Properties

Label 243.2.c.f.163.3
Level $243$
Weight $2$
Character 243.163
Analytic conductor $1.940$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(82,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 243.163
Dual form 243.2.c.f.82.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26604 - 2.19285i) q^{2} +(-2.20574 - 3.82045i) q^{4} +(0.233956 + 0.405223i) q^{5} +(1.61334 - 2.79439i) q^{7} -6.10607 q^{8} +1.18479 q^{10} +(-1.55303 + 2.68993i) q^{11} +(1.09240 + 1.89209i) q^{13} +(-4.08512 - 7.07564i) q^{14} +(-3.31908 + 5.74881i) q^{16} -3.00000 q^{17} +0.0418891 q^{19} +(1.03209 - 1.78763i) q^{20} +(3.93242 + 6.81115i) q^{22} +(3.05303 + 5.28801i) q^{23} +(2.39053 - 4.14052i) q^{25} +5.53209 q^{26} -14.2344 q^{28} +(3.28699 - 5.69323i) q^{29} +(3.11334 + 5.39246i) q^{31} +(2.29813 + 3.98048i) q^{32} +(-3.79813 + 6.57856i) q^{34} +1.50980 q^{35} +3.59627 q^{37} +(0.0530334 - 0.0918566i) q^{38} +(-1.42855 - 2.47432i) q^{40} +(3.85117 + 6.67042i) q^{41} +(0.294263 - 0.509678i) q^{43} +13.7023 q^{44} +15.4611 q^{46} +(-4.83022 + 8.36619i) q^{47} +(-1.70574 - 2.95442i) q^{49} +(-6.05303 - 10.4842i) q^{50} +(4.81908 - 8.34689i) q^{52} -4.95811 q^{53} -1.45336 q^{55} +(-9.85117 + 17.0627i) q^{56} +(-8.32295 - 14.4158i) q^{58} +(-4.26604 - 7.38901i) q^{59} +(0.634285 - 1.09861i) q^{61} +15.7665 q^{62} -1.63816 q^{64} +(-0.511144 + 0.885328i) q^{65} +(-5.00387 - 8.66696i) q^{67} +(6.61721 + 11.4613i) q^{68} +(1.91147 - 3.31077i) q^{70} -11.8307 q^{71} -8.23442 q^{73} +(4.55303 - 7.88609i) q^{74} +(-0.0923963 - 0.160035i) q^{76} +(5.01114 + 8.67956i) q^{77} +(-5.52481 + 9.56926i) q^{79} -3.10607 q^{80} +19.5030 q^{82} +(-0.754900 + 1.30753i) q^{83} +(-0.701867 - 1.21567i) q^{85} +(-0.745100 - 1.29055i) q^{86} +(9.48293 - 16.4249i) q^{88} +15.8726 q^{89} +7.04963 q^{91} +(13.4684 - 23.3279i) q^{92} +(12.2306 + 21.1839i) q^{94} +(0.00980018 + 0.0169744i) q^{95} +(-9.32295 + 16.1478i) q^{97} -8.63816 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + 6 q^{5} + 3 q^{7} - 12 q^{8} + 3 q^{11} + 3 q^{13} - 3 q^{14} - 3 q^{16} - 18 q^{17} - 6 q^{19} - 3 q^{20} + 6 q^{23} - 3 q^{25} + 24 q^{26} - 24 q^{28} + 12 q^{29} + 12 q^{31}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26604 2.19285i 0.895229 1.55058i 0.0617072 0.998094i \(-0.480346\pi\)
0.833521 0.552487i \(-0.186321\pi\)
\(3\) 0 0
\(4\) −2.20574 3.82045i −1.10287 1.91022i
\(5\) 0.233956 + 0.405223i 0.104628 + 0.181221i 0.913586 0.406645i \(-0.133301\pi\)
−0.808958 + 0.587866i \(0.799968\pi\)
\(6\) 0 0
\(7\) 1.61334 2.79439i 0.609786 1.05618i −0.381490 0.924373i \(-0.624589\pi\)
0.991275 0.131806i \(-0.0420778\pi\)
\(8\) −6.10607 −2.15882
\(9\) 0 0
\(10\) 1.18479 0.374664
\(11\) −1.55303 + 2.68993i −0.468257 + 0.811045i −0.999342 0.0362735i \(-0.988451\pi\)
0.531085 + 0.847319i \(0.321785\pi\)
\(12\) 0 0
\(13\) 1.09240 + 1.89209i 0.302976 + 0.524770i 0.976809 0.214114i \(-0.0686864\pi\)
−0.673832 + 0.738884i \(0.735353\pi\)
\(14\) −4.08512 7.07564i −1.09179 1.89104i
\(15\) 0 0
\(16\) −3.31908 + 5.74881i −0.829769 + 1.43720i
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 0.0418891 0.00961001 0.00480501 0.999988i \(-0.498471\pi\)
0.00480501 + 0.999988i \(0.498471\pi\)
\(20\) 1.03209 1.78763i 0.230782 0.399726i
\(21\) 0 0
\(22\) 3.93242 + 6.81115i 0.838394 + 1.45214i
\(23\) 3.05303 + 5.28801i 0.636601 + 1.10263i 0.986173 + 0.165717i \(0.0529937\pi\)
−0.349572 + 0.936910i \(0.613673\pi\)
\(24\) 0 0
\(25\) 2.39053 4.14052i 0.478106 0.828104i
\(26\) 5.53209 1.08493
\(27\) 0 0
\(28\) −14.2344 −2.69005
\(29\) 3.28699 5.69323i 0.610379 1.05721i −0.380798 0.924658i \(-0.624351\pi\)
0.991177 0.132548i \(-0.0423160\pi\)
\(30\) 0 0
\(31\) 3.11334 + 5.39246i 0.559173 + 0.968515i 0.997566 + 0.0697319i \(0.0222144\pi\)
−0.438393 + 0.898783i \(0.644452\pi\)
\(32\) 2.29813 + 3.98048i 0.406256 + 0.703657i
\(33\) 0 0
\(34\) −3.79813 + 6.57856i −0.651374 + 1.12821i
\(35\) 1.50980 0.255203
\(36\) 0 0
\(37\) 3.59627 0.591223 0.295611 0.955308i \(-0.404477\pi\)
0.295611 + 0.955308i \(0.404477\pi\)
\(38\) 0.0530334 0.0918566i 0.00860316 0.0149011i
\(39\) 0 0
\(40\) −1.42855 2.47432i −0.225873 0.391224i
\(41\) 3.85117 + 6.67042i 0.601451 + 1.04174i 0.992602 + 0.121417i \(0.0387439\pi\)
−0.391150 + 0.920327i \(0.627923\pi\)
\(42\) 0 0
\(43\) 0.294263 0.509678i 0.0448747 0.0777252i −0.842716 0.538359i \(-0.819044\pi\)
0.887590 + 0.460634i \(0.152378\pi\)
\(44\) 13.7023 2.06570
\(45\) 0 0
\(46\) 15.4611 2.27962
\(47\) −4.83022 + 8.36619i −0.704560 + 1.22033i 0.262290 + 0.964989i \(0.415522\pi\)
