Defining parameters
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(243))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 12 | 24 |
Cusp forms | 19 | 12 | 7 |
Eisenstein series | 17 | 0 | 17 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(4\) |
\(-\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(243))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
243.2.a.a | $1$ | $1.940$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-4\) | $+$ | \(q-2q^{4}-4q^{7}-7q^{13}+4q^{16}-q^{19}+\cdots\) | |
243.2.a.b | $1$ | $1.940$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(5\) | $-$ | \(q-2q^{4}+5q^{7}+2q^{13}+4q^{16}+8q^{19}+\cdots\) | |
243.2.a.c | $2$ | $1.940$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | \(q+\beta q^{2}+q^{4}+2\beta q^{5}-q^{7}-\beta q^{8}+\cdots\) | |
243.2.a.d | $2$ | $1.940$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | \(q+\beta q^{2}+4q^{4}-\beta q^{5}+2q^{7}+2\beta q^{8}+\cdots\) | |
243.2.a.e | $3$ | $1.940$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(-6\) | \(-3\) | $+$ | \(q+(-1+\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
243.2.a.f | $3$ | $1.940$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(6\) | \(-3\) | $-$ | \(q+(1-\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(243))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(243)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)