Properties

Label 243.2.c.d.82.2
Level $243$
Weight $2$
Character 243.82
Analytic conductor $1.940$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(82,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 82.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 243.82
Dual form 243.2.c.d.163.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.73205 - 3.00000i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.73205 q^{8} +O(q^{10})\) \(q+(0.866025 + 1.50000i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.73205 - 3.00000i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.73205 q^{8} +6.00000 q^{10} +(-1.73205 - 3.00000i) q^{11} +(-2.50000 + 4.33013i) q^{13} +(-0.866025 + 1.50000i) q^{14} +(2.50000 + 4.33013i) q^{16} -1.00000 q^{19} +(1.73205 + 3.00000i) q^{20} +(3.00000 - 5.19615i) q^{22} +(-3.46410 + 6.00000i) q^{23} +(-3.50000 - 6.06218i) q^{25} -8.66025 q^{26} -1.00000 q^{28} +(-1.73205 - 3.00000i) q^{29} +(-2.50000 + 4.33013i) q^{31} +(-2.59808 + 4.50000i) q^{32} +3.46410 q^{35} -1.00000 q^{37} +(-0.866025 - 1.50000i) q^{38} +(3.00000 - 5.19615i) q^{40} +(1.73205 - 3.00000i) q^{41} +(0.500000 + 0.866025i) q^{43} +3.46410 q^{44} -12.0000 q^{46} +(-1.73205 - 3.00000i) q^{47} +(3.00000 - 5.19615i) q^{49} +(6.06218 - 10.5000i) q^{50} +(-2.50000 - 4.33013i) q^{52} +10.3923 q^{53} -12.0000 q^{55} +(0.866025 + 1.50000i) q^{56} +(3.00000 - 5.19615i) q^{58} +(1.73205 - 3.00000i) q^{59} +(-1.00000 - 1.73205i) q^{61} -8.66025 q^{62} +1.00000 q^{64} +(8.66025 + 15.0000i) q^{65} +(-4.00000 + 6.92820i) q^{67} +(3.00000 + 5.19615i) q^{70} -10.3923 q^{71} +2.00000 q^{73} +(-0.866025 - 1.50000i) q^{74} +(0.500000 - 0.866025i) q^{76} +(1.73205 - 3.00000i) q^{77} +(0.500000 + 0.866025i) q^{79} +17.3205 q^{80} +6.00000 q^{82} +(3.46410 + 6.00000i) q^{83} +(-0.866025 + 1.50000i) q^{86} +(-3.00000 - 5.19615i) q^{88} -10.3923 q^{89} -5.00000 q^{91} +(-3.46410 - 6.00000i) q^{92} +(3.00000 - 5.19615i) q^{94} +(-1.73205 + 3.00000i) q^{95} +(-8.50000 - 14.7224i) q^{97} +10.3923 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{4} + 2 q^{7} + 24 q^{10} - 10 q^{13} + 10 q^{16} - 4 q^{19} + 12 q^{22} - 14 q^{25} - 4 q^{28} - 10 q^{31} - 4 q^{37} + 12 q^{40} + 2 q^{43} - 48 q^{46} + 12 q^{49} - 10 q^{52} - 48 q^{55} + 12 q^{58} - 4 q^{61} + 4 q^{64} - 16 q^{67} + 12 q^{70} + 8 q^{73} + 2 q^{76} + 2 q^{79} + 24 q^{82} - 12 q^{88} - 20 q^{91} + 12 q^{94} - 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 1.50000i 0.612372 + 1.06066i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.378467 + 0.925615i \(0.623549\pi\)
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.73205 3.00000i 0.774597 1.34164i −0.160424 0.987048i \(-0.551286\pi\)
0.935021 0.354593i \(-0.115380\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 6.00000 1.89737
\(11\) −1.73205 3.00000i −0.522233 0.904534i −0.999665 0.0258656i \(-0.991766\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 0 0
\(13\) −2.50000 + 4.33013i −0.693375 + 1.20096i 0.277350 + 0.960769i \(0.410544\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −0.866025 + 1.50000i −0.231455 + 0.400892i
\(15\) 0 0
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 1.73205 + 3.00000i 0.387298 + 0.670820i
\(21\) 0 0
\(22\) 3.00000 5.19615i 0.639602 1.10782i
\(23\) −3.46410 + 6.00000i −0.722315 + 1.25109i 0.237754 + 0.971325i \(0.423589\pi\)
−0.960070 + 0.279761i \(0.909745\pi\)
\(24\) 0 0
\(25\) −3.50000 6.06218i −0.700000 1.21244i
\(26\) −8.66025 −1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −1.73205 3.00000i −0.321634 0.557086i 0.659192 0.751975i \(-0.270899\pi\)
−0.980825 + 0.194889i \(0.937565\pi\)
\(30\) 0 0
\(31\) −2.50000 + 4.33013i −0.449013 + 0.777714i −0.998322 0.0579057i \(-0.981558\pi\)
0.549309 + 0.835619i \(0.314891\pi\)
\(32\) −2.59808 + 4.50000i −0.459279 + 0.795495i
\(33\) 0 0
\(34\) 0 0
\(35\) 3.46410 0.585540
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) −0.866025 1.50000i −0.140488 0.243332i
\(39\) 0 0
\(40\) 3.00000 5.19615i 0.474342 0.821584i