−0.966850 + 0.255345i \(0.917811\pi\)
\(48\) 0 0
\(49\) −1.70574 2.95442i −0.243677 0.422060i
\(50\) −6.05303 10.4842i −0.856028 1.48268i
\(51\) 0 0
\(52\) 4.81908 8.34689i 0.668286 1.15751i
\(53\) −4.95811 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(54\) 0 0
\(55\) −1.45336 −0.195971
\(56\) −9.85117 + 17.0627i −1.31642 + 2.28010i
\(57\) 0 0
\(58\) −8.32295 14.4158i −1.09286 1.89288i
\(59\) −4.26604 7.38901i −0.555392 0.961967i −0.997873 0.0651889i \(-0.979235\pi\)
0.442481 0.896778i \(-0.354098\pi\)
\(60\) 0 0
\(61\) 0.634285 1.09861i 0.0812119 0.140663i −0.822559 0.568680i \(-0.807454\pi\)
0.903771 + 0.428017i \(0.140788\pi\)
\(62\) 15.7665 2.00235
\(63\) 0 0
\(64\) −1.63816 −0.204769
\(65\) −0.511144 + 0.885328i −0.0633997 + 0.109811i
\(66\) 0 0
\(67\) −5.00387 8.66696i −0.611320 1.05884i −0.991018 0.133727i \(-0.957305\pi\)
0.379698 0.925110i \(-0.376028\pi\)
\(68\) 6.61721 + 11.4613i 0.802455 + 1.38989i
\(69\) 0 0
\(70\) 1.91147 3.31077i 0.228465 0.395713i
\(71\) −11.8307 −1.40404 −0.702022 0.712155i \(-0.747719\pi\)
−0.702022 + 0.712155i \(0.747719\pi\)
\(72\) 0 0
\(73\) −8.23442 −0.963766 −0.481883 0.876236i \(-0.660047\pi\)
−0.481883 + 0.876236i \(0.660047\pi\)
\(74\) 4.55303 7.88609i 0.529279 0.916739i
\(75\) 0 0
\(76\) −0.0923963 0.160035i −0.0105986 0.0183573i
\(77\) 5.01114 + 8.67956i 0.571073 + 0.989127i
\(78\) 0 0
\(79\) −5.52481 + 9.56926i −0.621590 + 1.07663i 0.367599 + 0.929984i \(0.380180\pi\)
−0.989190 + 0.146642i \(0.953154\pi\)
\(80\) −3.10607 −0.347269
\(81\) 0 0
\(82\) 19.5030 2.15375
\(83\) −0.754900 + 1.30753i −0.0828610 + 0.143520i −0.904478 0.426521i \(-0.859739\pi\)
0.821617 + 0.570040i \(0.193072\pi\)
\(84\) 0 0
\(85\) −0.701867 1.21567i −0.0761281 0.131858i
\(86\) −0.745100 1.29055i −0.0803462 0.139164i
\(87\) 0 0
\(88\) 9.48293 16.4249i 1.01088 1.75090i
\(89\) 15.8726 1.68249 0.841245 0.540654i \(-0.181823\pi\)
0.841245 + 0.540654i \(0.181823\pi\)
\(90\) 0 0
\(91\) 7.04963 0.739002
\(92\) 13.4684 23.3279i 1.40418 2.43210i
\(93\) 0 0
\(94\) 12.2306 + 21.1839i 1.26149 + 2.18496i
\(95\) 0.00980018 + 0.0169744i 0.00100548 + 0.00174154i
\(96\) 0 0
\(97\) −9.32295 + 16.1478i −0.946602 + 1.63956i −0.194090 + 0.980984i \(0.562176\pi\)
−0.752512 + 0.658579i \(0.771158\pi\)
\(98\) −8.63816 −0.872585
\(99\) 0 0
\(100\) −21.0915 −2.10915
\(101\) 4.54323 7.86911i 0.452069 0.783006i −0.546446 0.837494i \(-0.684020\pi\)
0.998514 + 0.0544887i \(0.0173529\pi\)
\(102\) 0 0
\(103\) −0.130415 0.225885i −0.0128502 0.0222571i 0.859529 0.511087i \(-0.170757\pi\)
−0.872379 + 0.488830i \(0.837424\pi\)
\(104\) −6.67024 11.5532i −0.654071 1.13288i
\(105\) 0 0
\(106\) −6.27719 + 10.8724i −0.609694 + 1.05602i
\(107\) −4.04189 −0.390744 −0.195372 0.980729i \(-0.562591\pi\)
−0.195372 + 0.980729i \(0.562591\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) −1.84002 + 3.18701i −0.175439 + 0.303870i
\(111\) 0 0
\(112\) 10.7096 + 18.5496i 1.01196 + 1.75277i
\(113\) 0.692066 + 1.19869i 0.0651041 + 0.112764i 0.896740 0.442557i \(-0.145929\pi\)
−0.831636 + 0.555321i \(0.812595\pi\)
\(114\) 0 0
\(115\) −1.42855 + 2.47432i −0.133213 + 0.230731i
\(116\) −29.0009 −2.69267
\(117\) 0 0
\(118\) −21.6040 −1.98881
\(119\) −4.84002 + 8.38316i −0.443684 + 0.768483i
\(120\) 0 0
\(121\) 0.676174 + 1.17117i 0.0614704 + 0.106470i
\(122\) −1.60607 2.78179i −0.145406 0.251851i
\(123\) 0 0
\(124\) 13.7344 23.7887i 1.23339 2.13629i
\(125\) 4.57667 0.409349
\(126\) 0 0
\(127\) −6.63816 −0.589041 −0.294521 0.955645i \(-0.595160\pi\)
−0.294521 + 0.955645i \(0.595160\pi\)
\(128\) −6.67024 + 11.5532i −0.589572 + 1.02117i
\(129\) 0 0
\(130\) 1.29426 + 2.24173i 0.113514 + 0.196613i
\(131\) −6.32042 10.9473i −0.552218 0.956469i −0.998114 0.0613847i \(-0.980448\pi\)
0.445896 0.895085i \(-0.352885\pi\)
\(132\) 0 0
\(133\) 0.0675813 0.117054i 0.00586005 0.0101499i
\(134\) −25.3405 −2.18908
\(135\) 0 0
\(136\) 18.3182 1.57077
\(137\) 5.30793 9.19361i 0.453487 0.785463i −0.545112 0.838363i \(-0.683513\pi\)
0.998600 + 0.0528998i \(0.0168464\pi\)
\(138\) 0 0
\(139\) 3.73055 + 6.46151i 0.316421 + 0.548058i 0.979739 0.200281i \(-0.0641853\pi\)
−0.663317 + 0.748338i \(0.730852\pi\)
\(140\) −3.33022 5.76811i −0.281455 0.487495i
\(141\) 0 0
\(142\) −14.9782 + 25.9430i −1.25694 + 2.17709i
\(143\) −6.78611 −0.567483
\(144\) 0 0
\(145\) 3.07604 0.255451
\(146\) −10.4251 + 18.0569i −0.862791 + 1.49440i
\(147\) 0 0
\(148\) −7.93242 13.7394i −0.652041 1.12937i
\(149\) −2.12701 3.68409i −0.174252 0.301813i 0.765650 0.643257i \(-0.222417\pi\)
