Properties

Label 243.2.c.d.163.1
Level $243$
Weight $2$
Character 243.163
Analytic conductor $1.940$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(82,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 243.163
Dual form 243.2.c.d.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.73205 - 3.00000i) q^{5} +(0.500000 - 0.866025i) q^{7} -1.73205 q^{8} +O(q^{10})\) \(q+(-0.866025 + 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.73205 - 3.00000i) q^{5} +(0.500000 - 0.866025i) q^{7} -1.73205 q^{8} +6.00000 q^{10} +(1.73205 - 3.00000i) q^{11} +(-2.50000 - 4.33013i) q^{13} +(0.866025 + 1.50000i) q^{14} +(2.50000 - 4.33013i) q^{16} -1.00000 q^{19} +(-1.73205 + 3.00000i) q^{20} +(3.00000 + 5.19615i) q^{22} +(3.46410 + 6.00000i) q^{23} +(-3.50000 + 6.06218i) q^{25} +8.66025 q^{26} -1.00000 q^{28} +(1.73205 - 3.00000i) q^{29} +(-2.50000 - 4.33013i) q^{31} +(2.59808 + 4.50000i) q^{32} -3.46410 q^{35} -1.00000 q^{37} +(0.866025 - 1.50000i) q^{38} +(3.00000 + 5.19615i) q^{40} +(-1.73205 - 3.00000i) q^{41} +(0.500000 - 0.866025i) q^{43} -3.46410 q^{44} -12.0000 q^{46} +(1.73205 - 3.00000i) q^{47} +(3.00000 + 5.19615i) q^{49} +(-6.06218 - 10.5000i) q^{50} +(-2.50000 + 4.33013i) q^{52} -10.3923 q^{53} -12.0000 q^{55} +(-0.866025 + 1.50000i) q^{56} +(3.00000 + 5.19615i) q^{58} +(-1.73205 - 3.00000i) q^{59} +(-1.00000 + 1.73205i) q^{61} +8.66025 q^{62} +1.00000 q^{64} +(-8.66025 + 15.0000i) q^{65} +(-4.00000 - 6.92820i) q^{67} +(3.00000 - 5.19615i) q^{70} +10.3923 q^{71} +2.00000 q^{73} +(0.866025 - 1.50000i) q^{74} +(0.500000 + 0.866025i) q^{76} +(-1.73205 - 3.00000i) q^{77} +(0.500000 - 0.866025i) q^{79} -17.3205 q^{80} +6.00000 q^{82} +(-3.46410 + 6.00000i) q^{83} +(0.866025 + 1.50000i) q^{86} +(-3.00000 + 5.19615i) q^{88} +10.3923 q^{89} -5.00000 q^{91} +(3.46410 - 6.00000i) q^{92} +(3.00000 + 5.19615i) q^{94} +(1.73205 + 3.00000i) q^{95} +(-8.50000 + 14.7224i) q^{97} -10.3923 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{4} + 2 q^{7} + 24 q^{10} - 10 q^{13} + 10 q^{16} - 4 q^{19} + 12 q^{22} - 14 q^{25} - 4 q^{28} - 10 q^{31} - 4 q^{37} + 12 q^{40} + 2 q^{43} - 48 q^{46} + 12 q^{49} - 10 q^{52} - 48 q^{55} + 12 q^{58} - 4 q^{61} + 4 q^{64} - 16 q^{67} + 12 q^{70} + 8 q^{73} + 2 q^{76} + 2 q^{79} + 24 q^{82} - 12 q^{88} - 20 q^{91} + 12 q^{94} - 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 1.50000i −0.612372 + 1.06066i 0.378467 + 0.925615i \(0.376451\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.73205 3.00000i −0.774597 1.34164i −0.935021 0.354593i \(-0.884620\pi\)
0.160424 0.987048i \(-0.448714\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) 6.00000 1.89737
\(11\) 1.73205 3.00000i 0.522233 0.904534i −0.477432 0.878668i \(-0.658432\pi\)
0.999665 0.0258656i \(-0.00823419\pi\)
\(12\) 0 0
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0.866025 + 1.50000i 0.231455 + 0.400892i
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −1.73205 + 3.00000i −0.387298 + 0.670820i
\(21\) 0 0
\(22\) 3.00000 + 5.19615i 0.639602 + 1.10782i
\(23\) 3.46410 + 6.00000i 0.722315 + 1.25109i 0.960070 + 0.279761i \(0.0902553\pi\)
−0.237754 + 0.971325i \(0.576411\pi\)
\(24\) 0 0
\(25\) −3.50000 + 6.06218i −0.700000 + 1.21244i
\(26\) 8.66025 1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 1.73205 3.00000i 0.321634 0.557086i −0.659192 0.751975i \(-0.729101\pi\)
0.980825 + 0.194889i \(0.0624347\pi\)
\(30\) 0 0
\(31\) −2.50000 4.33013i −0.449013 0.777714i 0.549309 0.835619i \(-0.314891\pi\)
−0.998322 + 0.0579057i \(0.981558\pi\)
\(32\) 2.59808 + 4.50000i 0.459279 + 0.795495i
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46410 −0.585540
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0.866025 1.50000i 0.140488 0.243332i
\(39\) 0 0
\(40\) 3.00000 + 5.19615i 0.474342 + 0.821584i
\(41\) −1.73205 3.00000i −0.270501 0.468521i 0.698489 0.715621i \(-0.253856\pi\)
−0.968990 + 0.247099i \(0.920523\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) −3.46410 −0.522233
\(45\) 0 0
\(46\) −12.0000 −1.76930
