Properties

Label 242.2.a.f.1.2
Level $242$
Weight $2$
Character 242.1
Self dual yes
Analytic conductor $1.932$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [242,2,Mod(1,242)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(242, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("242.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.93237972891\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 242.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.61803 q^{3} +1.00000 q^{4} -1.23607 q^{5} +2.61803 q^{6} -2.00000 q^{7} +1.00000 q^{8} +3.85410 q^{9} -1.23607 q^{10} +2.61803 q^{12} -3.23607 q^{13} -2.00000 q^{14} -3.23607 q^{15} +1.00000 q^{16} +1.61803 q^{17} +3.85410 q^{18} +0.854102 q^{19} -1.23607 q^{20} -5.23607 q^{21} -3.23607 q^{23} +2.61803 q^{24} -3.47214 q^{25} -3.23607 q^{26} +2.23607 q^{27} -2.00000 q^{28} -4.47214 q^{29} -3.23607 q^{30} +2.00000 q^{31} +1.00000 q^{32} +1.61803 q^{34} +2.47214 q^{35} +3.85410 q^{36} +9.70820 q^{37} +0.854102 q^{38} -8.47214 q^{39} -1.23607 q^{40} +3.38197 q^{41} -5.23607 q^{42} +11.5623 q^{43} -4.76393 q^{45} -3.23607 q^{46} +2.47214 q^{47} +2.61803 q^{48} -3.00000 q^{49} -3.47214 q^{50} +4.23607 q^{51} -3.23607 q^{52} -10.4721 q^{53} +2.23607 q^{54} -2.00000 q^{56} +2.23607 q^{57} -4.47214 q^{58} -6.38197 q^{59} -3.23607 q^{60} +6.47214 q^{61} +2.00000 q^{62} -7.70820 q^{63} +1.00000 q^{64} +4.00000 q^{65} -0.0901699 q^{67} +1.61803 q^{68} -8.47214 q^{69} +2.47214 q^{70} -0.763932 q^{71} +3.85410 q^{72} +12.6180 q^{73} +9.70820 q^{74} -9.09017 q^{75} +0.854102 q^{76} -8.47214 q^{78} -13.4164 q^{79} -1.23607 q^{80} -5.70820 q^{81} +3.38197 q^{82} -6.32624 q^{83} -5.23607 q^{84} -2.00000 q^{85} +11.5623 q^{86} -11.7082 q^{87} +3.09017 q^{89} -4.76393 q^{90} +6.47214 q^{91} -3.23607 q^{92} +5.23607 q^{93} +2.47214 q^{94} -1.05573 q^{95} +2.61803 q^{96} +13.8541 q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} + 2 q^{4} + 2 q^{5} + 3 q^{6} - 4 q^{7} + 2 q^{8} + q^{9} + 2 q^{10} + 3 q^{12} - 2 q^{13} - 4 q^{14} - 2 q^{15} + 2 q^{16} + q^{17} + q^{18} - 5 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.61803 1.51152 0.755761 0.654847i \(-0.227267\pi\)
0.755761 + 0.654847i \(0.227267\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 2.61803 1.06881
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.85410 1.28470
\(10\) −1.23607 −0.390879
\(11\) 0 0
\(12\) 2.61803 0.755761
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) −2.00000 −0.534522
\(15\) −3.23607 −0.835549
\(16\) 1.00000 0.250000
\(17\) 1.61803 0.392431 0.196215 0.980561i \(-0.437135\pi\)
0.196215 + 0.980561i \(0.437135\pi\)
