Properties

Label 24200.2.a.cm
Level $24200$
Weight $2$
Character orbit 24200.a
Self dual yes
Analytic conductor $193.238$
Dimension $3$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24200,2,Mod(1,24200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 24200 = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,0,0,-3,0,6,0,0,0,-3,0,0,0,5,0,-7,0,0,0,10,0,0,0,-2,0, -10,0,-3,0,0,0,0,0,-8,0,-1,0,-4,0,-9,0,0,0,0,0,10,0,-13,0,5,0,0,0,27,0, 0,0,1,0,-34,0,0,0,-14,0,18,0,17,0,21,0,0,0,0,0,-11,0,-5,0,-20,0,0,0,25, 0,30,0,3,0,1,0,0,0,-10,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(193.237972891\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3 q + q^{3} - 3 q^{7} + 6 q^{9} - 3 q^{13} + 5 q^{17} - 7 q^{19} + 10 q^{23} - 2 q^{27} - 10 q^{29} - 3 q^{31} - 8 q^{37} - q^{39} - 4 q^{41} - 9 q^{43} + 10 q^{49} - 13 q^{51} + 5 q^{53} + 27 q^{57}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.