Properties

Label 2420.2.bh
Level $2420$
Weight $2$
Character orbit 2420.bh
Rep. character $\chi_{2420}(153,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $1320$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2420.bh (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 605 \)
Character field: \(\Q(\zeta_{44})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2420, [\chi])\).

Total New Old
Modular forms 8040 1320 6720
Cusp forms 7800 1320 6480
Eisenstein series 240 0 240

Trace form

\( 1320 q + 4 q^{5} - 44 q^{13} + 8 q^{15} + 8 q^{23} + 20 q^{25} + 16 q^{31} - 22 q^{33} + 38 q^{37} - 32 q^{45} + 32 q^{47} + 352 q^{51} + 32 q^{53} - 66 q^{55} - 110 q^{63} - 72 q^{67} - 16 q^{71} - 48 q^{75}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2420, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2420, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2420, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1210, [\chi])\)\(^{\oplus 2}\)