\(18\) 3.85410 0.908421
\(19\) 0.854102 0.195944 0.0979722 0.995189i \(-0.468764\pi\)
0.0979722 + 0.995189i \(0.468764\pi\)
\(20\) −1.23607 −0.276393
\(21\) −5.23607 −1.14260
\(22\) 0 0
\(23\) −3.23607 −0.674767 −0.337383 0.941367i \(-0.609542\pi\)
−0.337383 + 0.941367i \(0.609542\pi\)
\(24\) 2.61803 0.534404
\(25\) −3.47214 −0.694427
\(26\) −3.23607 −0.634645
\(27\) 2.23607 0.430331
\(28\) −2.00000 −0.377964
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) −3.23607 −0.590822
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.61803 0.277491
\(35\) 2.47214 0.417867
\(36\) 3.85410 0.642350
\(37\) 9.70820 1.59602 0.798009 0.602645i \(-0.205886\pi\)
0.798009 + 0.602645i \(0.205886\pi\)
\(38\) 0.854102 0.138554
\(39\) −8.47214 −1.35663
\(40\) −1.23607 −0.195440
\(41\) 3.38197 0.528174 0.264087 0.964499i \(-0.414929\pi\)
0.264087 + 0.964499i \(0.414929\pi\)
\(42\) −5.23607 −0.807943
\(43\) 11.5623 1.76324 0.881618 0.471964i \(-0.156455\pi\)
0.881618 + 0.471964i \(0.156455\pi\)
\(44\) 0 0
\(45\) −4.76393 −0.710165
\(46\) −3.23607 −0.477132
\(47\) 2.47214 0.360598 0.180299 0.983612i \(-0.442293\pi\)
0.180299 + 0.983612i \(0.442293\pi\)
\(48\) 2.61803 0.377881
\(49\) −3.00000 −0.428571
\(50\) −3.47214 −0.491034
\(51\) 4.23607 0.593168
\(52\) −3.23607 −0.448762
\(53\) −10.4721 −1.43846 −0.719229 0.694773i \(-0.755505\pi\)
−0.719229 + 0.694773i \(0.755505\pi\)
\(54\) 2.23607 0.304290
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 2.23607 0.296174
\(58\) −4.47214 −0.587220
\(59\) −6.38197 −0.830861 −0.415431 0.909625i \(-0.636369\pi\)
−0.415431 + 0.909625i \(0.636369\pi\)
\(60\) −3.23607 −0.417775
\(61\) 6.47214 0.828672 0.414336 0.910124i \(-0.364014\pi\)
0.414336 + 0.910124i \(0.364014\pi\)
\(62\) 2.00000 0.254000
\(63\) −7.70820 −0.971142
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −0.0901699 −0.0110160 −0.00550801 0.999985i \(-0.501753\pi\)
−0.00550801 + 0.999985i \(0.501753\pi\)
\(68\) 1.61803 0.196215
\(69\) −8.47214 −1.01993
\(70\) 2.47214 0.295477
\(71\) −0.763932 −0.0906621 −0.0453310 0.998972i \(-0.514434\pi\)
−0.0453310 + 0.998972i \(0.514434\pi\)
\(72\) 3.85410 0.454210
\(73\) 12.6180 1.47683 0.738415 0.674347i \(-0.235575\pi\)
0.738415 + 0.674347i \(0.235575\pi\)
\(74\) 9.70820 1.12856
\(75\) −9.09017 −1.04964
\(76\) 0.854102 0.0979722
\(77\) 0 0
\(78\) −8.47214 −0.959280
\(79\) −13.4164 −1.50946 −0.754732 0.656033i \(-0.772233\pi\)
−0.754732 + 0.656033i \(0.772233\pi\)
\(80\) −1.23607 −0.138197
\(81\) −5.70820 −0.634245
\(82\) 3.38197 0.373476
\(83\) −6.32624 −0.694395 −0.347197 0.937792i \(-0.612867\pi\)
−0.347197 + 0.937792i \(0.612867\pi\)
