i −0.137795 0.115624i
\(651\) 0 0
\(652\) 2.09544 + 11.8838i 0.0820636 + 0.465406i
\(653\) −25.5732 9.30790i −1.00076 0.364246i −0.210881 0.977512i \(-0.567633\pi\)
−0.789877 + 0.613265i \(0.789856\pi\)
\(654\) 0 0
\(655\) −1.49859 + 8.49894i −0.0585549 + 0.332081i
\(656\) −4.46347 + 7.73096i −0.174269 + 0.301843i
\(657\) 0 0
\(658\) 5.61348 + 9.72283i 0.218836 + 0.379035i
\(659\) 4.96345 1.80655i 0.193349 0.0703732i −0.243531 0.969893i \(-0.578306\pi\)
0.436880 + 0.899520i \(0.356084\pi\)
\(660\) 0 0
\(661\) 8.93594 7.49814i 0.347568 0.291644i −0.452245 0.891894i \(-0.649377\pi\)
0.799813 + 0.600250i \(0.204932\pi\)
\(662\) −1.11272 + 0.933685i −0.0432472 + 0.0362887i
\(663\) 0 0
\(664\) −21.6749 + 7.88902i −0.841149 + 0.306153i
\(665\) 6.05527 + 10.4880i 0.234813 + 0.406708i
\(666\) 0 0
\(667\) −15.5015 + 26.8494i −0.600220 + 1.03961i
\(668\) −0.311887 + 1.76880i −0.0120673 + 0.0684370i
\(669\) 0 0
\(670\) −3.37033 1.22670i −0.130207 0.0473915i
\(671\) 1.69900 + 9.63551i 0.0655892 + 0.371975i
\(672\) 0 0
\(673\) 37.6146 + 31.5624i 1.44994 + 1.21664i 0.932626 + 0.360845i \(0.117512\pi\)
0.517312 + 0.855797i \(0.326933\pi\)
\(674\) −0.703510 −0.0270982
\(675\) 0 0
\(676\) −10.2880 −0.395693
\(677\) 17.3272 + 14.5392i 0.665938 + 0.558789i 0.911860 0.410501i \(-0.134646\pi\)
−0.245922 + 0.969290i \(0.579091\pi\)
\(678\) 0 0
\(679\) 0.233077 + 1.32185i 0.00894469 + 0.0507279i
\(680\) 3.95986 + 1.44127i 0.151854 + 0.0552702i
\(681\) 0 0
\(682\) −0.731918 + 4.15091i −0.0280266 + 0.158947i
\(683\) −8.56931 + 14.8425i −0.327896 + 0.567932i −0.982094 0.188391i \(-0.939673\pi\)
0.654198 + 0.756323i \(0.273006\pi\)
\(684\) 0 0
\(685\) 8.83897 + 15.3095i 0.337720 + 0.584947i
\(686\) −7.90111 + 2.87577i −0.301666 + 0.109797i
\(687\) 0 0
\(688\) −19.1492 + 16.0681i −0.730057 + 0.612591i
\(689\) 1.59659 1.33970i 0.0608252 0.0510384i
\(690\) 0 0
\(691\) −17.1549 + 6.24389i −0.652605 + 0.237529i −0.647040 0.762456i \(-0.723993\pi\)
−0.00556457 + 0.999985i \(0.501771\pi\)
\(692\) −7.25049 12.5582i −0.275622 0.477392i
\(693\) 0 0
\(694\) −19.6749 + 34.0779i −0.746848 + 1.29358i
\(695\) 1.69800 9.62983i 0.0644088 0.365280i
\(696\) 0 0
\(697\) −3.18972 1.16096i −0.120819 0.0439746i
\(698\) −6.18112 35.0549i −0.233959 1.32685i
\(699\) 0 0
\(700\) 9.20524 + 7.72411i 0.347925 + 0.291944i
\(701\) 2.92075 0.110315 0.0551575 0.998478i \(-0.482434\pi\)
0.0551575 + 0.998478i \(0.482434\pi\)
\(702\) 0 0
\(703\) 9.31505 0.351324
\(704\) 3.63232 + 3.04788i 0.136898 + 0.114871i
\(705\) 0 0
\(706\) 6.87233 + 38.9749i 0.258644 + 1.46684i
\(707\) 63.9217 + 23.2656i 2.40402 + 0.874993i
\(708\) 0 0
\(709\) 5.21419 29.5711i 0.195823 1.11057i −0.715419 0.698696i \(-0.753764\pi\)
0.911242 0.411872i \(-0.135125\pi\)
\(710\) 11.5665 20.0338i 0.434084 0.751856i
\(711\) 0 0
\(712\) −5.65509 9.79490i −0.211933 0.367079i
\(713\) −7.34146 + 2.67207i −0.274940 + 0.100070i
\(714\) 0 0
\(715\) −1.18569 + 0.994910i −0.0443422 + 0.0372075i