−0.939902 + 0.341444i \(0.889084\pi\)
\(150\) 0 0
\(151\) −0.0675813 + 0.117054i −0.00549969 + 0.00952574i −0.868762 0.495230i \(-0.835084\pi\)
0.863262 + 0.504755i \(0.168417\pi\)
\(152\) −0.255777 −0.0207463
\(153\) 0 0
\(154\) 25.3773 2.04496
\(155\) −1.45677 + 2.52319i −0.117010 + 0.202668i
\(156\) 0 0
\(157\) −6.66297 11.5406i −0.531763 0.921040i −0.999313 0.0370736i \(-0.988196\pi\)
0.467550 0.883967i \(-0.345137\pi\)
\(158\) 13.9893 + 24.2302i 1.11293 + 1.92765i
\(159\) 0 0
\(160\) −1.07532 + 1.86251i −0.0850117 + 0.147245i
\(161\) 19.7023 1.55276
\(162\) 0 0
\(163\) −9.76382 −0.764762 −0.382381 0.924005i \(-0.624896\pi\)
−0.382381 + 0.924005i \(0.624896\pi\)
\(164\) 16.9893 29.4264i 1.32664 2.29781i
\(165\) 0 0
\(166\) 1.91147 + 3.31077i 0.148359 + 0.256966i
\(167\) −1.78699 3.09516i −0.138281 0.239510i 0.788565 0.614952i \(-0.210824\pi\)
−0.926846 + 0.375441i \(0.877491\pi\)
\(168\) 0 0
\(169\) 4.11334 7.12452i 0.316411 0.548040i
\(170\) −3.55438 −0.272608
\(171\) 0 0
\(172\) −2.59627 −0.197963
\(173\) 9.38326 16.2523i 0.713396 1.23564i −0.250179 0.968200i \(-0.580490\pi\)
0.963575 0.267438i \(-0.0861771\pi\)
\(174\) 0 0
\(175\) −7.71348 13.3601i −0.583084 1.00993i
\(176\) −10.3093 17.8562i −0.777091 1.34596i
\(177\) 0 0
\(178\) 20.0954 34.8062i 1.50621 2.60884i
\(179\) 5.08378 0.379979 0.189990 0.981786i \(-0.439155\pi\)
0.189990 + 0.981786i \(0.439155\pi\)
\(180\) 0 0
\(181\) 7.15064 0.531503 0.265752 0.964042i \(-0.414380\pi\)
0.265752 + 0.964042i \(0.414380\pi\)
\(182\) 8.92514 15.4588i 0.661576 1.14588i
\(183\) 0 0
\(184\) −18.6420 32.2889i −1.37431 2.38037i
\(185\) 0.841367 + 1.45729i 0.0618585 + 0.107142i
\(186\) 0 0
\(187\) 4.65910 8.06980i 0.340707 0.590122i
\(188\) 42.6168 3.10815
\(189\) 0 0
\(190\) 0.0496299 0.00360053
\(191\) −5.25490 + 9.10175i −0.380231 + 0.658580i −0.991095 0.133156i \(-0.957489\pi\)
0.610864 + 0.791736i \(0.290822\pi\)
\(192\) 0 0
\(193\) 5.07145 + 8.78401i 0.365051 + 0.632287i 0.988784 0.149350i \(-0.0477182\pi\)
−0.623733 + 0.781637i \(0.714385\pi\)
\(194\) 23.6065 + 40.8877i 1.69485 + 2.93557i
\(195\) 0 0
\(196\) −7.52481 + 13.0334i −0.537487 + 0.930954i
\(197\) −14.0838 −1.00343 −0.501714 0.865034i \(-0.667297\pi\)
−0.501714 + 0.865034i \(0.667297\pi\)
\(198\) 0 0
\(199\) 10.2763 0.728468 0.364234 0.931307i \(-0.381331\pi\)
0.364234 + 0.931307i \(0.381331\pi\)
\(200\) −14.5967 + 25.2823i −1.03214 + 1.78773i
\(201\) 0 0
\(202\) −11.5039 19.9253i −0.809409 1.40194i
\(203\) −10.6061 18.3702i −0.744400 1.28934i
\(204\) 0 0
\(205\) −1.80200 + 3.12116i −0.125857 + 0.217991i
\(206\) −0.660444 −0.0460153
\(207\) 0 0
\(208\) −14.5030 −1.00560
\(209\) −0.0650551 + 0.112679i −0.00449996 + 0.00779415i
\(210\) 0 0
\(211\) 3.57145 + 6.18594i 0.245869 + 0.425857i 0.962376 0.271723i \(-0.0875934\pi\)
−0.716507 + 0.697580i \(0.754260\pi\)
\(212\) 10.9363 + 18.9422i 0.751107 + 1.30096i
\(213\) 0 0
\(214\) −5.11721 + 8.86327i −0.349805 + 0.605881i
\(215\) 0.275378 0.0187806
\(216\) 0 0
\(217\) 20.0915 1.36390
\(218\) −6.84137 + 11.8496i −0.463356 + 0.802556i
\(219\) 0 0
\(220\) 3.20574 + 5.55250i 0.216131 + 0.374349i
\(221\) −3.27719 5.67626i −0.220448 0.381826i
\(222\) 0 0
\(223\) 5.16772 8.95075i 0.346056 0.599387i −0.639489 0.768800i \(-0.720854\pi\)
0.985545 + 0.169414i \(0.0541874\pi\)
\(224\) 14.8307 0.990917
\(225\) 0 0
\(226\) 3.50475 0.233132
\(227\) −6.51114 + 11.2776i −0.432160 + 0.748523i −0.997059 0.0766371i \(-0.975582\pi\)
0.564899 + 0.825160i \(0.308915\pi\)
\(228\) 0 0
\(229\) 14.0496 + 24.3347i 0.928426 + 1.60808i 0.785957 + 0.618281i \(0.212171\pi\)
0.142469 + 0.989799i \(0.454496\pi\)
\(230\) 3.61721 + 6.26519i 0.238512 + 0.413115i
\(231\) 0 0
\(232\) −20.0706 + 34.7633i −1.31770 + 2.28232i
\(233\) 13.9145 0.911567 0.455784 0.890091i \(-0.349359\pi\)
0.455784 + 0.890091i \(0.349359\pi\)
\(234\) 0 0
\(235\) −4.52023 −0.294867
\(236\) −18.8195 + 32.5964i −1.22505 + 2.12185i
\(237\) 0 0
\(238\) 12.2554 + 21.2269i 0.794397 + 1.37594i
\(239\) −7.50980 13.0074i −0.485769 0.841376i 0.514098 0.857732i \(-0.328127\pi\)
−0.999866 + 0.0163558i \(0.994794\pi\)
\(240\) 0 0
\(241\) 6.48680 11.2355i 0.417851 0.723740i −0.577872 0.816128i \(-0.696117\pi\)
0.995723 + 0.0923879i \(0.0294500\pi\)
\(242\) 3.42427 0.220120
\(243\) 0 0
\(244\) −5.59627 −0.358264
\(245\) 0.798133 1.38241i 0.0509909 0.0883188i
\(246\) 0 0
\(247\) 0.0457595 + 0.0792577i 0.00291160 + 0.00504305i
\(248\) −19.0103 32.9267i −1.20715 2.09085i
\(249\) 0 0
\(250\) 5.79426 10.0360i 0.366461 0.634730i
\(251\) −0.872578 −0.0550766 −0.0275383 0.999621i \(-0.508767\pi\)