\(41\) 1.73205 3.00000i 0.270501 0.468521i −0.698489 0.715621i \(-0.746144\pi\)
0.968990 + 0.247099i \(0.0794774\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 3.46410 0.522233
\(45\) 0 0
\(46\) −12.0000 −1.76930
\(47\) −1.73205 3.00000i −0.252646 0.437595i 0.711608 0.702577i \(-0.247967\pi\)
−0.964253 + 0.264982i \(0.914634\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 6.06218 10.5000i 0.857321 1.48492i
\(51\) 0 0
\(52\) −2.50000 4.33013i −0.346688 0.600481i
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0.866025 + 1.50000i 0.115728 + 0.200446i
\(57\) 0 0
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 1.73205 3.00000i 0.225494 0.390567i −0.730974 0.682406i \(-0.760934\pi\)
0.956467 + 0.291839i \(0.0942671\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) −8.66025 −1.09985
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 8.66025 + 15.0000i 1.07417 + 1.86052i
\(66\) 0 0
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.00000 + 5.19615i 0.358569 + 0.621059i
\(71\) −10.3923 −1.23334 −0.616670 0.787222i \(-0.711519\pi\)
−0.616670 + 0.787222i \(0.711519\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −0.866025 1.50000i −0.100673 0.174371i
\(75\) 0 0
\(76\) 0.500000 0.866025i 0.0573539 0.0993399i
\(77\) 1.73205 3.00000i 0.197386 0.341882i
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 17.3205 1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 3.46410 + 6.00000i 0.380235 + 0.658586i 0.991096 0.133152i \(-0.0425099\pi\)
−0.610861 + 0.791738i \(0.709177\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.866025 + 1.50000i −0.0933859 + 0.161749i
\(87\) 0 0
\(88\) −3.00000 5.19615i −0.319801 0.553912i
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.524142
\(92\) −3.46410 6.00000i −0.361158 0.625543i
\(93\) 0 0
\(94\) 3.00000 5.19615i 0.309426 0.535942i
\(95\) −1.73205 + 3.00000i −0.177705 + 0.307794i
\(96\) 0 0
\(97\) −8.50000 14.7224i −0.863044 1.49484i −0.868976 0.494854i \(-0.835222\pi\)
0.00593185 0.999982i \(-0.498112\pi\)
\(98\) 10.3923 1.04978
\(99\) 0 0
\(100\) 7.00000 0.700000
\(101\) −6.92820 12.0000i −0.689382 1.19404i −0.972038 0.234823i \(-0.924549\pi\)
0.282656 0.959221i \(-0.408784\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) −4.33013 + 7.50000i −0.424604 + 0.735436i
\(105\) 0 0
\(106\) 9.00000 + 15.5885i 0.874157 + 1.51408i
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) −10.3923 18.0000i −0.990867 1.71623i
\(111\) 0 0
\(112\) −2.50000 + 4.33013i −0.236228 + 0.409159i
\(113\) −8.66025 + 15.0000i −0.814688 + 1.41108i 0.0948634 + 0.995490i \(0.469759\pi\)
−0.909552 + 0.415591i \(0.863575\pi\)
\(114\) 0 0
\(115\) 12.0000 + 20.7846i 1.11901 + 1.93817i
\(116\) 3.46410 0.321634
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 1.73205 3.00000i 0.156813 0.271607i
\(123\) 0 0
\(124\) −2.50000 4.33013i −0.224507 0.388857i
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 6.06218 + 10.5000i 0.535826 + 0.928078i
\(129\) 0 0
\(130\) −15.0000 + 25.9808i −1.31559 + 2.27866i
\(131\) 1.73205 3.00000i 0.151330 0.262111i −0.780387 0.625297i \(-0.784978\pi\)
0.931717 + 0.363186i \(0.118311\pi\)
\(132\) 0 0
\(133\) −0.500000 0.866025i −0.0433555 0.0750939i
\(134\) −13.8564 −1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) 3.46410 + 6.00000i 0.295958 + 0.512615i 0.975207 0.221293i \(-0.0710278\pi\)
−0.679249 + 0.733908i \(0.737694\pi\)
\(138\) 0 0
\(139\) 6.50000 11.2583i 0.551323 0.954919i −0.446857 0.894606i \(-0.647457\pi\)
0.998179 0.0603135i \(-0.0192101\pi\)
\(140\) −1.73205 + 3.00000i −0.146385 + 0.253546i
\(141\) 0 0
\(142\) −9.00000 15.5885i −0.755263 1.30815i
\(143\) 17.3205 1.44841
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 1.73205 + 3.00000i 0.143346 + 0.248282i
\(147\) 0 0
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) −3.46410 + 6.00000i −0.283790 + 0.491539i −0.972315 0.233674i \(-0.924925\pi\)
0.688525 + 0.725213i \(0.258259\pi\)
\(150\) 0 0
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) −1.73205 −0.140488
\(153\) 0 0
\(154\) 6.00000 0.483494
