Properties

Label 243.2.a
Level $243$
Weight $2$
Character orbit 243.a
Rep. character $\chi_{243}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $6$
Sturm bound $54$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(54\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(243))\).

Total New Old
Modular forms 36 12 24
Cusp forms 19 12 7
Eisenstein series 17 0 17

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(4\)
\(-\)\(8\)

Trace form

\( 12 q + 12 q^{4} - 3 q^{7} - 3 q^{13} + 12 q^{16} - 3 q^{19} + 12 q^{25} - 12 q^{28} - 12 q^{31} - 18 q^{34} - 3 q^{37} - 18 q^{40} - 12 q^{43} - 18 q^{46} + 9 q^{49} - 12 q^{52} - 18 q^{55} - 18 q^{58}+ \cdots + 69 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(243))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
243.2.a.a 243.a 1.a $1$ $1.940$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.2.a.a \(0\) \(0\) \(0\) \(-4\) $+$ $N(\mathrm{U}(1))$ \(q-2q^{4}-4q^{7}-7q^{13}+4q^{16}-q^{19}+\cdots\)
243.2.a.b 243.a 1.a $1$ $1.940$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.2.a.b \(0\) \(0\) \(0\) \(5\) $-$ $N(\mathrm{U}(1))$ \(q-2q^{4}+5q^{7}+2q^{13}+4q^{16}+8q^{19}+\cdots\)
243.2.a.c 243.a 1.a $2$ $1.940$ \(\Q(\sqrt{3}) \) None 243.2.a.c \(0\) \(0\) \(0\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}+2\beta q^{5}-q^{7}-\beta q^{8}+\cdots\)
243.2.a.d 243.a 1.a $2$ $1.940$ \(\Q(\sqrt{6}) \) None 243.2.a.d \(0\) \(0\) \(0\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+4q^{4}-\beta q^{5}+2q^{7}+2\beta q^{8}+\cdots\)
243.2.a.e 243.a 1.a $3$ $1.940$ \(\Q(\zeta_{18})^+\) None 243.2.a.e \(-3\) \(0\) \(-6\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
243.2.a.f 243.a 1.a $3$ $1.940$ \(\Q(\zeta_{18})^+\) None 243.2.a.e \(3\) \(0\) \(6\) \(-3\) $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(243))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(243)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)