−0.0275383 + 0.999621i \(0.508767\pi\)
\(252\) 0 0
\(253\) −18.9659 −1.19237
\(254\) −8.40420 + 14.5565i −0.527326 + 0.913356i
\(255\) 0 0
\(256\) 15.2515 + 26.4164i 0.953219 + 1.65102i
\(257\) 2.28833 + 3.96351i 0.142742 + 0.247237i 0.928528 0.371261i \(-0.121075\pi\)
−0.785786 + 0.618498i \(0.787741\pi\)
\(258\) 0 0
\(259\) 5.80200 10.0494i 0.360519 0.624437i
\(260\) 4.50980 0.279686
\(261\) 0 0
\(262\) −32.0077 −1.97744
\(263\) 2.14883 3.72189i 0.132503 0.229501i −0.792138 0.610342i \(-0.791032\pi\)
0.924641 + 0.380841i \(0.124365\pi\)
\(264\) 0 0
\(265\) −1.15998 2.00914i −0.0712569 0.123420i
\(266\) −0.171122 0.296392i −0.0104922 0.0181730i
\(267\) 0 0
\(268\) −22.0744 + 38.2341i −1.34841 + 2.33552i
\(269\) −12.1257 −0.739315 −0.369657 0.929168i \(-0.620525\pi\)
−0.369657 + 0.929168i \(0.620525\pi\)
\(270\) 0 0
\(271\) −0.319955 −0.0194359 −0.00971795 0.999953i \(-0.503093\pi\)
−0.00971795 + 0.999953i \(0.503093\pi\)
\(272\) 9.95723 17.2464i 0.603746 1.04572i
\(273\) 0 0
\(274\) −13.4402 23.2790i −0.811950 1.40634i
\(275\) 7.42514 + 12.8607i 0.447753 + 0.775531i
\(276\) 0 0
\(277\) 13.4106 23.2278i 0.805765 1.39563i −0.110009 0.993931i \(-0.535088\pi\)
0.915774 0.401695i \(-0.131579\pi\)
\(278\) 18.8922 1.13308
\(279\) 0 0
\(280\) −9.21894 −0.550937
\(281\) 13.3405 23.1064i 0.795827 1.37841i −0.126486 0.991968i \(-0.540370\pi\)
0.922313 0.386444i \(-0.126297\pi\)
\(282\) 0 0
\(283\) 4.64677 + 8.04845i 0.276222 + 0.478431i 0.970443 0.241332i \(-0.0775842\pi\)
−0.694221 + 0.719762i \(0.744251\pi\)
\(284\) 26.0954 + 45.1985i 1.54848 + 2.68204i
\(285\) 0 0
\(286\) −8.59152 + 14.8809i −0.508027 + 0.879929i
\(287\) 24.8530 1.46702
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 3.89440 6.74530i 0.228687 0.396098i
\(291\) 0 0
\(292\) 18.1630 + 31.4592i 1.06291 + 1.84101i
\(293\) −9.81954 17.0080i −0.573664 0.993615i −0.996185 0.0872621i \(-0.972188\pi\)
0.422521 0.906353i \(-0.361145\pi\)
\(294\) 0 0
\(295\) 1.99613 3.45740i 0.116219 0.201297i
\(296\) −21.9590 −1.27634
\(297\) 0 0
\(298\) −10.7716 −0.623980
\(299\) −6.67024 + 11.5532i −0.385750 + 0.668139i
\(300\) 0 0
\(301\) −0.949493 1.64457i −0.0547279 0.0947914i
\(302\) 0.171122 + 0.296392i 0.00984696 + 0.0170554i
\(303\) 0 0
\(304\) −0.139033 + 0.240812i −0.00797409 + 0.0138115i
\(305\) 0.593578 0.0339882
\(306\) 0 0
\(307\) 28.3432 1.61763 0.808815 0.588063i \(-0.200109\pi\)
0.808815 + 0.588063i \(0.200109\pi\)
\(308\) 22.1065 38.2896i 1.25964 2.18175i
\(309\) 0 0
\(310\) 3.68866 + 6.38895i 0.209502 + 0.362868i
\(311\) −1.02229 1.77066i −0.0579687 0.100405i 0.835585 0.549362i \(-0.185129\pi\)
−0.893553 + 0.448957i \(0.851796\pi\)
\(312\) 0 0
\(313\) −4.20574 + 7.28455i −0.237722 + 0.411747i −0.960060 0.279793i \(-0.909734\pi\)
0.722338 + 0.691540i \(0.243067\pi\)
\(314\) −33.7425 −1.90420
\(315\) 0 0
\(316\) 48.7452 2.74213
\(317\) 15.5642 26.9579i 0.874171 1.51411i 0.0165284 0.999863i \(-0.494739\pi\)
0.857643 0.514246i \(-0.171928\pi\)
\(318\) 0 0
\(319\) 10.2096 + 17.6836i 0.571628 + 0.990089i
\(320\) −0.383256 0.663818i −0.0214246 0.0371086i
\(321\) 0 0
\(322\) 24.9440 43.2043i 1.39008 2.40768i
\(323\) −0.125667 −0.00699231
\(324\) 0 0
\(325\) 10.4456 0.579419
\(326\) −12.3614 + 21.4106i −0.684636 + 1.18583i
\(327\) 0 0
\(328\) −23.5155 40.7300i −1.29843 2.24894i
\(329\) 15.5856 + 26.9950i 0.859261 + 1.48828i
\(330\) 0 0
\(331\) −15.5155 + 26.8736i −0.852808 + 1.47711i 0.0258558 + 0.999666i \(0.491769\pi\)
−0.878664 + 0.477441i \(0.841564\pi\)
\(332\) 6.66044 0.365539
\(333\) 0 0
\(334\) −9.04963 −0.495174
\(335\) 2.34137 4.05537i 0.127923 0.221568i
\(336\) 0 0
\(337\) −11.8648 20.5505i −0.646319 1.11946i −0.983995 0.178195i \(-0.942974\pi\)
0.337676 0.941262i \(-0.390359\pi\)
\(338\) −10.4153 18.0399i −0.566520 0.981242i
\(339\) 0 0
\(340\) −3.09627 + 5.36289i −0.167919 + 0.290844i
\(341\) −19.3405 −1.04735
\(342\) 0 0
\(343\) 11.5790 0.625209
\(344\) −1.79679 + 3.11213i −0.0968764 + 0.167795i
\(345\) 0 0
\(346\) −23.7592 41.1522i −1.27730 2.21236i
\(347\) −0.904200 1.56612i −0.0485400 0.0840738i 0.840735 0.541447i \(-0.182124\pi\)
−0.889275 + 0.457374i \(0.848790\pi\)
\(348\) 0 0
\(349\) −7.63041 + 13.2163i −0.408447 + 0.707451i −0.994716 0.102666i \(-0.967263\pi\)
0.586269 + 0.810116i \(0.300596\pi\)
\(350\) −39.0624 −2.08797
\(351\) 0 0
\(352\) −14.2763 −0.760930
\(353\) −16.1912 + 28.0440i −0.861770 + 1.49263i 0.00844890 + 0.999964i \(0.497311\pi\)
−0.870219 + 0.492665i \(0.836023\pi\)
\(354\) 0 0
\(355\) −2.76786 4.79407i −0.146903 0.254443i