\(84\) −5.23607 −0.571302
\(85\) −2.00000 −0.216930
\(86\) 11.5623 1.24680
\(87\) −11.7082 −1.25525
\(88\) 0 0
\(89\) 3.09017 0.327557 0.163779 0.986497i \(-0.447632\pi\)
0.163779 + 0.986497i \(0.447632\pi\)
\(90\) −4.76393 −0.502163
\(91\) 6.47214 0.678464
\(92\) −3.23607 −0.337383
\(93\) 5.23607 0.542955
\(94\) 2.47214 0.254981
\(95\) −1.05573 −0.108315
\(96\) 2.61803 0.267202
\(97\) 13.8541 1.40667 0.703335 0.710858i \(-0.251693\pi\)
0.703335 + 0.710858i \(0.251693\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) −3.47214 −0.347214
\(101\) 18.1803 1.80901 0.904506 0.426461i \(-0.140240\pi\)
0.904506 + 0.426461i \(0.140240\pi\)
\(102\) 4.23607 0.419433
\(103\) 2.29180 0.225817 0.112909 0.993605i \(-0.463983\pi\)
0.112909 + 0.993605i \(0.463983\pi\)
\(104\) −3.23607 −0.317323
\(105\) 6.47214 0.631616
\(106\) −10.4721 −1.01714
\(107\) −7.85410 −0.759285 −0.379642 0.925133i \(-0.623953\pi\)
−0.379642 + 0.925133i \(0.623953\pi\)
\(108\) 2.23607 0.215166
\(109\) 1.05573 0.101120 0.0505602 0.998721i \(-0.483899\pi\)
0.0505602 + 0.998721i \(0.483899\pi\)
\(110\) 0 0
\(111\) 25.4164 2.41242
\(112\) −2.00000 −0.188982
\(113\) 4.85410 0.456636 0.228318 0.973587i \(-0.426677\pi\)
0.228318 + 0.973587i \(0.426677\pi\)
\(114\) 2.23607 0.209427
\(115\) 4.00000 0.373002
\(116\) −4.47214 −0.415227
\(117\) −12.4721 −1.15305
\(118\) −6.38197 −0.587508
\(119\) −3.23607 −0.296650
\(120\) −3.23607 −0.295411
\(121\) 0 0
\(122\) 6.47214 0.585960
\(123\) 8.85410 0.798347
\(124\) 2.00000 0.179605
\(125\) 10.4721 0.936656
\(126\) −7.70820 −0.686701
\(127\) 6.94427 0.616204 0.308102 0.951353i \(-0.400306\pi\)
0.308102 + 0.951353i \(0.400306\pi\)
\(128\) 1.00000 0.0883883
\(129\) 30.2705 2.66517
\(130\) 4.00000 0.350823
\(131\) −17.7984 −1.55505 −0.777526 0.628851i \(-0.783525\pi\)
−0.777526 + 0.628851i \(0.783525\pi\)
\(132\) 0 0
\(133\) −1.70820 −0.148120
\(134\) −0.0901699 −0.00778950
\(135\) −2.76393 −0.237881
\(136\) 1.61803 0.138745
\(137\) 4.90983 0.419475 0.209738 0.977758i \(-0.432739\pi\)
0.209738 + 0.977758i \(0.432739\pi\)
\(138\) −8.47214 −0.721196
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 2.47214 0.208934
\(141\) 6.47214 0.545052
\(142\) −0.763932 −0.0641078
\(143\) 0 0
\(144\) 3.85410 0.321175
\(145\) 5.52786 0.459064
\(146\) 12.6180 1.04428
\(147\) −7.85410 −0.647795
\(148\) 9.70820 0.798009
\(149\) 16.1803 1.32555 0.662773 0.748821i \(-0.269380\pi\)
0.662773 + 0.748821i \(0.269380\pi\)
\(150\) −9.09017 −0.742209
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0.854102 0.0692768
\(153\) 6.23607 0.504156
\(154\) 0 0
\(155\) −2.47214 −0.198567
\(156\) −8.47214 −0.678314