\(155\) 8.66025 + 15.0000i 0.695608 + 1.20483i
\(156\) 0 0
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) −0.866025 + 1.50000i −0.0688973 + 0.119334i
\(159\) 0 0
\(160\) 9.00000 + 15.5885i 0.711512 + 1.23238i
\(161\) −6.92820 −0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 1.73205 + 3.00000i 0.135250 + 0.234261i
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) 12.1244 21.0000i 0.938211 1.62503i 0.169405 0.985547i \(-0.445815\pi\)
0.768806 0.639482i \(-0.220851\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) −6.92820 12.0000i −0.526742 0.912343i −0.999514 0.0311588i \(-0.990080\pi\)
0.472773 0.881184i \(-0.343253\pi\)
\(174\) 0 0
\(175\) 3.50000 6.06218i 0.264575 0.458258i
\(176\) 8.66025 15.0000i 0.652791 1.13067i
\(177\) 0 0
\(178\) −9.00000 15.5885i −0.674579 1.16840i
\(179\) 20.7846 1.55351 0.776757 0.629800i \(-0.216863\pi\)
0.776757 + 0.629800i \(0.216863\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −4.33013 7.50000i −0.320970 0.555937i
\(183\) 0 0
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) −1.73205 + 3.00000i −0.127343 + 0.220564i
\(186\) 0 0
\(187\) 0 0
\(188\) 3.46410 0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 3.46410 + 6.00000i 0.250654 + 0.434145i 0.963706 0.266966i \(-0.0860212\pi\)
−0.713052 + 0.701111i \(0.752688\pi\)
\(192\) 0 0
\(193\) 5.00000 8.66025i 0.359908 0.623379i −0.628037 0.778183i \(-0.716141\pi\)
0.987945 + 0.154805i \(0.0494748\pi\)
\(194\) 14.7224 25.5000i 1.05701 1.83079i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 10.3923 0.740421 0.370211 0.928948i \(-0.379286\pi\)
0.370211 + 0.928948i \(0.379286\pi\)
\(198\) 0 0
\(199\) −19.0000 −1.34687 −0.673437 0.739244i \(-0.735183\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(200\) −6.06218 10.5000i −0.428661 0.742462i
\(201\) 0 0
\(202\) 12.0000 20.7846i 0.844317 1.46240i
\(203\) 1.73205 3.00000i 0.121566 0.210559i
\(204\) 0 0
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) −13.8564 −0.965422
\(207\) 0 0
\(208\) −25.0000 −1.73344
\(209\) 1.73205 + 3.00000i 0.119808 + 0.207514i
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) −5.19615 + 9.00000i −0.356873 + 0.618123i
\(213\) 0 0
\(214\) −9.00000 15.5885i −0.615227 1.06561i
\(215\) 3.46410 0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 14.7224 + 25.5000i 0.997129 + 1.72708i
\(219\) 0 0
\(220\) 6.00000 10.3923i 0.404520 0.700649i
\(221\) 0 0
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) −5.19615 −0.347183
\(225\) 0 0
\(226\) −30.0000 −1.99557
\(227\) −6.92820 12.0000i −0.459841 0.796468i 0.539111 0.842235i \(-0.318760\pi\)
−0.998952 + 0.0457666i \(0.985427\pi\)
\(228\) 0 0
\(229\) −2.50000 + 4.33013i −0.165205 + 0.286143i −0.936728 0.350058i \(-0.886162\pi\)
0.771523 + 0.636201i \(0.219495\pi\)
\(230\) −20.7846 + 36.0000i −1.37050 + 2.37377i
\(231\) 0 0
\(232\) −3.00000 5.19615i −0.196960 0.341144i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 1.73205 + 3.00000i 0.112747 + 0.195283i
\(237\) 0 0
\(238\) 0 0
\(239\) −3.46410 + 6.00000i −0.224074 + 0.388108i −0.956041 0.293232i \(-0.905269\pi\)
0.731967 + 0.681340i \(0.238602\pi\)
\(240\) 0 0
\(241\) 9.50000 + 16.4545i 0.611949 + 1.05993i 0.990912 + 0.134515i \(0.0429475\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(242\) −1.73205 −0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) −10.3923 18.0000i −0.663940 1.14998i
\(246\) 0 0
\(247\) 2.50000 4.33013i 0.159071 0.275519i
\(248\) −4.33013 + 7.50000i −0.274963 + 0.476250i
\(249\) 0 0
\(250\) −6.00000 10.3923i −0.379473 0.657267i
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) 14.7224 + 25.5000i 0.923768 + 1.60001i
\(255\) 0 0
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 1.73205 3.00000i 0.108042 0.187135i −0.806935 0.590641i \(-0.798875\pi\)
0.914977 + 0.403506i \(0.132208\pi\)
\(258\) 0 0
\(259\) −0.500000 0.866025i −0.0310685 0.0538122i
\(260\) −17.3205 −1.07417
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) −6.92820 12.0000i −0.427211 0.739952i 0.569413 0.822052i \(-0.307171\pi\)
−0.996624 + 0.0821001i \(0.973837\pi\)