\(356\) −35.0107 60.6404i −1.85557 3.21393i
\(357\) 0 0
\(358\) 6.43629 11.1480i 0.340168 0.589189i
\(359\) 1.91447 0.101042 0.0505209 0.998723i \(-0.483912\pi\)
0.0505209 + 0.998723i \(0.483912\pi\)
\(360\) 0 0
\(361\) −18.9982 −0.999908
\(362\) 9.05303 15.6803i 0.475817 0.824139i
\(363\) 0 0
\(364\) −15.5496 26.9327i −0.815022 1.41166i
\(365\) −1.92649 3.33678i −0.100837 0.174655i
\(366\) 0 0
\(367\) 13.4324 23.2656i 0.701167 1.21446i −0.266891 0.963727i \(-0.585996\pi\)
0.968057 0.250729i \(-0.0806704\pi\)
\(368\) −40.5330 −2.11293
\(369\) 0 0
\(370\) 4.26083 0.221510
\(371\) −7.99912 + 13.8549i −0.415294 + 0.719310i
\(372\) 0 0
\(373\) −7.42009 12.8520i −0.384198 0.665450i 0.607460 0.794350i \(-0.292189\pi\)
−0.991658 + 0.128900i \(0.958855\pi\)
\(374\) −11.7973 20.4334i −0.610022 1.05659i
\(375\) 0 0
\(376\) 29.4937 51.0845i 1.52102 2.63448i
\(377\) 14.3628 0.739721
\(378\) 0 0
\(379\) −33.7870 −1.73552 −0.867762 0.496980i \(-0.834442\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(380\) 0.0432332 0.0748822i 0.00221782 0.00384137i
\(381\) 0 0
\(382\) 13.3059 + 23.0465i 0.680788 + 1.17916i
\(383\) −4.63950 8.03585i −0.237067 0.410613i 0.722804 0.691053i \(-0.242853\pi\)
−0.959871 + 0.280440i \(0.909520\pi\)
\(384\) 0 0
\(385\) −2.34477 + 4.06126i −0.119501 + 0.206981i
\(386\) 25.6827 1.30722
\(387\) 0 0
\(388\) 82.2559 4.17591
\(389\) −7.98932 + 13.8379i −0.405075 + 0.701610i −0.994330 0.106337i \(-0.966088\pi\)
0.589255 + 0.807947i \(0.299421\pi\)
\(390\) 0 0
\(391\) −9.15910 15.8640i −0.463196 0.802278i
\(392\) 10.4153 + 18.0399i 0.526054 + 0.911153i
\(393\) 0 0
\(394\) −17.8307 + 30.8837i −0.898297 + 1.55590i
\(395\) −5.17024 −0.260143
\(396\) 0 0
\(397\) 19.7050 0.988967 0.494483 0.869187i \(-0.335357\pi\)
0.494483 + 0.869187i \(0.335357\pi\)
\(398\) 13.0103 22.5344i 0.652146 1.12955i
\(399\) 0 0
\(400\) 15.8687 + 27.4854i 0.793435 + 1.37427i
\(401\) 0.573978 + 0.994159i 0.0286631 + 0.0496459i 0.880001 0.474972i \(-0.157542\pi\)
−0.851338 + 0.524618i \(0.824208\pi\)
\(402\) 0 0
\(403\) −6.80200 + 11.7814i −0.338832 + 0.586874i
\(404\) −40.0847 −1.99429
\(405\) 0 0
\(406\) −53.7110 −2.66563
\(407\) −5.58512 + 9.67372i −0.276844 + 0.479508i
\(408\) 0 0
\(409\) 1.55051 + 2.68556i 0.0766676 + 0.132792i 0.901810 0.432132i \(-0.142239\pi\)
−0.825143 + 0.564924i \(0.808905\pi\)
\(410\) 4.56283 + 7.90306i 0.225342 + 0.390304i
\(411\) 0 0
\(412\) −0.575322 + 0.996487i −0.0283441 + 0.0490934i
\(413\) −27.5303 −1.35468
\(414\) 0 0
\(415\) −0.706452 −0.0346784
\(416\) −5.02094 + 8.69653i −0.246172 + 0.426383i
\(417\) 0 0
\(418\) 0.164725 + 0.285313i 0.00805698 + 0.0139551i
\(419\) 17.7246 + 30.6999i 0.865904 + 1.49979i 0.866146 + 0.499791i \(0.166590\pi\)
−0.000241841 1.00000i \(0.500077\pi\)
\(420\) 0 0
\(421\) −4.60859 + 7.98232i −0.224609 + 0.389034i −0.956202 0.292707i \(-0.905444\pi\)
0.731593 + 0.681742i \(0.238777\pi\)
\(422\) 18.0865 0.880435
\(423\) 0 0
\(424\) 30.2746 1.47026
\(425\) −7.17159 + 12.4216i −0.347873 + 0.602534i
\(426\) 0 0
\(427\) −2.04664 3.54488i −0.0990437 0.171549i
\(428\) 8.91534 + 15.4418i 0.430939 + 0.746409i
\(429\) 0 0
\(430\) 0.348641 0.603863i 0.0168129 0.0291209i
\(431\) −11.5794 −0.557758 −0.278879 0.960326i \(-0.589963\pi\)
−0.278879 + 0.960326i \(0.589963\pi\)
\(432\) 0 0
\(433\) 6.06511 0.291471 0.145735 0.989324i \(-0.453445\pi\)
0.145735 + 0.989324i \(0.453445\pi\)
\(434\) 25.4368 44.0578i 1.22100 2.11484i
\(435\) 0 0
\(436\) 11.9192 + 20.6447i 0.570827 + 0.988701i
\(437\) 0.127889 + 0.221510i 0.00611775 + 0.0105962i
\(438\) 0 0
\(439\) −14.5030 + 25.1199i −0.692190 + 1.19891i 0.278929 + 0.960312i \(0.410021\pi\)
−0.971119 + 0.238597i \(0.923313\pi\)
\(440\) 8.87433 0.423067
\(441\) 0 0
\(442\) −16.5963 −0.789404
\(443\) 15.4461 26.7534i 0.733866 1.27109i −0.221353 0.975194i \(-0.571047\pi\)
0.955219 0.295899i \(-0.0956193\pi\)
\(444\) 0 0
\(445\) 3.71348 + 6.43193i 0.176036 + 0.304903i
\(446\) −13.0851 22.6641i −0.619598 1.07318i
\(447\) 0 0
\(448\) −2.64290 + 4.57764i −0.124865 + 0.216273i
\(449\) 39.0820 1.84439 0.922197 0.386720i \(-0.126392\pi\)
0.922197 + 0.386720i \(0.126392\pi\)
\(450\) 0 0
\(451\) −23.9240 −1.12654
\(452\) 3.05303 5.28801i 0.143603 0.248727i
\(453\) 0 0
\(454\) 16.4868 + 28.5560i 0.773764 + 1.34020i
\(455\) 1.64930 + 2.85667i 0.0773204 + 0.133923i
\(456\) 0 0
\(457\) 0.752374 1.30315i 0.0351946 0.0609588i −0.847892 0.530170i \(-0.822128\pi\)
0.883086 + 0.469211i \(0.155462\pi\)
\(458\) 71.1498 3.32461
\(459\) 0 0
\(460\) 12.6040 0.587665