\(157\) −3.70820 −0.295947 −0.147973 0.988991i \(-0.547275\pi\)
−0.147973 + 0.988991i \(0.547275\pi\)
\(158\) −13.4164 −1.06735
\(159\) −27.4164 −2.17426
\(160\) −1.23607 −0.0977198
\(161\) 6.47214 0.510076
\(162\) −5.70820 −0.448479
\(163\) 12.0902 0.946975 0.473488 0.880800i \(-0.342995\pi\)
0.473488 + 0.880800i \(0.342995\pi\)
\(164\) 3.38197 0.264087
\(165\) 0 0
\(166\) −6.32624 −0.491011
\(167\) −19.2361 −1.48853 −0.744266 0.667884i \(-0.767200\pi\)
−0.744266 + 0.667884i \(0.767200\pi\)
\(168\) −5.23607 −0.403971
\(169\) −2.52786 −0.194451
\(170\) −2.00000 −0.153393
\(171\) 3.29180 0.251730
\(172\) 11.5623 0.881618
\(173\) −13.8885 −1.05593 −0.527963 0.849267i \(-0.677044\pi\)
−0.527963 + 0.849267i \(0.677044\pi\)
\(174\) −11.7082 −0.887597
\(175\) 6.94427 0.524938
\(176\) 0 0
\(177\) −16.7082 −1.25587
\(178\) 3.09017 0.231618
\(179\) −6.38197 −0.477011 −0.238505 0.971141i \(-0.576657\pi\)
−0.238505 + 0.971141i \(0.576657\pi\)
\(180\) −4.76393 −0.355083
\(181\) 18.1803 1.35133 0.675667 0.737207i \(-0.263856\pi\)
0.675667 + 0.737207i \(0.263856\pi\)
\(182\) 6.47214 0.479747
\(183\) 16.9443 1.25256
\(184\) −3.23607 −0.238566
\(185\) −12.0000 −0.882258
\(186\) 5.23607 0.383927
\(187\) 0 0
\(188\) 2.47214 0.180299
\(189\) −4.47214 −0.325300
\(190\) −1.05573 −0.0765906
\(191\) 9.23607 0.668298 0.334149 0.942520i \(-0.391551\pi\)
0.334149 + 0.942520i \(0.391551\pi\)
\(192\) 2.61803 0.188940
\(193\) −9.41641 −0.677808 −0.338904 0.940821i \(-0.610056\pi\)
−0.338904 + 0.940821i \(0.610056\pi\)
\(194\) 13.8541 0.994667
\(195\) 10.4721 0.749925
\(196\) −3.00000 −0.214286
\(197\) −3.05573 −0.217712 −0.108856 0.994058i \(-0.534719\pi\)
−0.108856 + 0.994058i \(0.534719\pi\)
\(198\) 0 0
\(199\) −1.05573 −0.0748386 −0.0374193 0.999300i \(-0.511914\pi\)
−0.0374193 + 0.999300i \(0.511914\pi\)
\(200\) −3.47214 −0.245517
\(201\) −0.236068 −0.0166510
\(202\) 18.1803 1.27916
\(203\) 8.94427 0.627765
\(204\) 4.23607 0.296584
\(205\) −4.18034 −0.291968
\(206\) 2.29180 0.159677
\(207\) −12.4721 −0.866873
\(208\) −3.23607 −0.224381
\(209\) 0 0
\(210\) 6.47214 0.446620
\(211\) 5.09017 0.350422 0.175211 0.984531i \(-0.443939\pi\)
0.175211 + 0.984531i \(0.443939\pi\)
\(212\) −10.4721 −0.719229
\(213\) −2.00000 −0.137038
\(214\) −7.85410 −0.536895
\(215\) −14.2918 −0.974692
\(216\) 2.23607 0.152145
\(217\) −4.00000 −0.271538
\(218\) 1.05573 0.0715029
\(219\) 33.0344 2.23226
\(220\) 0 0
\(221\) −5.23607 −0.352216
\(222\) 25.4164 1.70584
\(223\) 12.2918 0.823120 0.411560 0.911383i \(-0.364984\pi\)
0.411560 + 0.911383i \(0.364984\pi\)
\(224\) −2.00000 −0.133631
\(225\) −13.3820 −0.892131