\(47\) 1.73205 3.00000i 0.252646 0.437595i −0.711608 0.702577i \(-0.752033\pi\)
0.964253 + 0.264982i \(0.0853660\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) −6.06218 10.5000i −0.857321 1.48492i
\(51\) 0 0
\(52\) −2.50000 + 4.33013i −0.346688 + 0.600481i
\(53\) −10.3923 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) −0.866025 + 1.50000i −0.115728 + 0.200446i
\(57\) 0 0
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) −1.73205 3.00000i −0.225494 0.390567i 0.730974 0.682406i \(-0.239066\pi\)
−0.956467 + 0.291839i \(0.905733\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 8.66025 1.09985
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.66025 + 15.0000i −1.07417 + 1.86052i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.00000 5.19615i 0.358569 0.621059i
\(71\) 10.3923 1.23334 0.616670 0.787222i \(-0.288481\pi\)
0.616670 + 0.787222i \(0.288481\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0.866025 1.50000i 0.100673 0.174371i
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.0573539 + 0.0993399i
\(77\) −1.73205 3.00000i −0.197386 0.341882i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) −17.3205 −1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −3.46410 + 6.00000i −0.380235 + 0.658586i −0.991096 0.133152i \(-0.957490\pi\)
0.610861 + 0.791738i \(0.290823\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.866025 + 1.50000i 0.0933859 + 0.161749i
\(87\) 0 0
\(88\) −3.00000 + 5.19615i −0.319801 + 0.553912i
\(89\) 10.3923 1.10158 0.550791 0.834643i \(-0.314326\pi\)
0.550791 + 0.834643i \(0.314326\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.524142
\(92\) 3.46410 6.00000i 0.361158 0.625543i
\(93\) 0 0
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 1.73205 + 3.00000i 0.177705 + 0.307794i
\(96\) 0 0
\(97\) −8.50000 + 14.7224i −0.863044 + 1.49484i 0.00593185 + 0.999982i \(0.498112\pi\)
−0.868976 + 0.494854i \(0.835222\pi\)
\(98\) −10.3923 −1.04978
\(99\) 0 0
\(100\) 7.00000 0.700000
\(101\) 6.92820 12.0000i 0.689382 1.19404i −0.282656 0.959221i \(-0.591216\pi\)
0.972038 0.234823i \(-0.0754512\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 4.33013 + 7.50000i 0.424604 + 0.735436i
\(105\) 0 0
\(106\) 9.00000 15.5885i 0.874157 1.51408i
\(107\) 10.3923 1.00466 0.502331 0.864675i \(-0.332476\pi\)
0.502331 + 0.864675i \(0.332476\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 10.3923 18.0000i 0.990867 1.71623i
\(111\) 0 0
\(112\) −2.50000 4.33013i −0.236228 0.409159i
\(113\) 8.66025 + 15.0000i 0.814688 + 1.41108i 0.909552 + 0.415591i \(0.136425\pi\)
−0.0948634 + 0.995490i \(0.530241\pi\)
\(114\) 0 0
\(115\) 12.0000 20.7846i 1.11901 1.93817i
\(116\) −3.46410 −0.321634
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −1.73205 3.00000i −0.156813 0.271607i
\(123\) 0 0
\(124\) −2.50000 + 4.33013i −0.224507 + 0.388857i
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) −6.06218 + 10.5000i −0.535826 + 0.928078i
\(129\) 0 0
\(130\) −15.0000 25.9808i −1.31559 2.27866i
\(131\) −1.73205 3.00000i −0.151330 0.262111i 0.780387 0.625297i \(-0.215022\pi\)
−0.931717 + 0.363186i \(0.881689\pi\)
\(132\) 0 0
\(133\) −0.500000 + 0.866025i −0.0433555 + 0.0750939i
\(134\) 13.8564 1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) −3.46410 + 6.00000i −0.295958 + 0.512615i −0.975207 0.221293i \(-0.928972\pi\)
0.679249 + 0.733908i \(0.262306\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) 1.73205 + 3.00000i 0.146385 + 0.253546i
\(141\) 0 0
\(142\) −9.00000 + 15.5885i −0.755263 + 1.30815i
\(143\) −17.3205 −1.44841
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) −1.73205 + 3.00000i −0.143346 + 0.248282i
\(147\) 0 0
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) 3.46410 + 6.00000i 0.283790 + 0.491539i 0.972315 0.233674i \(-0.0750747\pi\)
−0.688525 + 0.725213i \(0.741741\pi\)
\(150\) 0 0
\(151\) 8.00000 13.8564i 0.651031 1.12762i −0.331842 0.943335i \(-0.607670\pi\)
0.982873 0.184284i \(-0.0589965\pi\)
\(152\) 1.73205 0.140488
\(153\) 0 0
\(154\) 6.00000 0.483494
\(155\) −8.66025 + 15.0000i −0.695608 + 1.20483i