\(461\) 13.1186 22.7220i 0.610992 1.05827i −0.380082 0.924953i \(-0.624104\pi\)
0.991074 0.133316i \(-0.0425626\pi\)
\(462\) 0 0
\(463\) −3.37820 5.85122i −0.156998 0.271929i 0.776786 0.629764i \(-0.216848\pi\)
−0.933785 + 0.357835i \(0.883515\pi\)
\(464\) 21.8195 + 37.7926i 1.01295 + 1.75448i
\(465\) 0 0
\(466\) 17.6163 30.5124i 0.816061 1.41346i
\(467\) −33.7469 −1.56162 −0.780810 0.624768i \(-0.785194\pi\)
−0.780810 + 0.624768i \(0.785194\pi\)
\(468\) 0 0
\(469\) −32.2918 −1.49110
\(470\) −5.72281 + 9.91220i −0.263974 + 0.457216i
\(471\) 0 0
\(472\) 26.0488 + 45.1178i 1.19899 + 2.07671i
\(473\) 0.914000 + 1.58310i 0.0420258 + 0.0727908i
\(474\) 0 0
\(475\) 0.100137 0.173442i 0.00459460 0.00795809i
\(476\) 42.7033 1.95730
\(477\) 0 0
\(478\) −38.0310 −1.73950
\(479\) 5.56330 9.63592i 0.254194 0.440276i −0.710483 0.703715i \(-0.751523\pi\)
0.964676 + 0.263438i \(0.0848566\pi\)
\(480\) 0 0
\(481\) 3.92855 + 6.80445i 0.179126 + 0.310256i
\(482\) −16.4251 28.4492i −0.748145 1.29582i
\(483\) 0 0
\(484\) 2.98293 5.16658i 0.135588 0.234845i
\(485\) −8.72462 −0.396165
\(486\) 0 0
\(487\) −4.74691 −0.215103 −0.107552 0.994200i \(-0.534301\pi\)
−0.107552 + 0.994200i \(0.534301\pi\)
\(488\) −3.87299 + 6.70821i −0.175322 + 0.303667i
\(489\) 0 0
\(490\) −2.02094 3.50038i −0.0912970 0.158131i
\(491\) 11.1702 + 19.3474i 0.504106 + 0.873137i 0.999989 + 0.00474780i \(0.00151128\pi\)
−0.495883 + 0.868390i \(0.665155\pi\)
\(492\) 0 0
\(493\) −9.86097 + 17.0797i −0.444116 + 0.769231i
\(494\) 0.231734 0.0104262
\(495\) 0 0
\(496\) −41.3337 −1.85594
\(497\) −19.0869 + 33.0595i −0.856166 + 1.48292i
\(498\) 0 0
\(499\) 5.23055 + 9.05958i 0.234152 + 0.405563i 0.959026 0.283319i \(-0.0914354\pi\)
−0.724874 + 0.688881i \(0.758102\pi\)
\(500\) −10.0949 17.4849i −0.451459 0.781949i
\(501\) 0 0
\(502\) −1.10472 + 1.91344i −0.0493062 + 0.0854008i
\(503\) −25.0419 −1.11656 −0.558281 0.829652i \(-0.688539\pi\)
−0.558281 + 0.829652i \(0.688539\pi\)
\(504\) 0 0
\(505\) 4.25166 0.189196
\(506\) −24.0116 + 41.5893i −1.06745 + 1.84887i
\(507\) 0 0
\(508\) 14.6420 + 25.3607i 0.649635 + 1.12520i
\(509\) 9.03121 + 15.6425i 0.400301 + 0.693342i 0.993762 0.111521i \(-0.0355721\pi\)
−0.593461 + 0.804863i \(0.702239\pi\)
\(510\) 0 0
\(511\) −13.2849 + 23.0102i −0.587691 + 1.01791i
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 11.5885 0.511148
\(515\) 0.0610226 0.105694i 0.00268898 0.00465744i
\(516\) 0 0
\(517\) −15.0030 25.9859i −0.659831 1.14286i
\(518\) −14.6912 25.4459i −0.645494 1.11803i
\(519\) 0 0
\(520\) 3.12108 5.40587i 0.136868 0.237063i
\(521\) 25.9581 1.13725 0.568623 0.822598i \(-0.307476\pi\)
0.568623 + 0.822598i \(0.307476\pi\)
\(522\) 0 0
\(523\) 25.5945 1.11917 0.559585 0.828773i \(-0.310961\pi\)
0.559585 + 0.828773i \(0.310961\pi\)
\(524\) −27.8824 + 48.2937i −1.21805 + 2.10972i
\(525\) 0 0
\(526\) −5.44104 9.42415i −0.237240 0.410913i
\(527\) −9.34002 16.1774i −0.406858 0.704698i
\(528\) 0 0
\(529\) −7.14203 + 12.3704i −0.310523 + 0.537841i
\(530\) −5.87433 −0.255165
\(531\) 0 0
\(532\) −0.596267 −0.0258514
\(533\) −8.41400 + 14.5735i −0.364451 + 0.631247i
\(534\) 0 0
\(535\) −0.945622 1.63787i −0.0408828 0.0708111i
\(536\) 30.5540 + 52.9210i 1.31973 + 2.28584i
\(537\) 0 0
\(538\) −15.3516 + 26.5898i −0.661856 + 1.14637i
\(539\) 10.5963 0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) −0.405078 + 0.701615i −0.0173996 + 0.0301369i
\(543\) 0 0
\(544\) −6.89440 11.9415i −0.295595 0.511985i
\(545\) −1.26423 2.18972i −0.0541538 0.0937972i
\(546\) 0 0
\(547\) 2.95424 5.11689i 0.126314 0.218783i −0.795932 0.605386i \(-0.793019\pi\)
0.922246 + 0.386604i \(0.126352\pi\)
\(548\) −46.8316 −2.00055
\(549\) 0 0
\(550\) 37.6023 1.60337
\(551\) 0.137689 0.238484i 0.00586574 0.0101598i
\(552\) 0 0
\(553\) 17.8268 + 30.8770i 0.758073 + 1.31302i
\(554\) −33.9568 58.8149i −1.44269 2.49881i
\(555\) 0 0
\(556\) 16.4572 28.5048i 0.697942 1.20887i
\(557\) −26.7050 −1.13153 −0.565764 0.824567i \(-0.691419\pi\)
−0.565764 + 0.824567i \(0.691419\pi\)
\(558\) 0 0
\(559\) 1.28581 0.0543838
\(560\) −5.01114 + 8.67956i −0.211759 + 0.366778i
\(561\) 0 0
\(562\) −33.7793 58.5075i −1.42489 2.46799i
\(563\) 18.0312 + 31.2310i 0.759925 + 1.31623i 0.942888 + 0.333109i \(0.108098\pi\)
−0.182963 + 0.983120i \(0.558569\pi\)
\(564\) 0 0
\(565\) −0.323826 + 0.560882i −0.0136234 + 0.0235965i
\(566\) 23.5321 0.989127
\(567\) 0 0
\(568\) 72.2390 3.03108
\(569\) −4.52363 + 7.83516i −0.189641 + 0.328467i −0.945130 0.326693i \(-0.894066\pi\)
0.755490 + 0.655160i \(0.227399\pi\)
\(570\) 0 0