\(226\) 4.85410 0.322890
\(227\) −23.5066 −1.56019 −0.780093 0.625663i \(-0.784828\pi\)
−0.780093 + 0.625663i \(0.784828\pi\)
\(228\) 2.23607 0.148087
\(229\) −11.7082 −0.773700 −0.386850 0.922143i \(-0.626437\pi\)
−0.386850 + 0.922143i \(0.626437\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) −4.47214 −0.293610
\(233\) −7.38197 −0.483609 −0.241804 0.970325i \(-0.577739\pi\)
−0.241804 + 0.970325i \(0.577739\pi\)
\(234\) −12.4721 −0.815329
\(235\) −3.05573 −0.199334
\(236\) −6.38197 −0.415431
\(237\) −35.1246 −2.28159
\(238\) −3.23607 −0.209763
\(239\) −8.29180 −0.536352 −0.268176 0.963370i \(-0.586421\pi\)
−0.268176 + 0.963370i \(0.586421\pi\)
\(240\) −3.23607 −0.208887
\(241\) 0.0901699 0.00580836 0.00290418 0.999996i \(-0.499076\pi\)
0.00290418 + 0.999996i \(0.499076\pi\)
\(242\) 0 0
\(243\) −21.6525 −1.38901
\(244\) 6.47214 0.414336
\(245\) 3.70820 0.236908
\(246\) 8.85410 0.564517
\(247\) −2.76393 −0.175865
\(248\) 2.00000 0.127000
\(249\) −16.5623 −1.04959
\(250\) 10.4721 0.662316
\(251\) 3.05573 0.192876 0.0964379 0.995339i \(-0.469255\pi\)
0.0964379 + 0.995339i \(0.469255\pi\)
\(252\) −7.70820 −0.485571
\(253\) 0 0
\(254\) 6.94427 0.435722
\(255\) −5.23607 −0.327895
\(256\) 1.00000 0.0625000
\(257\) −3.38197 −0.210961 −0.105481 0.994421i \(-0.533638\pi\)
−0.105481 + 0.994421i \(0.533638\pi\)
\(258\) 30.2705 1.88456
\(259\) −19.4164 −1.20648
\(260\) 4.00000 0.248069
\(261\) −17.2361 −1.06689
\(262\) −17.7984 −1.09959
\(263\) −18.7639 −1.15703 −0.578517 0.815670i \(-0.696368\pi\)
−0.578517 + 0.815670i \(0.696368\pi\)
\(264\) 0 0
\(265\) 12.9443 0.795160
\(266\) −1.70820 −0.104737
\(267\) 8.09017 0.495110
\(268\) −0.0901699 −0.00550801
\(269\) −16.1803 −0.986533 −0.493266 0.869878i \(-0.664197\pi\)
−0.493266 + 0.869878i \(0.664197\pi\)
\(270\) −2.76393 −0.168208
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 1.61803 0.0981077
\(273\) 16.9443 1.02551
\(274\) 4.90983 0.296614
\(275\) 0 0
\(276\) −8.47214 −0.509963
\(277\) −10.2918 −0.618374 −0.309187 0.951001i \(-0.600057\pi\)
−0.309187 + 0.951001i \(0.600057\pi\)
\(278\) 0 0
\(279\) 7.70820 0.461478
\(280\) 2.47214 0.147738
\(281\) −4.90983 −0.292896 −0.146448 0.989218i \(-0.546784\pi\)
−0.146448 + 0.989218i \(0.546784\pi\)
\(282\) 6.47214 0.385410
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) −0.763932 −0.0453310
\(285\) −2.76393 −0.163721
\(286\) 0 0
\(287\) −6.76393 −0.399262
\(288\) 3.85410 0.227105
\(289\) −14.3820 −0.845998
\(290\) 5.52786 0.324607
\(291\) 36.2705 2.12621
\(292\) 12.6180 0.738415
\(293\) 16.3607 0.955801 0.477901 0.878414i \(-0.341398\pi\)
0.477901 + 0.878414i \(0.341398\pi\)
