Properties

Label 242.2.e
Level $242$
Weight $2$
Character orbit 242.e
Rep. character $\chi_{242}(23,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $110$
Newform subspaces $2$
Sturm bound $66$
Trace bound $1$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 242.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(66\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(242, [\chi])\).

Total New Old
Modular forms 350 110 240
Cusp forms 310 110 200
Eisenstein series 40 0 40

Trace form

\( 110q - q^{2} - 2q^{3} - 11q^{4} - 4q^{5} - 4q^{6} - 8q^{7} - q^{8} + 100q^{9} + O(q^{10}) \) \( 110q - q^{2} - 2q^{3} - 11q^{4} - 4q^{5} - 4q^{6} - 8q^{7} - q^{8} + 100q^{9} + 16q^{10} + 11q^{11} + 9q^{12} + 52q^{13} + 14q^{14} + 24q^{15} - 11q^{16} - 18q^{17} - 13q^{18} - 20q^{19} - 4q^{20} - 32q^{21} + 33q^{22} - 20q^{23} - 4q^{24} - 35q^{25} - 12q^{26} - 32q^{27} - 8q^{28} - 30q^{29} - 24q^{30} + 20q^{31} - q^{32} - 44q^{33} - 14q^{34} - 48q^{35} - 21q^{36} + 38q^{37} + 48q^{38} - 56q^{39} + 16q^{40} - 42q^{41} - 28q^{42} - 44q^{43} - 11q^{44} - 68q^{45} - 24q^{46} - 40q^{47} - 2q^{48} + 29q^{49} - 31q^{50} + 49q^{51} - 14q^{52} + 18q^{53} - 40q^{54} - 22q^{55} - 8q^{56} - 69q^{57} + 20q^{58} - 54q^{59} - 20q^{60} - 62q^{61} - 32q^{62} + 6q^{63} - 11q^{64} - 18q^{65} - 33q^{66} + 60q^{67} - 18q^{68} - 80q^{69} + 4q^{70} - 16q^{71} - 13q^{72} - 30q^{73} - 38q^{74} - 102q^{75} + 35q^{76} - 44q^{77} - 48q^{78} + 30q^{79} - 4q^{80} + 14q^{81} + 14q^{82} - 84q^{83} - 32q^{84} + 112q^{85} - 34q^{86} - 120q^{87} + 22q^{88} + 80q^{89} + 98q^{90} + 110q^{91} + 68q^{92} - 34q^{93} + 128q^{94} + 56q^{95} - 4q^{96} - 4q^{97} + 31q^{98} - 33q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(242, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
242.2.e.a \(50\) \(1.932\) None \(5\) \(-10\) \(1\) \(0\)
242.2.e.b \(60\) \(1.932\) None \(-6\) \(8\) \(-5\) \(-8\)

Decomposition of \(S_{2}^{\mathrm{old}}(242, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(242, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 2}\)