\(716\) −0.635171 + 0.532971i −0.0237374 + 0.0199181i
\(717\) 0 0
\(718\) 16.5235 6.01405i 0.616650 0.224442i
\(719\) 20.0285 + 34.6903i 0.746936 + 1.29373i 0.949285 + 0.314418i \(0.101809\pi\)
−0.202349 + 0.979314i \(0.564857\pi\)
\(720\) 0 0
\(721\) −30.9059 + 53.5306i −1.15100 + 1.99358i
\(722\) 3.34992 18.9983i 0.124671 0.707044i
\(723\) 0 0
\(724\) 16.4238 + 5.97776i 0.610384 + 0.222162i
\(725\) −3.44034 19.5111i −0.127771 0.724626i
\(726\) 0 0
\(727\) −1.17877 0.989109i −0.0437183 0.0366840i 0.620667 0.784075i \(-0.286862\pi\)
−0.664385 + 0.747390i \(0.731306\pi\)
\(728\) 5.65371 0.209540
\(729\) 0 0
\(730\) −18.7734 −0.694834
\(731\) −7.28140 6.10982i −0.269312 0.225980i
\(732\) 0 0
\(733\) −0.262538 1.48893i −0.00969705 0.0549947i 0.979575 0.201078i \(-0.0644444\pi\)
−0.989272 + 0.146083i \(0.953333\pi\)
\(734\) 33.5783 + 12.2215i 1.23940 + 0.451104i
\(735\) 0 0
\(736\) 4.45750 25.2797i 0.164306 0.931824i
\(737\) 1.76667 3.05997i 0.0650762 0.112715i
\(738\) 0 0
\(739\) −10.6779 18.4946i −0.392792 0.680336i 0.600024 0.799982i \(-0.295157\pi\)
−0.992817 + 0.119646i \(0.961824\pi\)
\(740\) −2.97557 + 1.08302i −0.109384 + 0.0398126i
\(741\) 0 0
\(742\) −14.3196 + 12.0155i −0.525687 + 0.441104i
\(743\) 15.5727 13.0671i 0.571308 0.479384i −0.310772 0.950485i \(-0.600588\pi\)
0.882080 + 0.471101i \(0.156143\pi\)
\(744\) 0 0
\(745\) −2.61516 + 0.951841i −0.0958121 + 0.0348728i
\(746\) 1.94153 + 3.36282i 0.0710843 + 0.123122i
\(747\) 0 0
\(748\) 1.45880 2.52672i 0.0533391 0.0923860i
\(749\) −11.2201 + 63.6322i −0.409972 + 2.32507i
\(750\) 0 0
\(751\) −4.00606 1.45808i −0.146183 0.0532063i 0.267892 0.963449i \(-0.413673\pi\)
−0.414075 + 0.910243i \(0.635895\pi\)
\(752\) 1.47451 + 8.36233i 0.0537697 + 0.304943i
\(753\) 0 0
\(754\) 5.01847 + 4.21099i 0.182762 + 0.153355i
\(755\) −11.8754 −0.432189
\(756\) 0 0
\(757\) 54.3419 1.97509 0.987546 0.157332i \(-0.0502892\pi\)
0.987546 + 0.157332i \(0.0502892\pi\)
\(758\) −16.1651 13.5641i −0.587141 0.492670i
\(759\) 0 0
\(760\) 1.06215 + 6.02377i 0.0385283 + 0.218505i
\(761\) 17.0659 + 6.21147i 0.618637 + 0.225165i 0.632278 0.774741i \(-0.282120\pi\)
−0.0136411 + 0.999907i \(0.504342\pi\)
\(762\) 0 0
\(763\) 3.20277 18.1638i 0.115948 0.657574i
\(764\) −4.05650 + 7.02606i −0.146759 + 0.254194i
\(765\) 0 0
\(766\) 16.5188 + 28.6113i 0.596847 + 1.03377i
\(767\) 7.75161 2.82135i 0.279894 0.101873i
\(768\) 0 0
\(769\) 19.0398 15.9763i 0.686594 0.576121i −0.231331 0.972875i \(-0.574308\pi\)
0.917925 + 0.396755i \(0.129864\pi\)
\(770\) 10.6342 8.92319i 0.383232 0.321570i
\(771\) 0 0
\(772\) 8.65360 3.14965i 0.311450 0.113358i
\(773\) 19.2416 + 33.3274i 0.692071 + 1.19870i 0.971158 + 0.238437i \(0.0766350\pi\)
−0.279087 + 0.960266i \(0.590032\pi\)
\(774\) 0 0
\(775\) 2.49629 4.32369i 0.0896692 0.155312i
\(776\) −0.117721 + 0.667629i −0.00422594 + 0.0239665i
\(777\) 0 0
\(778\) 29.7626 + 10.8327i 1.06704 + 0.388372i
\(779\) −0.855579 4.85223i −0.0306543 0.173849i