\(294\) −7.85410 −0.458061
\(295\) 7.88854 0.459289
\(296\) 9.70820 0.564278
\(297\) 0 0
\(298\) 16.1803 0.937302
\(299\) 10.4721 0.605619
\(300\) −9.09017 −0.524821
\(301\) −23.1246 −1.33288
\(302\) −8.00000 −0.460348
\(303\) 47.5967 2.73436
\(304\) 0.854102 0.0489861
\(305\) −8.00000 −0.458079
\(306\) 6.23607 0.356492
\(307\) 3.20163 0.182726 0.0913632 0.995818i \(-0.470878\pi\)
0.0913632 + 0.995818i \(0.470878\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) −2.47214 −0.140408
\(311\) −32.0689 −1.81846 −0.909230 0.416295i \(-0.863328\pi\)
−0.909230 + 0.416295i \(0.863328\pi\)
\(312\) −8.47214 −0.479640
\(313\) −11.3262 −0.640197 −0.320098 0.947384i \(-0.603716\pi\)
−0.320098 + 0.947384i \(0.603716\pi\)
\(314\) −3.70820 −0.209266
\(315\) 9.52786 0.536834
\(316\) −13.4164 −0.754732
\(317\) 9.70820 0.545267 0.272634 0.962118i \(-0.412105\pi\)
0.272634 + 0.962118i \(0.412105\pi\)
\(318\) −27.4164 −1.53744
\(319\) 0 0
\(320\) −1.23607 −0.0690983
\(321\) −20.5623 −1.14768
\(322\) 6.47214 0.360678
\(323\) 1.38197 0.0768946
\(324\) −5.70820 −0.317122
\(325\) 11.2361 0.623265
\(326\) 12.0902 0.669613
\(327\) 2.76393 0.152846
\(328\) 3.38197 0.186738
\(329\) −4.94427 −0.272587
\(330\) 0 0
\(331\) −27.2705 −1.49892 −0.749461 0.662048i \(-0.769687\pi\)
−0.749461 + 0.662048i \(0.769687\pi\)
\(332\) −6.32624 −0.347197
\(333\) 37.4164 2.05041
\(334\) −19.2361 −1.05255
\(335\) 0.111456 0.00608950
\(336\) −5.23607 −0.285651
\(337\) −2.20163 −0.119930 −0.0599651 0.998200i \(-0.519099\pi\)
−0.0599651 + 0.998200i \(0.519099\pi\)
\(338\) −2.52786 −0.137498
\(339\) 12.7082 0.690215
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 3.29180 0.178000
\(343\) 20.0000 1.07990
\(344\) 11.5623 0.623398
\(345\) 10.4721 0.563801
\(346\) −13.8885 −0.746653
\(347\) 14.3820 0.772064 0.386032 0.922485i \(-0.373845\pi\)
0.386032 + 0.922485i \(0.373845\pi\)
\(348\) −11.7082 −0.627626
\(349\) 29.5967 1.58428 0.792139 0.610341i \(-0.208968\pi\)
0.792139 + 0.610341i \(0.208968\pi\)
\(350\) 6.94427 0.371187
\(351\) −7.23607 −0.386233
\(352\) 0 0
\(353\) 30.3820 1.61707 0.808534 0.588449i \(-0.200261\pi\)
0.808534 + 0.588449i \(0.200261\pi\)
\(354\) −16.7082 −0.888031
\(355\) 0.944272 0.0501167
\(356\) 3.09017 0.163779
\(357\) −8.47214 −0.448393
\(358\) −6.38197 −0.337297
\(359\) −35.1246 −1.85381 −0.926903 0.375301i \(-0.877539\pi\)
−0.926903 + 0.375301i \(0.877539\pi\)
\(360\) −4.76393 −0.251081
\(361\) −18.2705 −0.961606
\(362\) 18.1803 0.955537
\(363\) 0 0
\(364\) 6.47214 0.339232
\(365\) −15.5967 −0.816371
\(366\) 16.9443 0.885691
\(367\) 6.29180 0.328429 0.164215 0.986425i \(-0.447491\pi\)