\(156\) 0 0
\(157\) 6.50000 + 11.2583i 0.518756 + 0.898513i 0.999762 + 0.0217953i \(0.00693820\pi\)
−0.481006 + 0.876717i \(0.659728\pi\)
\(158\) 0.866025 + 1.50000i 0.0688973 + 0.119334i
\(159\) 0 0
\(160\) 9.00000 15.5885i 0.711512 1.23238i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) −1.73205 + 3.00000i −0.135250 + 0.234261i
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) −12.1244 21.0000i −0.938211 1.62503i −0.768806 0.639482i \(-0.779149\pi\)
−0.169405 0.985547i \(-0.554185\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) 6.92820 12.0000i 0.526742 0.912343i −0.472773 0.881184i \(-0.656747\pi\)
0.999514 0.0311588i \(-0.00991976\pi\)
\(174\) 0 0
\(175\) 3.50000 + 6.06218i 0.264575 + 0.458258i
\(176\) −8.66025 15.0000i −0.652791 1.13067i
\(177\) 0 0
\(178\) −9.00000 + 15.5885i −0.674579 + 1.16840i
\(179\) −20.7846 −1.55351 −0.776757 0.629800i \(-0.783137\pi\)
−0.776757 + 0.629800i \(0.783137\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 4.33013 7.50000i 0.320970 0.555937i
\(183\) 0 0
\(184\) −6.00000 10.3923i −0.442326 0.766131i
\(185\) 1.73205 + 3.00000i 0.127343 + 0.220564i
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 −0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) −3.46410 + 6.00000i −0.250654 + 0.434145i −0.963706 0.266966i \(-0.913979\pi\)
0.713052 + 0.701111i \(0.247312\pi\)
\(192\) 0 0
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) −14.7224 25.5000i −1.05701 1.83079i
\(195\) 0 0
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) −10.3923 −0.740421 −0.370211 0.928948i \(-0.620714\pi\)
−0.370211 + 0.928948i \(0.620714\pi\)
\(198\) 0 0
\(199\) −19.0000 −1.34687 −0.673437 0.739244i \(-0.735183\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(200\) 6.06218 10.5000i 0.428661 0.742462i
\(201\) 0 0
\(202\) 12.0000 + 20.7846i 0.844317 + 1.46240i
\(203\) −1.73205 3.00000i −0.121566 0.210559i
\(204\) 0 0
\(205\) −6.00000 + 10.3923i −0.419058 + 0.725830i
\(206\) 13.8564 0.965422
\(207\) 0 0
\(208\) −25.0000 −1.73344
\(209\) −1.73205 + 3.00000i −0.119808 + 0.207514i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 5.19615 + 9.00000i 0.356873 + 0.618123i
\(213\) 0 0
\(214\) −9.00000 + 15.5885i −0.615227 + 1.06561i
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) −14.7224 + 25.5000i −0.997129 + 1.72708i
\(219\) 0 0
\(220\) 6.00000 + 10.3923i 0.404520 + 0.700649i
\(221\) 0 0
\(222\) 0 0
\(223\) 9.50000 16.4545i 0.636167 1.10187i −0.350100 0.936713i \(-0.613852\pi\)
0.986267 0.165161i \(-0.0528144\pi\)
\(224\) 5.19615 0.347183
\(225\) 0 0
\(226\) −30.0000 −1.99557
\(227\) 6.92820 12.0000i 0.459841 0.796468i −0.539111 0.842235i \(-0.681240\pi\)
0.998952 + 0.0457666i \(0.0145731\pi\)
\(228\) 0 0
\(229\) −2.50000 4.33013i −0.165205 0.286143i 0.771523 0.636201i \(-0.219495\pi\)
−0.936728 + 0.350058i \(0.886162\pi\)
\(230\) 20.7846 + 36.0000i 1.37050 + 2.37377i
\(231\) 0 0
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) −1.73205 + 3.00000i −0.112747 + 0.195283i
\(237\) 0 0
\(238\) 0 0
\(239\) 3.46410 + 6.00000i 0.224074 + 0.388108i 0.956041 0.293232i \(-0.0947309\pi\)
−0.731967 + 0.681340i \(0.761398\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) 1.73205 0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 10.3923 18.0000i 0.663940 1.14998i
\(246\) 0 0
\(247\) 2.50000 + 4.33013i 0.159071 + 0.275519i
\(248\) 4.33013 + 7.50000i 0.274963 + 0.476250i
\(249\) 0 0
\(250\) −6.00000 + 10.3923i −0.379473 + 0.657267i
\(251\) 20.7846 1.31191 0.655956 0.754799i \(-0.272265\pi\)
0.655956 + 0.754799i \(0.272265\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) −14.7224 + 25.5000i −0.923768 + 1.60001i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −1.73205 3.00000i −0.108042 0.187135i 0.806935 0.590641i \(-0.201125\pi\)
−0.914977 + 0.403506i \(0.867792\pi\)
\(258\) 0 0
\(259\) −0.500000 + 0.866025i −0.0310685 + 0.0538122i
\(260\) 17.3205 1.07417
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) 6.92820 12.0000i 0.427211 0.739952i −0.569413 0.822052i \(-0.692829\pi\)