\(264\) 0 0
\(265\) 18.0000 31.1769i 1.10573 1.91518i
\(266\) 0.866025 1.50000i 0.0530994 0.0919709i
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −6.00000 + 10.3923i −0.362473 + 0.627822i
\(275\) −12.1244 + 21.0000i −0.731126 + 1.26635i
\(276\) 0 0
\(277\) −8.50000 14.7224i −0.510716 0.884585i −0.999923 0.0124177i \(-0.996047\pi\)
0.489207 0.872167i \(-0.337286\pi\)
\(278\) 22.5167 1.35046
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) −6.92820 12.0000i −0.413302 0.715860i 0.581947 0.813227i \(-0.302291\pi\)
−0.995249 + 0.0973670i \(0.968958\pi\)
\(282\) 0 0
\(283\) 6.50000 11.2583i 0.386385 0.669238i −0.605575 0.795788i \(-0.707057\pi\)
0.991960 + 0.126550i \(0.0403903\pi\)
\(284\) 5.19615 9.00000i 0.308335 0.534052i
\(285\) 0 0
\(286\) 15.0000 + 25.9808i 0.886969 + 1.53627i
\(287\) 3.46410 0.204479
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −10.3923 18.0000i −0.610257 1.05700i
\(291\) 0 0
\(292\) −1.00000 + 1.73205i −0.0585206 + 0.101361i
\(293\) 6.92820 12.0000i 0.404750 0.701047i −0.589542 0.807737i \(-0.700692\pi\)
0.994292 + 0.106690i \(0.0340252\pi\)
\(294\) 0 0
\(295\) −6.00000 10.3923i −0.349334 0.605063i
\(296\) −1.73205 −0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −17.3205 30.0000i −1.00167 1.73494i
\(300\) 0 0
\(301\) −0.500000 + 0.866025i −0.0288195 + 0.0499169i
\(302\) −13.8564 + 24.0000i −0.797347 + 1.38104i
\(303\) 0 0
\(304\) −2.50000 4.33013i −0.143385 0.248350i
\(305\) −6.92820 −0.396708
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 1.73205 + 3.00000i 0.0986928 + 0.170941i
\(309\) 0 0
\(310\) −15.0000 + 25.9808i −0.851943 + 1.47561i
\(311\) 6.92820 12.0000i 0.392862 0.680458i −0.599963 0.800027i \(-0.704818\pi\)
0.992826 + 0.119570i \(0.0381515\pi\)
\(312\) 0 0
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 22.5167 1.27069
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) 13.8564 + 24.0000i 0.778253 + 1.34797i 0.932948 + 0.360012i \(0.117227\pi\)
−0.154694 + 0.987962i \(0.549439\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) 1.73205 3.00000i 0.0968246 0.167705i
\(321\) 0 0
\(322\) −6.00000 10.3923i −0.334367 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) −0.866025 1.50000i −0.0479647 0.0830773i
\(327\) 0 0
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) 1.73205 3.00000i 0.0954911 0.165395i
\(330\) 0 0
\(331\) 9.50000 + 16.4545i 0.522167 + 0.904420i 0.999667 + 0.0257885i \(0.00820965\pi\)
−0.477500 + 0.878632i \(0.658457\pi\)
\(332\) −6.92820 −0.380235
\(333\) 0 0
\(334\) 42.0000 2.29814
\(335\) 13.8564 + 24.0000i 0.757056 + 1.31126i
\(336\) 0 0
\(337\) −2.50000 + 4.33013i −0.136184 + 0.235877i −0.926049 0.377403i \(-0.876817\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 10.3923 18.0000i 0.565267 0.979071i
\(339\) 0 0
\(340\) 0 0
\(341\) 17.3205 0.937958
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0.866025 + 1.50000i 0.0466930 + 0.0808746i
\(345\) 0 0
\(346\) 12.0000 20.7846i 0.645124 1.11739i
\(347\) 12.1244 21.0000i 0.650870 1.12734i −0.332043 0.943264i \(-0.607738\pi\)
0.982912 0.184075i \(-0.0589288\pi\)
\(348\) 0 0
\(349\) 0.500000 + 0.866025i 0.0267644 + 0.0463573i 0.879097 0.476642i \(-0.158146\pi\)
−0.852333 + 0.523000i \(0.824813\pi\)
\(350\) 12.1244 0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) 8.66025 + 15.0000i 0.460939 + 0.798369i 0.999008 0.0445312i \(-0.0141794\pi\)
−0.538069 + 0.842901i \(0.680846\pi\)
\(354\) 0 0
\(355\) −18.0000 + 31.1769i −0.955341 + 1.65470i
\(356\) 5.19615 9.00000i 0.275396 0.476999i
\(357\) 0 0
\(358\) 18.0000 + 31.1769i 0.951330 + 1.64775i
\(359\) −31.1769 −1.64545 −0.822727 0.568436i \(-0.807549\pi\)
−0.822727 + 0.568436i \(0.807549\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 14.7224 + 25.5000i 0.773794 + 1.34025i
\(363\) 0 0
\(364\) 2.50000 4.33013i 0.131036 0.226960i
\(365\) 3.46410 6.00000i 0.181319 0.314054i
\(366\) 0 0
\(367\) 8.00000 + 13.8564i 0.417597 + 0.723299i 0.995697 0.0926670i \(-0.0295392\pi\)
−0.578101 + 0.815966i \(0.696206\pi\)
\(368\) −34.6410 −1.80579