0.164215 + 0.986425i \(0.447491\pi\)
\(368\) −3.23607 −0.168692
\(369\) 13.0344 0.678546
\(370\) −12.0000 −0.623850
\(371\) 20.9443 1.08737
\(372\) 5.23607 0.271477
\(373\) −17.7082 −0.916896 −0.458448 0.888721i \(-0.651594\pi\)
−0.458448 + 0.888721i \(0.651594\pi\)
\(374\) 0 0
\(375\) 27.4164 1.41578
\(376\) 2.47214 0.127491
\(377\) 14.4721 0.745353
\(378\) −4.47214 −0.230022
\(379\) −19.2705 −0.989860 −0.494930 0.868933i \(-0.664806\pi\)
−0.494930 + 0.868933i \(0.664806\pi\)
\(380\) −1.05573 −0.0541577
\(381\) 18.1803 0.931407
\(382\) 9.23607 0.472558
\(383\) 16.3607 0.835992 0.417996 0.908449i \(-0.362733\pi\)
0.417996 + 0.908449i \(0.362733\pi\)
\(384\) 2.61803 0.133601
\(385\) 0 0
\(386\) −9.41641 −0.479283
\(387\) 44.5623 2.26523
\(388\) 13.8541 0.703335
\(389\) 20.6525 1.04712 0.523561 0.851988i \(-0.324603\pi\)
0.523561 + 0.851988i \(0.324603\pi\)
\(390\) 10.4721 0.530277
\(391\) −5.23607 −0.264799
\(392\) −3.00000 −0.151523
\(393\) −46.5967 −2.35049
\(394\) −3.05573 −0.153945
\(395\) 16.5836 0.834411
\(396\) 0 0
\(397\) 23.1246 1.16059 0.580295 0.814406i \(-0.302937\pi\)
0.580295 + 0.814406i \(0.302937\pi\)
\(398\) −1.05573 −0.0529189
\(399\) −4.47214 −0.223887
\(400\) −3.47214 −0.173607
\(401\) 6.79837 0.339495 0.169747 0.985488i \(-0.445705\pi\)
0.169747 + 0.985488i \(0.445705\pi\)
\(402\) −0.236068 −0.0117740
\(403\) −6.47214 −0.322400
\(404\) 18.1803 0.904506
\(405\) 7.05573 0.350602
\(406\) 8.94427 0.443897
\(407\) 0 0
\(408\) 4.23607 0.209717
\(409\) 13.4164 0.663399 0.331699 0.943385i \(-0.392378\pi\)
0.331699 + 0.943385i \(0.392378\pi\)
\(410\) −4.18034 −0.206452
\(411\) 12.8541 0.634046
\(412\) 2.29180 0.112909
\(413\) 12.7639 0.628072
\(414\) −12.4721 −0.612972
\(415\) 7.81966 0.383852
\(416\) −3.23607 −0.158661
\(417\) 0 0
\(418\) 0 0
\(419\) −4.14590 −0.202540 −0.101270 0.994859i \(-0.532291\pi\)
−0.101270 + 0.994859i \(0.532291\pi\)
\(420\) 6.47214 0.315808
\(421\) −4.58359 −0.223391 −0.111695 0.993743i \(-0.535628\pi\)
−0.111695 + 0.993743i \(0.535628\pi\)
\(422\) 5.09017 0.247786
\(423\) 9.52786 0.463261
\(424\) −10.4721 −0.508572
\(425\) −5.61803 −0.272515
\(426\) −2.00000 −0.0969003
\(427\) −12.9443 −0.626417
\(428\) −7.85410 −0.379642
\(429\) 0 0
\(430\) −14.2918 −0.689212
\(431\) 0.944272 0.0454840 0.0227420 0.999741i \(-0.492760\pi\)
0.0227420 + 0.999741i \(0.492760\pi\)
\(432\) 2.23607 0.107583
\(433\) −14.7426 −0.708486 −0.354243 0.935153i \(-0.615261\pi\)
−0.354243 + 0.935153i \(0.615261\pi\)
\(434\) −4.00000 −0.192006
\(435\) 14.4721 0.693886
\(436\) 1.05573 0.0505602
\(437\) −2.76393 −0.132217
\(438\) 33.0344 1.57845
\(439\) −33.4164 −1.59488 −0.797439 0.603399i \(-0.793812\pi\)
