Properties

Label 243.2.a.b
Level $243$
Weight $2$
Character orbit 243.a
Self dual yes
Analytic conductor $1.940$
Analytic rank $0$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(1,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{4} + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{4} + 5 q^{7} + 2 q^{13} + 4 q^{16} + 8 q^{19} - 5 q^{25} - 10 q^{28} - 7 q^{31} - q^{37} - 13 q^{43} + 18 q^{49} - 4 q^{52} - q^{61} - 8 q^{64} + 5 q^{67} - 7 q^{73} - 16 q^{76} - 4 q^{79} + 10 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 0 0 5.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 243.2.a.b 1
3.b odd 2 1 CM 243.2.a.b 1
4.b odd 2 1 3888.2.a.h 1
5.b even 2 1 6075.2.a.m 1
9.c even 3 2 243.2.c.a 2
9.d odd 6 2 243.2.c.a 2
12.b even 2 1 3888.2.a.h 1
15.d odd 2 1 6075.2.a.m 1
27.e even 9 6 729.2.e.d 6
27.f odd 18 6 729.2.e.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.2.a.b 1 1.a even 1 1 trivial
243.2.a.b 1 3.b odd 2 1 CM
243.2.c.a 2 9.c even 3 2
243.2.c.a 2 9.d odd 6 2
729.2.e.d 6 27.e even 9 6
729.2.e.d 6 27.f odd 18 6
3888.2.a.h 1 4.b odd 2 1
3888.2.a.h 1 12.b even 2 1
6075.2.a.m 1 5.b even 2 1
6075.2.a.m 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(243))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 5 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 7 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 13 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 5 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 7 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less