\(571\) −15.2895 26.4822i −0.639846 1.10825i −0.985466 0.169872i \(-0.945665\pi\)
0.345620 0.938375i \(-0.387669\pi\)
\(572\) 14.9684 + 25.9260i 0.625859 + 1.08402i
\(573\) 0 0
\(574\) 31.4650 54.4989i 1.31332 2.27474i
\(575\) 29.1935 1.21745
\(576\) 0 0
\(577\) −25.1489 −1.04696 −0.523481 0.852037i \(-0.675367\pi\)
−0.523481 + 0.852037i \(0.675367\pi\)
\(578\) −10.1284 + 17.5428i −0.421284 + 0.729685i
\(579\) 0 0
\(580\) −6.78493 11.7518i −0.281729 0.487969i
\(581\) 2.43582 + 4.21897i 0.101055 + 0.175032i
\(582\) 0 0
\(583\) 7.70011 13.3370i 0.318906 0.552361i
\(584\) 50.2799 2.08060
\(585\) 0 0
\(586\) −49.7279 −2.05424
\(587\) 10.4368 18.0770i 0.430771 0.746117i −0.566169 0.824289i \(-0.691575\pi\)
0.996940 + 0.0781720i \(0.0249083\pi\)
\(588\) 0 0
\(589\) 0.130415 + 0.225885i 0.00537365 + 0.00930744i
\(590\) −5.05438 8.75444i −0.208085 0.360415i
\(591\) 0 0
\(592\) −11.9363 + 20.6743i −0.490578 + 0.849707i
\(593\) −15.6212 −0.641488 −0.320744 0.947166i \(-0.603933\pi\)
−0.320744 + 0.947166i \(0.603933\pi\)
\(594\) 0 0
\(595\) −4.52940 −0.185687
\(596\) −9.38326 + 16.2523i −0.384353 + 0.665719i
\(597\) 0 0
\(598\) 16.8897 + 29.2537i 0.690669 + 1.19627i
\(599\) −0.224155 0.388249i −0.00915874 0.0158634i 0.861410 0.507911i \(-0.169582\pi\)
−0.870568 + 0.492047i \(0.836249\pi\)
\(600\) 0 0
\(601\) 8.83615 15.3047i 0.360434 0.624290i −0.627598 0.778537i \(-0.715962\pi\)
0.988032 + 0.154247i \(0.0492952\pi\)
\(602\) −4.80840 −0.195976
\(603\) 0 0
\(604\) 0.596267 0.0242617
\(605\) −0.316390 + 0.548003i −0.0128631 + 0.0222795i
\(606\) 0 0
\(607\) −13.0993 22.6886i −0.531683 0.920901i −0.999316 0.0369787i \(-0.988227\pi\)
0.467634 0.883922i \(-0.345107\pi\)
\(608\) 0.0962667 + 0.166739i 0.00390413 + 0.00676215i
\(609\) 0 0
\(610\) 0.751497 1.30163i 0.0304272 0.0527015i
\(611\) −21.1061 −0.853860
\(612\) 0 0
\(613\) 14.5544 0.587846 0.293923 0.955829i \(-0.405039\pi\)
0.293923 + 0.955829i \(0.405039\pi\)
\(614\) 35.8837 62.1524i 1.44815 2.50827i
\(615\) 0 0
\(616\) −30.5984 52.9980i −1.23284 2.13535i
\(617\) 7.01027 + 12.1421i 0.282223 + 0.488824i 0.971932 0.235262i \(-0.0755950\pi\)
−0.689709 + 0.724087i \(0.742262\pi\)
\(618\) 0 0
\(619\) 15.8562 27.4638i 0.637315 1.10386i −0.348704 0.937233i \(-0.613378\pi\)
0.986020 0.166630i \(-0.0532884\pi\)
\(620\) 12.8530 0.516188
\(621\) 0 0
\(622\) −5.17705 −0.207581
\(623\) 25.6079 44.3541i 1.02596 1.77701i
\(624\) 0 0
\(625\) −10.8819 18.8480i −0.435276 0.753921i
\(626\) 10.6493 + 18.4451i 0.425632 + 0.737216i
\(627\) 0 0
\(628\) −29.3935 + 50.9111i −1.17293 + 2.03157i
\(629\) −10.7888 −0.430178
\(630\) 0 0
\(631\) −38.5758 −1.53568 −0.767840 0.640642i \(-0.778668\pi\)
−0.767840 + 0.640642i \(0.778668\pi\)
\(632\) 33.7349 58.4305i 1.34190 2.32424i
\(633\) 0 0
\(634\) −39.4099 68.2599i −1.56517 2.71095i
\(635\) −1.55303 2.68993i −0.0616303 0.106747i
\(636\) 0 0
\(637\) 3.72668 6.45480i 0.147657 0.255749i
\(638\) 51.7033 2.04695
\(639\) 0 0
\(640\) −6.24216 −0.246743
\(641\) −15.3084 + 26.5149i −0.604645 + 1.04728i 0.387462 + 0.921886i \(0.373352\pi\)
−0.992107 + 0.125391i \(0.959981\pi\)
\(642\) 0 0
\(643\) 17.1125 + 29.6397i 0.674850 + 1.16887i 0.976513 + 0.215459i \(0.0691249\pi\)
−0.301663 + 0.953415i \(0.597542\pi\)
\(644\) −43.4582 75.2718i −1.71249 2.96612i
\(645\) 0 0
\(646\) −0.159100 + 0.275570i −0.00625972 + 0.0108421i
\(647\) 12.8726 0.506073 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) 13.2246 22.9057i 0.518712 0.898436i
\(651\) 0 0
\(652\) 21.5364 + 37.3022i 0.843432 + 1.46087i
\(653\) −5.65957 9.80266i −0.221476 0.383608i 0.733780 0.679387i \(-0.237754\pi\)
−0.955256 + 0.295779i \(0.904421\pi\)
\(654\) 0 0
\(655\) 2.95740 5.12236i 0.115555 0.200147i
\(656\) −51.1293 −1.99626
\(657\) 0 0
\(658\) 78.9282 3.07694
\(659\) −6.88460 + 11.9245i −0.268186 + 0.464512i −0.968393 0.249428i \(-0.919757\pi\)
0.700207 + 0.713939i \(0.253091\pi\)
\(660\) 0 0
\(661\) 10.1334 + 17.5516i 0.394144 + 0.682677i 0.992992 0.118186i \(-0.0377078\pi\)
−0.598848 + 0.800863i \(0.704374\pi\)
\(662\) 39.2866 + 68.0463i 1.52692 + 2.64470i
\(663\) 0 0
\(664\) 4.60947 7.98384i 0.178882 0.309833i
\(665\) 0.0632441 0.00245250
\(666\) 0 0
\(667\) 40.1411 1.55427
\(668\) −7.88326 + 13.6542i −0.305012 + 0.528297i
\(669\) 0 0
\(670\) −5.92855 10.2685i −0.229040 0.396709i
\(671\) 1.97013 + 3.41237i 0.0760561 + 0.131733i
\(672\) 0 0
\(673\) 15.2724 26.4526i 0.588709 1.01967i −0.405692 0.914010i \(-0.632970\pi\)
0.994402 0.105665i \(-0.0336971\pi\)
\(674\) −60.0856 −2.31441
\(675\) 0 0