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 5.19615 + 9.00000i 0.269771 + 0.467257i
\(372\) 0 0
\(373\) −11.5000 + 19.9186i −0.595447 + 1.03135i 0.398036 + 0.917370i \(0.369692\pi\)
−0.993484 + 0.113975i \(0.963641\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 5.19615i −0.154713 0.267971i
\(377\) 17.3205 0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) −1.73205 3.00000i −0.0888523 0.153897i
\(381\) 0 0
\(382\) −6.00000 + 10.3923i −0.306987 + 0.531717i
\(383\) −8.66025 + 15.0000i −0.442518 + 0.766464i −0.997876 0.0651476i \(-0.979248\pi\)
0.555357 + 0.831612i \(0.312581\pi\)
\(384\) 0 0
\(385\) −6.00000 10.3923i −0.305788 0.529641i
\(386\) 17.3205 0.881591
\(387\) 0 0
\(388\) 17.0000 0.863044
\(389\) 3.46410 + 6.00000i 0.175637 + 0.304212i 0.940382 0.340121i \(-0.110468\pi\)
−0.764745 + 0.644334i \(0.777135\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5.19615 9.00000i 0.262445 0.454569i
\(393\) 0 0
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) 3.46410 0.174298
\(396\) 0 0
\(397\) −1.00000 −0.0501886 −0.0250943 0.999685i \(-0.507989\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) −16.4545 28.5000i −0.824789 1.42858i
\(399\) 0 0
\(400\) 17.5000 30.3109i 0.875000 1.51554i
\(401\) 1.73205 3.00000i 0.0864945 0.149813i −0.819533 0.573033i \(-0.805767\pi\)
0.906027 + 0.423220i \(0.139100\pi\)
\(402\) 0 0
\(403\) −12.5000 21.6506i −0.622669 1.07849i
\(404\) 13.8564 0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 1.73205 + 3.00000i 0.0858546 + 0.148704i
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) 10.3923 18.0000i 0.513239 0.888957i
\(411\) 0 0
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) 3.46410 0.170457
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) −12.9904 22.5000i −0.636906 1.10315i
\(417\) 0 0
\(418\) −3.00000 + 5.19615i −0.146735 + 0.254152i
\(419\) −19.0526 + 33.0000i −0.930778 + 1.61216i −0.148784 + 0.988870i \(0.547536\pi\)
−0.781994 + 0.623286i \(0.785797\pi\)
\(420\) 0 0
\(421\) 9.50000 + 16.4545i 0.463002 + 0.801942i 0.999109 0.0422075i \(-0.0134391\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) −8.66025 −0.421575
\(423\) 0 0
\(424\) 18.0000 0.874157
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 1.73205i 0.0483934 0.0838198i
\(428\) 5.19615 9.00000i 0.251166 0.435031i
\(429\) 0 0
\(430\) 3.00000 + 5.19615i 0.144673 + 0.250581i
\(431\) 20.7846 1.00116 0.500580 0.865690i \(-0.333120\pi\)
0.500580 + 0.865690i \(0.333120\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) −4.33013 7.50000i −0.207853 0.360012i
\(435\) 0 0
\(436\) −8.50000 + 14.7224i −0.407076 + 0.705077i
\(437\) 3.46410 6.00000i 0.165710 0.287019i
\(438\) 0 0
\(439\) −10.0000 17.3205i −0.477274 0.826663i 0.522387 0.852709i \(-0.325042\pi\)
−0.999661 + 0.0260459i \(0.991708\pi\)
\(440\) −20.7846 −0.990867
\(441\) 0 0
\(442\) 0 0
\(443\) −6.92820 12.0000i −0.329169 0.570137i 0.653178 0.757204i \(-0.273435\pi\)
−0.982347 + 0.187067i \(0.940102\pi\)
\(444\) 0 0
\(445\) −18.0000 + 31.1769i −0.853282 + 1.47793i
\(446\) −16.4545 + 28.5000i −0.779142 + 1.34951i
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) 10.3923 0.490443 0.245222 0.969467i \(-0.421139\pi\)
0.245222 + 0.969467i \(0.421139\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −8.66025 15.0000i −0.407344 0.705541i
\(453\) 0 0
\(454\) 12.0000 20.7846i 0.563188 0.975470i
\(455\) −8.66025 + 15.0000i −0.405999 + 0.703211i
\(456\) 0 0
\(457\) −8.50000 14.7224i −0.397613 0.688686i 0.595818 0.803120i \(-0.296828\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(458\) −8.66025 −0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) 13.8564 + 24.0000i 0.645357 + 1.11779i 0.984219 + 0.176955i \(0.0566248\pi\)
−0.338862 + 0.940836i \(0.610042\pi\)
\(462\) 0 0
\(463\) 15.5000 26.8468i 0.720346 1.24768i −0.240515 0.970645i \(-0.577316\pi\)
0.960861 0.277031i \(-0.0893503\pi\)
\(464\) 8.66025 15.0000i 0.402042 0.696358i
\(465\) 0 0
\(466\) 0 0
\(467\) 10.3923 0.480899 0.240449 0.970662i \(-0.422705\pi\)