0.996624 + 0.0821001i \(0.0261627\pi\)
\(264\) 0 0
\(265\) 18.0000 + 31.1769i 1.10573 + 1.91518i
\(266\) −0.866025 1.50000i −0.0530994 0.0919709i
\(267\) 0 0
\(268\) −4.00000 + 6.92820i −0.244339 + 0.423207i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −6.00000 10.3923i −0.362473 0.627822i
\(275\) 12.1244 + 21.0000i 0.731126 + 1.26635i
\(276\) 0 0
\(277\) −8.50000 + 14.7224i −0.510716 + 0.884585i 0.489207 + 0.872167i \(0.337286\pi\)
−0.999923 + 0.0124177i \(0.996047\pi\)
\(278\) −22.5167 −1.35046
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) 6.92820 12.0000i 0.413302 0.715860i −0.581947 0.813227i \(-0.697709\pi\)
0.995249 + 0.0973670i \(0.0310421\pi\)
\(282\) 0 0
\(283\) 6.50000 + 11.2583i 0.386385 + 0.669238i 0.991960 0.126550i \(-0.0403903\pi\)
−0.605575 + 0.795788i \(0.707057\pi\)
\(284\) −5.19615 9.00000i −0.308335 0.534052i
\(285\) 0 0
\(286\) 15.0000 25.9808i 0.886969 1.53627i
\(287\) −3.46410 −0.204479
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 10.3923 18.0000i 0.610257 1.05700i
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) −6.92820 12.0000i −0.404750 0.701047i 0.589542 0.807737i \(-0.299308\pi\)
−0.994292 + 0.106690i \(0.965975\pi\)
\(294\) 0 0
\(295\) −6.00000 + 10.3923i −0.349334 + 0.605063i
\(296\) 1.73205 0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) 17.3205 30.0000i 1.00167 1.73494i
\(300\) 0 0
\(301\) −0.500000 0.866025i −0.0288195 0.0499169i
\(302\) 13.8564 + 24.0000i 0.797347 + 1.38104i
\(303\) 0 0
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) 6.92820 0.396708
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) −1.73205 + 3.00000i −0.0986928 + 0.170941i
\(309\) 0 0
\(310\) −15.0000 25.9808i −0.851943 1.47561i
\(311\) −6.92820 12.0000i −0.392862 0.680458i 0.599963 0.800027i \(-0.295182\pi\)
−0.992826 + 0.119570i \(0.961848\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) −22.5167 −1.27069
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −13.8564 + 24.0000i −0.778253 + 1.34797i 0.154694 + 0.987962i \(0.450561\pi\)
−0.932948 + 0.360012i \(0.882773\pi\)
\(318\) 0 0
\(319\) −6.00000 10.3923i −0.335936 0.581857i
\(320\) −1.73205 3.00000i −0.0968246 0.167705i
\(321\) 0 0
\(322\) −6.00000 + 10.3923i −0.334367 + 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) 0.866025 1.50000i 0.0479647 0.0830773i
\(327\) 0 0
\(328\) 3.00000 + 5.19615i 0.165647 + 0.286910i
\(329\) −1.73205 3.00000i −0.0954911 0.165395i
\(330\) 0 0
\(331\) 9.50000 16.4545i 0.522167 0.904420i −0.477500 0.878632i \(-0.658457\pi\)
0.999667 0.0257885i \(-0.00820965\pi\)
\(332\) 6.92820 0.380235
\(333\) 0 0
\(334\) 42.0000 2.29814
\(335\) −13.8564 + 24.0000i −0.757056 + 1.31126i
\(336\) 0 0
\(337\) −2.50000 4.33013i −0.136184 0.235877i 0.789865 0.613280i \(-0.210150\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) −10.3923 18.0000i −0.565267 0.979071i
\(339\) 0 0
\(340\) 0 0
\(341\) −17.3205 −0.937958
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −0.866025 + 1.50000i −0.0466930 + 0.0808746i
\(345\) 0 0
\(346\) 12.0000 + 20.7846i 0.645124 + 1.11739i
\(347\) −12.1244 21.0000i −0.650870 1.12734i −0.982912 0.184075i \(-0.941071\pi\)
0.332043 0.943264i \(-0.392262\pi\)
\(348\) 0 0
\(349\) 0.500000 0.866025i 0.0267644 0.0463573i −0.852333 0.523000i \(-0.824813\pi\)
0.879097 + 0.476642i \(0.158146\pi\)
\(350\) −12.1244 −0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) −8.66025 + 15.0000i −0.460939 + 0.798369i −0.999008 0.0445312i \(-0.985821\pi\)
0.538069 + 0.842901i \(0.319154\pi\)
\(354\) 0 0
\(355\) −18.0000 31.1769i −0.955341 1.65470i
\(356\) −5.19615 9.00000i −0.275396 0.476999i
\(357\) 0 0
\(358\) 18.0000 31.1769i 0.951330 1.64775i
\(359\) 31.1769 1.64545 0.822727 0.568436i \(-0.192451\pi\)
0.822727 + 0.568436i \(0.192451\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −14.7224 + 25.5000i −0.773794 + 1.34025i
\(363\) 0 0
\(364\) 2.50000 + 4.33013i 0.131036 + 0.226960i
\(365\) −3.46410 6.00000i −0.181319 0.314054i
\(366\) 0 0
\(367\) 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i \(-0.696206\pi\)