\(676\) −36.2918 −1.39584
\(677\) −1.85962 + 3.22096i −0.0714711 + 0.123792i −0.899546 0.436826i \(-0.856103\pi\)
0.828075 + 0.560617i \(0.189436\pi\)
\(678\) 0 0
\(679\) 30.0822 + 52.1039i 1.15445 + 1.99956i
\(680\) 4.28564 + 7.42295i 0.164347 + 0.284657i
\(681\) 0 0
\(682\) −24.4859 + 42.4109i −0.937614 + 1.62400i
\(683\) 21.7469 0.832122 0.416061 0.909337i \(-0.363410\pi\)
0.416061 + 0.909337i \(0.363410\pi\)
\(684\) 0 0
\(685\) 4.96728 0.189790
\(686\) 14.6596 25.3911i 0.559705 0.969437i
\(687\) 0 0
\(688\) 1.95336 + 3.38332i 0.0744713 + 0.128988i
\(689\) −5.41622 9.38117i −0.206342 0.357394i
\(690\) 0 0
\(691\) 18.7974 32.5581i 0.715087 1.23857i −0.247838 0.968801i \(-0.579720\pi\)
0.962926 0.269766i \(-0.0869465\pi\)
\(692\) −82.7880 −3.14713
\(693\) 0 0
\(694\) −4.57903 −0.173818
\(695\) −1.74557 + 3.02341i −0.0662131 + 0.114684i
\(696\) 0 0
\(697\) −11.5535 20.0112i −0.437620 0.757980i
\(698\) 19.3209 + 33.4648i 0.731306 + 1.26666i
\(699\) 0 0
\(700\) −34.0278 + 58.9379i −1.28613 + 2.22764i
\(701\) −23.3351 −0.881355 −0.440678 0.897665i \(-0.645262\pi\)
−0.440678 + 0.897665i \(0.645262\pi\)
\(702\) 0 0
\(703\) 0.150644 0.00568166
\(704\) 2.54411 4.40653i 0.0958848 0.166077i
\(705\) 0 0
\(706\) 40.9975 + 71.0098i 1.54296 + 2.67249i
\(707\) −14.6596 25.3911i −0.551330 0.954931i
\(708\) 0 0
\(709\) −3.28952 + 5.69761i −0.123540 + 0.213978i −0.921161 0.389181i \(-0.872758\pi\)
0.797621 + 0.603159i \(0.206091\pi\)
\(710\) −14.0169 −0.526045
\(711\) 0 0
\(712\) −96.9190 −3.63219
\(713\) −19.0103 + 32.9267i −0.711940 + 1.23312i
\(714\) 0 0
\(715\) −1.58765 2.74989i −0.0593747 0.102840i
\(716\) −11.2135 19.4223i −0.419067 0.725846i
\(717\) 0 0
\(718\) 2.42380 4.19815i 0.0904554 0.156673i
\(719\) 16.8324 0.627744 0.313872 0.949465i \(-0.398374\pi\)
0.313872 + 0.949465i \(0.398374\pi\)
\(720\) 0 0
\(721\) −0.841615 −0.0313434
\(722\) −24.0526 + 41.6604i −0.895146 + 1.55044i
\(723\) 0 0
\(724\) −15.7724 27.3187i −0.586178 1.01529i
\(725\) −15.7153 27.2197i −0.583651 1.01091i
\(726\) 0 0
\(727\) −12.7811 + 22.1374i −0.474023 + 0.821032i −0.999558 0.0297400i \(-0.990532\pi\)
0.525534 + 0.850772i \(0.323865\pi\)
\(728\) −43.0455 −1.59537
\(729\) 0 0
\(730\) −9.75608 −0.361089
\(731\) −0.882789 + 1.52904i −0.0326511 + 0.0565534i
\(732\) 0 0
\(733\) 7.39899 + 12.8154i 0.273288 + 0.473348i 0.969702 0.244292i \(-0.0785555\pi\)
−0.696414 + 0.717640i \(0.745222\pi\)
\(734\) −34.0121 58.9106i −1.25541 2.17443i
\(735\) 0 0
\(736\) −14.0326 + 24.3051i −0.517247 + 0.895898i
\(737\) 31.0847 1.14502
\(738\) 0 0
\(739\) 9.19078 0.338088 0.169044 0.985608i \(-0.445932\pi\)
0.169044 + 0.985608i \(0.445932\pi\)
\(740\) 3.71167 6.42880i 0.136444 0.236327i
\(741\) 0 0
\(742\) 20.2545 + 35.0818i 0.743566 + 1.28789i
\(743\) 22.2246 + 38.4942i 0.815342 + 1.41221i 0.909082 + 0.416618i \(0.136785\pi\)
−0.0937395 + 0.995597i \(0.529882\pi\)
\(744\) 0 0
\(745\) 0.995252 1.72383i 0.0364632 0.0631562i
\(746\) −37.5767 −1.37578
\(747\) 0 0
\(748\) −41.1070 −1.50302
\(749\) −6.52094 + 11.2946i −0.238270 + 0.412696i
\(750\) 0 0
\(751\) 17.9030 + 31.0089i 0.653290 + 1.13153i 0.982319 + 0.187212i \(0.0599453\pi\)
−0.329029 + 0.944320i \(0.606721\pi\)
\(752\) −32.0638 55.5361i −1.16925 2.02519i
\(753\) 0 0
\(754\) 18.1839 31.4955i 0.662219 1.14700i
\(755\) −0.0632441 −0.00230169
\(756\) 0 0
\(757\) −45.8976 −1.66818 −0.834088 0.551632i \(-0.814005\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(758\) −42.7759 + 74.0900i −1.55369 + 2.69107i
\(759\) 0 0
\(760\) −0.0598406 0.103647i −0.00217064 0.00375967i
\(761\) −18.5976 32.2120i −0.674163 1.16768i −0.976713 0.214551i \(-0.931171\pi\)
0.302550 0.953134i \(-0.402162\pi\)
\(762\) 0 0
\(763\) −8.71806 + 15.1001i −0.315615 + 0.546661i
\(764\) 46.3637 1.67738
\(765\) 0 0
\(766\) −23.4953 −0.848918
\(767\) 9.32042 16.1434i 0.336541 0.582906i
\(768\) 0 0
\(769\) 19.1668 + 33.1979i 0.691174 + 1.19715i 0.971454 + 0.237230i \(0.0762395\pi\)
−0.280280 + 0.959918i \(0.590427\pi\)
\(770\) 5.93717 + 10.2835i 0.213961 + 0.370591i
\(771\) 0 0
\(772\) 22.3726 38.7504i 0.805207 1.39466i
\(773\) −52.8272 −1.90006 −0.950031 0.312156i \(-0.898949\pi\)
−0.950031 + 0.312156i \(0.898949\pi\)
\(774\) 0 0
\(775\) 29.7701 1.06937
\(776\) 56.9265 98.5997i 2.04354 3.53952i
\(777\) 0 0
\(778\) 20.2297 + 35.0388i 0.725269 + 1.25620i
\(779\) 0.161322 + 0.279418i 0.00577995 + 0.0100112i
\(780\) 0 0
\(781\) 18.3735 31.8238i 0.657454 1.13874i
\(782\) −46.3833 −1.65866
\(783\) 0 0
\(784\) 22.6459 0.808782
\(785\) 3.11768 5.39998i 0.111275 0.192733i
\(786\)