0.240449 + 0.970662i \(0.422705\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) −10.3923 18.0000i −0.479361 0.830278i
\(471\) 0 0
\(472\) 3.00000 5.19615i 0.138086 0.239172i
\(473\) 1.73205 3.00000i 0.0796398 0.137940i
\(474\) 0 0
\(475\) 3.50000 + 6.06218i 0.160591 + 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) −12.0000 −0.548867
\(479\) −6.92820 12.0000i −0.316558 0.548294i 0.663210 0.748434i \(-0.269194\pi\)
−0.979767 + 0.200140i \(0.935860\pi\)
\(480\) 0 0
\(481\) 2.50000 4.33013i 0.113990 0.197437i
\(482\) −16.4545 + 28.5000i −0.749481 + 1.29814i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.0227273 0.0393648i
\(485\) −58.8897 −2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) −1.73205 3.00000i −0.0784063 0.135804i
\(489\) 0 0
\(490\) 18.0000 31.1769i 0.813157 1.40843i
\(491\) −19.0526 + 33.0000i −0.859830 + 1.48927i 0.0122607 + 0.999925i \(0.496097\pi\)
−0.872091 + 0.489344i \(0.837236\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.66025 0.389643
\(495\) 0 0
\(496\) −25.0000 −1.12253
\(497\) −5.19615 9.00000i −0.233079 0.403705i
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 3.46410 6.00000i 0.154919 0.268328i
\(501\) 0 0
\(502\) −18.0000 31.1769i −0.803379 1.39149i
\(503\) −41.5692 −1.85348 −0.926740 0.375703i \(-0.877401\pi\)
−0.926740 + 0.375703i \(0.877401\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 20.7846 + 36.0000i 0.923989 + 1.60040i
\(507\) 0 0
\(508\) −8.50000 + 14.7224i −0.377127 + 0.653202i
\(509\) −13.8564 + 24.0000i −0.614174 + 1.06378i 0.376354 + 0.926476i \(0.377178\pi\)
−0.990529 + 0.137305i \(0.956156\pi\)
\(510\) 0 0
\(511\) 1.00000 + 1.73205i 0.0442374 + 0.0766214i
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 13.8564 + 24.0000i 0.610586 + 1.05757i
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 0.866025 1.50000i 0.0380510 0.0659062i
\(519\) 0 0
\(520\) 15.0000 + 25.9808i 0.657794 + 1.13933i
\(521\) 20.7846 0.910590 0.455295 0.890341i \(-0.349534\pi\)
0.455295 + 0.890341i \(0.349534\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 1.73205 + 3.00000i 0.0756650 + 0.131056i
\(525\) 0 0
\(526\) 12.0000 20.7846i 0.523225 0.906252i
\(527\) 0 0
\(528\) 0 0
\(529\) −12.5000 21.6506i −0.543478 0.941332i
\(530\) 62.3538 2.70848
\(531\) 0 0
\(532\) 1.00000 0.0433555
\(533\) 8.66025 + 15.0000i 0.375117 + 0.649722i
\(534\) 0 0
\(535\) −18.0000 + 31.1769i −0.778208 + 1.34790i
\(536\) −6.92820 + 12.0000i −0.299253 + 0.518321i
\(537\) 0 0
\(538\) 0 0
\(539\) −20.7846 −0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) −13.8564 24.0000i −0.595184 1.03089i
\(543\) 0 0
\(544\) 0 0
\(545\) 29.4449 51.0000i 1.26128 2.18460i
\(546\) 0 0
\(547\) −10.0000 17.3205i −0.427569 0.740571i 0.569087 0.822277i \(-0.307297\pi\)
−0.996657 + 0.0817056i \(0.973963\pi\)
\(548\) −6.92820 −0.295958
\(549\) 0 0
\(550\) −42.0000 −1.79089
\(551\) 1.73205 + 3.00000i 0.0737878 + 0.127804i
\(552\) 0 0
\(553\) −0.500000 + 0.866025i −0.0212622 + 0.0368271i
\(554\) 14.7224 25.5000i 0.625496 1.08339i
\(555\) 0 0
\(556\) 6.50000 + 11.2583i 0.275661 + 0.477460i
\(557\) −10.3923 −0.440336 −0.220168 0.975462i \(-0.570661\pi\)
−0.220168 + 0.975462i \(0.570661\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 8.66025 + 15.0000i 0.365963 + 0.633866i
\(561\) 0 0
\(562\) 12.0000 20.7846i 0.506189 0.876746i
\(563\) 17.3205 30.0000i 0.729972 1.26435i −0.226922 0.973913i \(-0.572866\pi\)
0.956894 0.290436i \(-0.0938004\pi\)
\(564\) 0 0
\(565\) 30.0000 + 51.9615i 1.26211 + 2.18604i
\(566\) 22.5167 0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) −12.1244 21.0000i −0.508279 0.880366i −0.999954 0.00958679i \(-0.996948\pi\)
0.491675 0.870779i \(-0.336385\pi\)
\(570\) 0 0
\(571\) −20.5000 + 35.5070i −0.857898 + 1.48592i 0.0160316 + 0.999871i \(0.494897\pi\)
−0.873930 + 0.486052i \(0.838437\pi\)
\(572\) −8.66025 + 15.0000i −0.362103 + 0.627182i
\(573\) 0 0
\(574\) 3.00000 + 5.19615i 0.125218 + 0.216883i
\(575\) 48.4974 2.02248
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −14.7224 25.5000i −0.612372 1.06066i
\(579\) 0 0
