Defining parameters
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(243, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 24 | 48 |
Cusp forms | 36 | 24 | 12 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(243, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
243.2.c.a | $2$ | $1.940$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-5\) | \(q+2\zeta_{6}q^{4}+(-5+5\zeta_{6})q^{7}-2\zeta_{6}q^{13}+\cdots\) |
243.2.c.b | $2$ | $1.940$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(4\) | \(q+2\zeta_{6}q^{4}+(4-4\zeta_{6})q^{7}+7\zeta_{6}q^{13}+\cdots\) |
243.2.c.c | $4$ | $1.940$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-\beta _{2}q^{2}+(-4+4\beta _{1})q^{4}+(-\beta _{2}+\beta _{3})q^{5}+\cdots\) |
243.2.c.d | $4$ | $1.940$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q-\zeta_{12}^{2}q^{2}+(-1+\zeta_{12})q^{4}+(2\zeta_{12}^{2}+\cdots)q^{5}+\cdots\) |
243.2.c.e | $6$ | $1.940$ | \(\Q(\zeta_{18})\) | None | \(-3\) | \(0\) | \(-6\) | \(3\) | \(q+(-1+\zeta_{18}+\zeta_{18}^{5})q^{2}+(-\zeta_{18}+\cdots)q^{4}+\cdots\) |
243.2.c.f | $6$ | $1.940$ | \(\Q(\zeta_{18})\) | None | \(3\) | \(0\) | \(6\) | \(3\) | \(q+(\zeta_{18}-\zeta_{18}^{3}-\zeta_{18}^{4}+\zeta_{18}^{5})q^{2}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(243, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)