0.995697 + 0.0926670i \(0.0295392\pi\)
\(368\) 34.6410 1.80579
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) −5.19615 + 9.00000i −0.269771 + 0.467257i
\(372\) 0 0
\(373\) −11.5000 19.9186i −0.595447 1.03135i −0.993484 0.113975i \(-0.963641\pi\)
0.398036 0.917370i \(-0.369692\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 + 5.19615i −0.154713 + 0.267971i
\(377\) −17.3205 −0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 1.73205 3.00000i 0.0888523 0.153897i
\(381\) 0 0
\(382\) −6.00000 10.3923i −0.306987 0.531717i
\(383\) 8.66025 + 15.0000i 0.442518 + 0.766464i 0.997876 0.0651476i \(-0.0207518\pi\)
−0.555357 + 0.831612i \(0.687419\pi\)
\(384\) 0 0
\(385\) −6.00000 + 10.3923i −0.305788 + 0.529641i
\(386\) −17.3205 −0.881591
\(387\) 0 0
\(388\) 17.0000 0.863044
\(389\) −3.46410 + 6.00000i −0.175637 + 0.304212i −0.940382 0.340121i \(-0.889532\pi\)
0.764745 + 0.644334i \(0.222865\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.19615 9.00000i −0.262445 0.454569i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) −3.46410 −0.174298
\(396\) 0 0
\(397\) −1.00000 −0.0501886 −0.0250943 0.999685i \(-0.507989\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) 16.4545 28.5000i 0.824789 1.42858i
\(399\) 0 0
\(400\) 17.5000 + 30.3109i 0.875000 + 1.51554i
\(401\) −1.73205 3.00000i −0.0864945 0.149813i 0.819533 0.573033i \(-0.194233\pi\)
−0.906027 + 0.423220i \(0.860900\pi\)
\(402\) 0 0
\(403\) −12.5000 + 21.6506i −0.622669 + 1.07849i
\(404\) −13.8564 −0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) −1.73205 + 3.00000i −0.0858546 + 0.148704i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) −10.3923 18.0000i −0.513239 0.888957i
\(411\) 0 0
\(412\) −4.00000 + 6.92820i −0.197066 + 0.341328i
\(413\) −3.46410 −0.170457
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 12.9904 22.5000i 0.636906 1.10315i
\(417\) 0 0
\(418\) −3.00000 5.19615i −0.146735 0.254152i
\(419\) 19.0526 + 33.0000i 0.930778 + 1.61216i 0.781994 + 0.623286i \(0.214203\pi\)
0.148784 + 0.988870i \(0.452464\pi\)
\(420\) 0 0
\(421\) 9.50000 16.4545i 0.463002 0.801942i −0.536107 0.844150i \(-0.680106\pi\)
0.999109 + 0.0422075i \(0.0134391\pi\)
\(422\) 8.66025 0.421575
\(423\) 0 0
\(424\) 18.0000 0.874157
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 + 1.73205i 0.0483934 + 0.0838198i
\(428\) −5.19615 9.00000i −0.251166 0.435031i
\(429\) 0 0
\(430\) 3.00000 5.19615i 0.144673 0.250581i
\(431\) −20.7846 −1.00116 −0.500580 0.865690i \(-0.666880\pi\)
−0.500580 + 0.865690i \(0.666880\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 4.33013 7.50000i 0.207853 0.360012i
\(435\) 0 0
\(436\) −8.50000 14.7224i −0.407076 0.705077i
\(437\) −3.46410 6.00000i −0.165710 0.287019i
\(438\) 0 0
\(439\) −10.0000 + 17.3205i −0.477274 + 0.826663i −0.999661 0.0260459i \(-0.991708\pi\)
0.522387 + 0.852709i \(0.325042\pi\)
\(440\) 20.7846 0.990867
\(441\) 0 0
\(442\) 0 0
\(443\) 6.92820 12.0000i 0.329169 0.570137i −0.653178 0.757204i \(-0.726565\pi\)
0.982347 + 0.187067i \(0.0598981\pi\)
\(444\) 0 0
\(445\) −18.0000 31.1769i −0.853282 1.47793i
\(446\) 16.4545 + 28.5000i 0.779142 + 1.34951i
\(447\) 0 0
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) −10.3923 −0.490443 −0.245222 0.969467i \(-0.578861\pi\)
−0.245222 + 0.969467i \(0.578861\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 8.66025 15.0000i 0.407344 0.705541i
\(453\) 0 0
\(454\) 12.0000 + 20.7846i 0.563188 + 0.975470i
\(455\) 8.66025 + 15.0000i 0.405999 + 0.703211i
\(456\) 0 0
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) 8.66025 0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) −13.8564 + 24.0000i −0.645357 + 1.11779i 0.338862 + 0.940836i \(0.389958\pi\)
−0.984219 + 0.176955i \(0.943375\pi\)
\(462\) 0 0
\(463\) 15.5000 + 26.8468i 0.720346 + 1.24768i 0.960861 + 0.277031i \(0.0893503\pi\)
−0.240515 + 0.970645i \(0.577316\pi\)
\(464\) −8.66025 15.0000i −0.402042 0.696358i
\(465\) 0 0
\(466\) 0 0
\(467\) −10.3923 −0.480899 −0.240449 0.970662i \(-0.577295\pi\)