\(580\) 6.00000 10.3923i 0.249136 0.431517i
\(581\) −3.46410 + 6.00000i −0.143715 + 0.248922i
\(582\) 0 0
\(583\) −18.0000 31.1769i −0.745484 1.29122i
\(584\) 3.46410 0.143346
\(585\) 0 0
\(586\) 24.0000 0.991431
\(587\) 3.46410 + 6.00000i 0.142979 + 0.247647i 0.928617 0.371040i \(-0.120999\pi\)
−0.785638 + 0.618686i \(0.787665\pi\)
\(588\) 0 0
\(589\) 2.50000 4.33013i 0.103011 0.178420i
\(590\) 10.3923 18.0000i 0.427844 0.741048i
\(591\) 0 0
\(592\) −2.50000 4.33013i −0.102749 0.177967i
\(593\) −20.7846 −0.853522 −0.426761 0.904365i \(-0.640345\pi\)
−0.426761 + 0.904365i \(0.640345\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.46410 6.00000i −0.141895 0.245770i
\(597\) 0 0
\(598\) 30.0000 51.9615i 1.22679 2.12486i
\(599\) 12.1244 21.0000i 0.495388 0.858037i −0.504598 0.863354i \(-0.668359\pi\)
0.999986 + 0.00531761i \(0.00169266\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) −1.73205 −0.0705931
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) 1.73205 + 3.00000i 0.0704179 + 0.121967i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 2.59808 4.50000i 0.105366 0.182499i
\(609\) 0 0
\(610\) −6.00000 10.3923i −0.242933 0.420772i
\(611\) 17.3205 0.700713
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 17.3205 + 30.0000i 0.698999 + 1.21070i
\(615\) 0 0
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) −3.46410 + 6.00000i −0.139459 + 0.241551i −0.927292 0.374338i \(-0.877870\pi\)
0.787833 + 0.615889i \(0.211203\pi\)
\(618\) 0 0
\(619\) −10.0000 17.3205i −0.401934 0.696170i 0.592025 0.805919i \(-0.298329\pi\)
−0.993959 + 0.109749i \(0.964995\pi\)
\(620\) −17.3205 −0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −5.19615 9.00000i −0.208179 0.360577i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) −0.866025 + 1.50000i −0.0346133 + 0.0599521i
\(627\) 0 0
\(628\) 6.50000 + 11.2583i 0.259378 + 0.449256i
\(629\) 0 0
\(630\) 0 0
\(631\) 17.0000 0.676759 0.338380 0.941010i \(-0.390121\pi\)
0.338380 + 0.941010i \(0.390121\pi\)
\(632\) 0.866025 + 1.50000i 0.0344486 + 0.0596668i
\(633\) 0 0
\(634\) −24.0000 + 41.5692i −0.953162 + 1.65092i
\(635\) 29.4449 51.0000i 1.16848 2.02387i
\(636\) 0 0
\(637\) 15.0000 + 25.9808i 0.594322 + 1.02940i
\(638\) −20.7846 −0.822871
\(639\) 0 0
\(640\) 42.0000 1.66020
\(641\) −22.5167 39.0000i −0.889355 1.54041i −0.840640 0.541595i \(-0.817821\pi\)
−0.0487148 0.998813i \(-0.515513\pi\)
\(642\) 0 0
\(643\) −22.0000 + 38.1051i −0.867595 + 1.50272i −0.00314839 + 0.999995i \(0.501002\pi\)
−0.864447 + 0.502724i \(0.832331\pi\)
\(644\) 3.46410 6.00000i 0.136505 0.236433i
\(645\) 0 0
\(646\) 0 0
\(647\) 20.7846 0.817127 0.408564 0.912730i \(-0.366030\pi\)
0.408564 + 0.912730i \(0.366030\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 30.3109 + 52.5000i 1.18889 + 2.05922i
\(651\) 0 0
\(652\) 0.500000 0.866025i 0.0195815 0.0339162i
\(653\) −8.66025 + 15.0000i −0.338902 + 0.586995i −0.984226 0.176913i \(-0.943389\pi\)
0.645325 + 0.763909i \(0.276722\pi\)
\(654\) 0 0
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) 17.3205 0.676252
\(657\) 0 0
\(658\) 6.00000 0.233904
\(659\) 13.8564 + 24.0000i 0.539769 + 0.934907i 0.998916 + 0.0465470i \(0.0148217\pi\)
−0.459147 + 0.888360i \(0.651845\pi\)
\(660\) 0 0
\(661\) 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i \(-0.771032\pi\)
0.946729 + 0.322031i \(0.104366\pi\)
\(662\) −16.4545 + 28.5000i −0.639522 + 1.10768i
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) −3.46410 −0.134332
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 12.1244 + 21.0000i 0.469105 + 0.812514i
\(669\) 0 0
\(670\) −24.0000 + 41.5692i −0.927201 + 1.60596i
\(671\) −3.46410 + 6.00000i −0.133730 + 0.231627i
\(672\) 0 0
\(673\) 18.5000 + 32.0429i 0.713123 + 1.23516i 0.963679 + 0.267063i \(0.0860531\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) −8.66025 −0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 8.66025 + 15.0000i 0.332841 + 0.576497i 0.983068 0.183243i \(-0.0586596\pi\)
−0.650227 + 0.759740i \(0.725326\pi\)
\(678\) 0 0
\(679\) 8.50000 14.7224i 0.326200 0.564995i
\(680\) 0 0
\(681\) 0 0
\(682\) 15.0000 + 25.9808i 0.574380 + 0.994855i
\(683\) −41.5692 −1.59060 −0.795301 0.606215i \(-0.792687\pi\)
−0.795301 + 0.606215i \(0.792687\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) 11.2583 + 19.5000i 0.429845 + 0.744513i
\(687\) 0 0
\(688\) −2.50000 + 4.33013i −0.0953116 + 0.165085i
\(689\) −25.9808 + 45.0000i −0.989788 + 1.71436i
\(690\) 0 0
\(691\) −8.50000 14.7224i −0.323355 0.560068i 0.657823 0.753173i \(-0.271478\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(692\) 13.8564 0.526742
\(693\) 0 0
\(694\) 42.0000 1.59430
\(695\) −22.5167 39.0000i −0.854106 1.47935i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.866025 + 1.50000i −0.0327795 + 0.0567758i
\(699\) 0 0
\(700\) 3.50000 + 6.06218i 0.132288 + 0.229129i
\(701\) 41.5692 1.57005 0.785024 0.619466i \(-0.212651\pi\)
0.785024 + 0.619466i \(0.212651\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) −1.73205 3.00000i −0.0652791 0.113067i
\(705\) 0 0
\(706\) −15.0000 + 25.9808i −0.564532 + 0.977799i
\(707\) 6.92820 12.0000i 0.260562 0.451306i
\(708\) 0 0
\(709\) 9.50000 + 16.4545i 0.356780 + 0.617961i 0.987421 0.158114i \(-0.0505412\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) −62.3538 −2.34010
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) −17.3205 30.0000i −0.648658 1.12351i
\(714\) 0 0
\(715\) 30.0000 51.9615i 1.12194 1.94325i
\(716\) −10.3923 + 18.0000i −0.388379 + 0.672692i
\(717\) 0 0
\(718\) −27.0000 46.7654i −1.00763 1.74527i
\(719\) −10.3923 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −15.5885 27.0000i −0.580142 1.00484i
\(723\) 0 0
\(724\) −8.50000 + 14.7224i −0.315900 + 0.547155i
\(725\) −12.1244 + 21.0000i −0.450287 + 0.779920i
\(726\) 0 0
\(727\) 8.00000 + 13.8564i 0.296704 + 0.513906i 0.975380 0.220532i \(-0.0707793\pi\)
−0.678676 + 0.734438i \(0.737446\pi\)
\(728\) −8.66025 −0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) −20.5000 + 35.5070i −0.757185 + 1.31148i 0.187096 + 0.982342i \(0.440092\pi\)
−0.944281 + 0.329141i \(0.893241\pi\)
\(734\) −13.8564 + 24.0000i −0.511449 + 0.885856i
\(735\) 0 0
\(736\) −18.0000 31.1769i −0.663489 1.14920i
\(737\) 27.7128 1.02081
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) −1.73205 3.00000i −0.0636715 0.110282i
\(741\) 0 0
\(742\) −9.00000 + 15.5885i −0.330400 + 0.572270i
\(743\) −3.46410 + 6.00000i −0.127086 + 0.220119i −0.922546 0.385887i \(-0.873896\pi\)
0.795461 + 0.606005i \(0.207229\pi\)
\(744\) 0 0
\(745\) 12.0000 + 20.7846i 0.439646 + 0.761489i
\(746\) −39.8372 −1.45854
\(747\) 0 0
\(748\) 0 0
\(749\) −5.19615 9.00000i −0.189863 0.328853i
\(750\) 0 0
\(751\) −2.50000 + 4.33013i −0.0912263 + 0.158009i −0.908027 0.418911i \(-0.862412\pi\)
0.816801 + 0.576919i \(0.195745\pi\)
\(752\) 8.66025 15.0000i 0.315807 0.546994i
\(753\) 0 0
\(754\) 15.0000 + 25.9808i 0.546268 + 0.946164i
\(755\) 55.4256 2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −16.4545 28.5000i −0.597654 1.03517i
\(759\) 0 0
\(760\) −3.00000 + 5.19615i −0.108821 + 0.188484i
\(761\) −13.8564 + 24.0000i −0.502294 + 0.869999i 0.497702 + 0.867348i \(0.334177\pi\)
−0.999996 + 0.00265131i \(0.999156\pi\)
\(762\) 0 0
\(763\) 8.50000 + 14.7224i 0.307721 + 0.532988i
\(764\) −6.92820 −0.250654
\(765\) 0 0
\(766\) −30.0000 −1.08394
\(767\) 8.66025 + 15.0000i 0.312704 + 0.541619i
\(768\) 0 0
\(769\) 6.50000 11.2583i 0.234396 0.405986i −0.724701 0.689063i \(-0.758022\pi\)
0.959097 + 0.283078i \(0.0913554\pi\)
\(770\) 10.3923 18.0000i 0.374513 0.648675i
\(771\) 0 0
\(772\) 5.00000 + 8.66025i 0.179954 + 0.311689i
\(773\) −20.7846 −0.747570 −0.373785 0.927515i \(-0.621940\pi\)
−0.373785 + 0.927515i \(0.621940\pi\)
\(774\) 0 0
\(775\) 35.0000 1.25724
\(776\) −14.7224 25.5000i −0.528505 0.915397i
\(777\) 0 0
\(778\) −6.00000 + 10.3923i −0.215110 + 0.372582i
\(779\) −1.73205 + 3.00000i −0.0620572 + 0.107486i
\(780\) 0 0
\(781\) 18.0000 + 31.1769i 0.644091 + 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 30.0000 1.07143
\(785\) −22.5167 39.0000i −0.803654 1.39197i