−0.240449 + 0.970662i \(0.577295\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 10.3923 18.0000i 0.479361 0.830278i
\(471\) 0 0
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) −1.73205 3.00000i −0.0796398 0.137940i
\(474\) 0 0
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) −12.0000 −0.548867
\(479\) 6.92820 12.0000i 0.316558 0.548294i −0.663210 0.748434i \(-0.730806\pi\)
0.979767 + 0.200140i \(0.0641396\pi\)
\(480\) 0 0
\(481\) 2.50000 + 4.33013i 0.113990 + 0.197437i
\(482\) 16.4545 + 28.5000i 0.749481 + 1.29814i
\(483\) 0 0
\(484\) −0.500000 + 0.866025i −0.0227273 + 0.0393648i
\(485\) 58.8897 2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 1.73205 3.00000i 0.0784063 0.135804i
\(489\) 0 0
\(490\) 18.0000 + 31.1769i 0.813157 + 1.40843i
\(491\) 19.0526 + 33.0000i 0.859830 + 1.48927i 0.872091 + 0.489344i \(0.162764\pi\)
−0.0122607 + 0.999925i \(0.503903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.66025 −0.389643
\(495\) 0 0
\(496\) −25.0000 −1.12253
\(497\) 5.19615 9.00000i 0.233079 0.403705i
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) −3.46410 6.00000i −0.154919 0.268328i
\(501\) 0 0
\(502\) −18.0000 + 31.1769i −0.803379 + 1.39149i
\(503\) 41.5692 1.85348 0.926740 0.375703i \(-0.122599\pi\)
0.926740 + 0.375703i \(0.122599\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) −20.7846 + 36.0000i −0.923989 + 1.60040i
\(507\) 0 0
\(508\) −8.50000 14.7224i −0.377127 0.653202i
\(509\) 13.8564 + 24.0000i 0.614174 + 1.06378i 0.990529 + 0.137305i \(0.0438442\pi\)
−0.376354 + 0.926476i \(0.622822\pi\)
\(510\) 0 0
\(511\) 1.00000 1.73205i 0.0442374 0.0766214i
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −13.8564 + 24.0000i −0.610586 + 1.05757i
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) −0.866025 1.50000i −0.0380510 0.0659062i
\(519\) 0 0
\(520\) 15.0000 25.9808i 0.657794 1.13933i
\(521\) −20.7846 −0.910590 −0.455295 0.890341i \(-0.650466\pi\)
−0.455295 + 0.890341i \(0.650466\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −1.73205 + 3.00000i −0.0756650 + 0.131056i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) 0 0
\(528\) 0 0
\(529\) −12.5000 + 21.6506i −0.543478 + 0.941332i
\(530\) −62.3538 −2.70848
\(531\) 0 0
\(532\) 1.00000 0.0433555
\(533\) −8.66025 + 15.0000i −0.375117 + 0.649722i
\(534\) 0 0
\(535\) −18.0000 31.1769i −0.778208 1.34790i
\(536\) 6.92820 + 12.0000i 0.299253 + 0.518321i
\(537\) 0 0
\(538\) 0 0
\(539\) 20.7846 0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 13.8564 24.0000i 0.595184 1.03089i
\(543\) 0 0
\(544\) 0 0
\(545\) −29.4449 51.0000i −1.26128 2.18460i
\(546\) 0 0
\(547\) −10.0000 + 17.3205i −0.427569 + 0.740571i −0.996657 0.0817056i \(-0.973963\pi\)
0.569087 + 0.822277i \(0.307297\pi\)
\(548\) 6.92820 0.295958
\(549\) 0 0
\(550\) −42.0000 −1.79089
\(551\) −1.73205 + 3.00000i −0.0737878 + 0.127804i
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.0212622 0.0368271i
\(554\) −14.7224 25.5000i −0.625496 1.08339i
\(555\) 0 0
\(556\) 6.50000 11.2583i 0.275661 0.477460i
\(557\) 10.3923 0.440336 0.220168 0.975462i \(-0.429339\pi\)
0.220168 + 0.975462i \(0.429339\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) −8.66025 + 15.0000i −0.365963 + 0.633866i
\(561\) 0 0
\(562\) 12.0000 + 20.7846i 0.506189 + 0.876746i
\(563\) −17.3205 30.0000i −0.729972 1.26435i −0.956894 0.290436i \(-0.906200\pi\)
0.226922 0.973913i \(-0.427134\pi\)
\(564\) 0 0
\(565\) 30.0000 51.9615i 1.26211 2.18604i
\(566\) −22.5167 −0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) 12.1244 21.0000i 0.508279 0.880366i −0.491675 0.870779i \(-0.663615\pi\)
0.999954 0.00958679i \(-0.00305162\pi\)
\(570\) 0 0
\(571\) −20.5000 35.5070i −0.857898 1.48592i −0.873930 0.486052i \(-0.838437\pi\)
0.0160316 0.999871i \(-0.494897\pi\)
\(572\) 8.66025 + 15.0000i 0.362103 + 0.627182i
\(573\) 0 0
\(574\) 3.00000 5.19615i 0.125218 0.216883i
\(575\) −48.4974 −2.02248
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 14.7224 25.5000i 0.612372 1.06066i
\(579\) 0 0
\(580\) 6.00000 + 10.3923i 0.249136 + 0.431517i
\(581\) 3.46410 + 6.00000i 0.143715 + 0.248922i
\(582\) 0 0
\(583\) −18.0000 + 31.1769i −0.745484 + 1.29122i
\(584\) −3.46410 −0.143346
\(585\) 0 0
\(586\) 24.0000 0.991431
\(587\) −3.46410 + 6.00000i −0.142979 + 0.247647i −0.928617 0.371040i \(-0.879001\pi\)
0.785638 + 0.618686i \(0.212335\pi\)
\(588\) 0 0
\(589\) 2.50000 + 4.33013i 0.103011 + 0.178420i
\(590\) −10.3923 18.0000i −0.427844 0.741048i
\(591\) 0 0
\(592\) −2.50000 + 4.33013i −0.102749 + 0.177967i
\(593\) 20.7846 0.853522 0.426761 0.904365i \(-0.359655\pi\)
0.426761 + 0.904365i \(0.359655\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.46410 6.00000i 0.141895 0.245770i
\(597\) 0 0
\(598\) 30.0000 + 51.9615i 1.22679 + 2.12486i
\(599\) −12.1244 21.0000i −0.495388 0.858037i 0.504598 0.863354i \(-0.331641\pi\)
−0.999986 + 0.00531761i \(0.998307\pi\)
\(600\) 0 0
\(601\) −17.5000 + 30.3109i −0.713840 + 1.23641i 0.249565 + 0.968358i \(0.419712\pi\)
−0.963405 + 0.268049i \(0.913621\pi\)
\(602\) 1.73205 0.0705931
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) −1.73205 + 3.00000i −0.0704179 + 0.121967i
\(606\) 0 0
\(607\) 6.50000 + 11.2583i 0.263827 + 0.456962i 0.967256 0.253804i \(-0.0816819\pi\)
−0.703429 + 0.710766i \(0.748349\pi\)
\(608\) −2.59808 4.50000i −0.105366 0.182499i
\(609\) 0 0
\(610\) −6.00000 + 10.3923i −0.242933 + 0.420772i
\(611\) −17.3205 −0.700713
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) −17.3205 + 30.0000i −0.698999 + 1.21070i
\(615\) 0 0
\(616\) 3.00000 + 5.19615i 0.120873 + 0.209359i
\(617\) 3.46410 + 6.00000i 0.139459 + 0.241551i 0.927292 0.374338i \(-0.122130\pi\)
−0.787833 + 0.615889i \(0.788797\pi\)
\(618\) 0 0
\(619\) −10.0000 + 17.3205i −0.401934 + 0.696170i −0.993959 0.109749i \(-0.964995\pi\)
0.592025 + 0.805919i \(0.298329\pi\)
\(620\) 17.3205 0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 5.19615 9.00000i 0.208179 0.360577i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0.866025 + 1.50000i 0.0346133 + 0.0599521i
\(627\) 0 0
\(628\) 6.50000 11.2583i 0.259378 0.449256i
\(629\) 0 0
\(630\) 0 0
\(631\) 17.0000 0.676759 0.338380 0.941010i \(-0.390121\pi\)
0.338380 + 0.941010i \(0.390121\pi\)
\(632\) −0.866025 + 1.50000i −0.0344486 + 0.0596668i
\(633\) 0 0
\(634\) −24.0000 41.5692i −0.953162 1.65092i
\(635\) −29.4449 51.0000i −1.16848 2.02387i
\(636\) 0 0
\(637\) 15.0000 25.9808i 0.594322 1.02940i
\(638\) 20.7846 0.822871
\(639\) 0 0
\(640\) 42.0000 1.66020
\(641\) 22.5167 39.0000i 0.889355 1.54041i 0.0487148 0.998813i \(-0.484487\pi\)
0.840640 0.541595i \(-0.182179\pi\)
\(642\) 0 0
\(643\) −22.0000 38.1051i −0.867595 1.50272i −0.864447 0.502724i \(-0.832331\pi\)
−0.00314839 0.999995i \(-0.501002\pi\)
\(644\) −3.46410 6.00000i −0.136505 0.236433i
\(645\) 0 0
\(646\) 0 0
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) −30.3109 + 52.5000i −1.18889 + 2.05922i
\(651\) 0 0
\(652\) 0.500000 + 0.866025i 0.0195815 + 0.0339162i
\(653\) 8.66025 + 15.0000i 0.338902 + 0.586995i 0.984226 0.176913i \(-0.0566112\pi\)
−0.645325 + 0.763909i \(0.723278\pi\)
\(654\) 0 0
\(655\) −6.00000 + 10.3923i −0.234439 + 0.406061i
\(656\) −17.3205 −0.676252
\(657\) 0 0
\(658\) 6.00000 0.233904
\(659\) −13.8564 + 24.0000i −0.539769 + 0.934907i 0.459147 + 0.888360i \(0.348155\pi\)
−0.998916 + 0.0465470i \(0.985178\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) 16.4545 + 28.5000i 0.639522 + 1.10768i
\(663\) 0 0
\(664\) 6.00000 10.3923i 0.232845 0.403300i
\(665\) 3.46410 0.134332
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) −12.1244 + 21.0000i −0.469105 + 0.812514i
\(669\) 0 0
\(670\) −24.0000 41.5692i −0.927201 1.60596i
\(671\) 3.46410 + 6.00000i 0.133730 + 0.231627i
\(672\) 0 0
\(673\) 18.5000 32.0429i 0.713123 1.23516i −0.250557 0.968102i \(-0.580614\pi\)
0.963679 0.267063i \(-0.0860531\pi\)
\(674\) 8.66025 0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −8.66025 + 15.0000i −0.332841 + 0.576497i −0.983068 0.183243i \(-0.941340\pi\)
0.650227 + 0.759740i \(0.274674\pi\)
\(678\) 0 0
\(679\) 8.50000 + 14.7224i 0.326200 + 0.564995i
\(680\) 0 0
\(681\) 0 0
\(682\) 15.0000 25.9808i 0.574380 0.994855i
\(683\) 41.5692 1.59060 0.795301 0.606215i \(-0.207313\pi\)
0.795301 + 0.606215i \(0.207313\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) −11.2583 + 19.5000i −0.429845 + 0.744513i
\(687\) 0 0
\(688\) −2.50000 4.33013i −0.0953116 0.165085i
\(689\) 25.9808 + 45.0000i 0.989788 + 1.71436i
\(690\) 0 0
\(691\) −8.50000 + 14.7224i −0.323355 + 0.560068i −0.981178 0.193105i \(-0.938144\pi\)
0.657823 + 0.753173i \(0.271478\pi\)
\(692\) −13.8564 −0.526742
\(693\) 0 0
\(694\) 42.0000 1.59430
\(695\) 22.5167 39.0000i 0.854106 1.47935i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.866025 + 1.50000i 0.0327795 + 0.0567758i
\(699\) 0 0
\(700\) 3.50000 6.06218i 0.132288 0.229129i
\(701\) −41.5692 −1.57005 −0.785024 0.619466i \(-0.787349\pi\)
−0.785024 + 0.619466i \(0.787349\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) 1.73205 3.00000i 0.0652791 0.113067i
\(705\) 0 0
\(706\) −15.0000 25.9808i −0.564532 0.977799i
\(707\) −6.92820 12.0000i −0.260562 0.451306i
\(708\) 0 0
\(709\) 9.50000 16.4545i 0.356780 0.617961i −0.630641 0.776075i \(-0.717208\pi\)
0.987421 + 0.158114i \(0.0505412\pi\)
\(710\) 62.3538 2.34010
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) 17.3205 30.0000i 0.648658 1.12351i
\(714\) 0 0
\(715\) 30.0000 + 51.9615i 1.12194 + 1.94325i
\(716\) 10.3923 + 18.0000i 0.388379 + 0.672692i
\(717\) 0 0
\(718\) −27.0000 + 46.7654i −1.00763 + 1.74527i
\(719\) 10.3923 0.387568 0.193784 0.981044i \(-0.437924\pi\)
0.193784 + 0.981044i \(0.437924\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 15.5885 27.0000i 0.580142 1.00484i
\(723\) 0 0
\(724\) −8.50000 14.7224i −0.315900 0.547155i
\(725\) 12.1244 + 21.0000i 0.450287 + 0.779920i
\(726\) 0 0
\(727\) 8.00000 13.8564i 0.296704 0.513906i −0.678676 0.734438i \(-0.737446\pi\)
0.975380 + 0.220532i \(0.0707793\pi\)
\(728\) 8.66025 0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) −20.5000 35.5070i −0.757185 1.31148i −0.944281 0.329141i \(-0.893241\pi\)
0.187096 0.982342i \(-0.440092\pi\)
\(734\) 13.8564 + 24.0000i 0.511449 + 0.885856i
\(735\) 0 0
\(736\) −18.0000 + 31.1769i −0.663489 + 1.14920i
\(737\) −27.7128 −1.02081
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 1.73205 3.00000i 0.0636715 0.110282i
\(741\) 0 0
\(742\) −9.00000 15.5885i −0.330400 0.572270i
\(743\) 3.46410 + 6.00000i 0.127086 + 0.220119i 0.922546 0.385887i \(-0.126104\pi\)
−0.795461 + 0.606005i \(0.792771\pi\)
\(744\) 0 0
\(745\) 12.0000 20.7846i 0.439646 0.761489i
\(746\) 39.8372 1.45854
\(747\) 0 0
\(748\) 0 0
\(749\) 5.19615 9.00000i 0.189863 0.328853i
\(750\) 0 0
\(751\) −2.50000 4.33013i −0.0912263 0.158009i 0.816801 0.576919i \(-0.195745\pi\)
−0.908027 + 0.418911i \(0.862412\pi\)
\(752\) −8.66025 15.0000i −0.315807 0.546994i
\(753\) 0 0
\(754\) 15.0000 25.9808i 0.546268 0.946164i
\(755\) −55.4256 −2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 16.4545 28.5000i 0.597654 1.03517i
\(759\) 0 0
\(760\) −3.00000 5.19615i −0.108821 0.188484i
\(761\) 13.8564 + 24.0000i 0.502294 + 0.869999i 0.999996 + 0.00265131i \(0.000843938\pi\)
−0.497702 + 0.867348i \(0.665823\pi\)
\(762\) 0 0
\(763\) 8.50000 14.7224i 0.307721 0.532988i
\(764\) 6.92820 0.250654
\(765\) 0 0
\(766\) −30.0000 −1.08394
\(767\) −8.66025 + 15.0000i −0.312704 + 0.541619i
\(768\) 0 0
\(769\) 6.50000 + 11.2583i 0.234396 + 0.405986i 0.959097 0.283078i \(-0.0913554\pi\)
−0.724701 + 0.689063i \(0.758022\pi\)
\(770\) −10.3923 18.0000i −0.374513 0.648675i
\(771\) 0 0
\(772\) 5.00000 8.66025i 0.179954 0.311689i
\(773\) 20.7846 0.747570 0.373785 0.927515i \(-0.378060\pi\)
0.373785 + 0.927515i \(0.378060\pi\)
\(774\) 0 0
\(775\) 35.0000 1.25724
\(776\) 14.7224 25.5000i 0.528505 0.915397i
\(777\) 0 0
\(778\) −6.00000 10.3923i −0.215110 0.372582i
\(779\) 1.73205 + 3.00000i 0.0620572 + 0.107486i
\(780\) 0 0
\(781\) 18.0000 31.1769i 0.644091 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 30.0000 1.07143
\(785\) 22.5167 39.0000i 0.803654 1.39197i