−0.797439 + 0.603399i \(0.793812\pi\)
\(440\) 0 0
\(441\) −11.5623 −0.550586
\(442\) −5.23607 −0.249054
\(443\) 11.5623 0.549342 0.274671 0.961538i \(-0.411431\pi\)
0.274671 + 0.961538i \(0.411431\pi\)
\(444\) 25.4164 1.20621
\(445\) −3.81966 −0.181069
\(446\) 12.2918 0.582033
\(447\) 42.3607 2.00359
\(448\) −2.00000 −0.0944911
\(449\) −24.2705 −1.14540 −0.572698 0.819766i \(-0.694103\pi\)
−0.572698 + 0.819766i \(0.694103\pi\)
\(450\) −13.3820 −0.630832
\(451\) 0 0
\(452\) 4.85410 0.228318
\(453\) −20.9443 −0.984048
\(454\) −23.5066 −1.10322
\(455\) −8.00000 −0.375046
\(456\) 2.23607 0.104713
\(457\) −29.5623 −1.38287 −0.691433 0.722440i \(-0.743020\pi\)
−0.691433 + 0.722440i \(0.743020\pi\)
\(458\) −11.7082 −0.547088
\(459\) 3.61803 0.168875
\(460\) 4.00000 0.186501
\(461\) 32.6525 1.52078 0.760389 0.649468i \(-0.225008\pi\)
0.760389 + 0.649468i \(0.225008\pi\)
\(462\) 0 0
\(463\) 7.41641 0.344670 0.172335 0.985038i \(-0.444869\pi\)
0.172335 + 0.985038i \(0.444869\pi\)
\(464\) −4.47214 −0.207614
\(465\) −6.47214 −0.300138
\(466\) −7.38197 −0.341963
\(467\) 29.3050 1.35607 0.678036 0.735029i \(-0.262831\pi\)
0.678036 + 0.735029i \(0.262831\pi\)
\(468\) −12.4721 −0.576525
\(469\) 0.180340 0.00832732
\(470\) −3.05573 −0.140950
\(471\) −9.70820 −0.447330
\(472\) −6.38197 −0.293754
\(473\) 0 0
\(474\) −35.1246 −1.61333
\(475\) −2.96556 −0.136069
\(476\) −3.23607 −0.148325
\(477\) −40.3607 −1.84799
\(478\) −8.29180 −0.379258
\(479\) −25.5279 −1.16640 −0.583199 0.812329i \(-0.698199\pi\)
−0.583199 + 0.812329i \(0.698199\pi\)
\(480\) −3.23607 −0.147706
\(481\) −31.4164 −1.43246
\(482\) 0.0901699 0.00410713
\(483\) 16.9443 0.770991
\(484\) 0 0
\(485\) −17.1246 −0.777589
\(486\) −21.6525 −0.982176
\(487\) −32.6525 −1.47962 −0.739812 0.672813i \(-0.765086\pi\)
−0.739812 + 0.672813i \(0.765086\pi\)
\(488\) 6.47214 0.292980
\(489\) 31.6525 1.43137
\(490\) 3.70820 0.167520
\(491\) 16.1459 0.728654 0.364327 0.931271i \(-0.381299\pi\)
0.364327 + 0.931271i \(0.381299\pi\)
\(492\) 8.85410 0.399174
\(493\) −7.23607 −0.325896
\(494\) −2.76393 −0.124355
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 1.52786 0.0685341
\(498\) −16.5623 −0.742175
\(499\) −24.1459 −1.08092 −0.540459 0.841370i \(-0.681750\pi\)
−0.540459 + 0.841370i \(0.681750\pi\)
\(500\) 10.4721 0.468328
\(501\) −50.3607 −2.24995
\(502\) 3.05573 0.136384
\(503\) 1.23607 0.0551135 0.0275568 0.999620i \(-0.491227\pi\)
0.0275568 + 0.999620i \(0.491227\pi\)
\(504\) −7.70820 −0.343351
\(505\) −22.4721 −0.999997
\(506\) 0 0
\(507\) −6.61803 −0.293917
\(508\) 6.94427 0.308102
\(509\) −21.7082 −0.962199 −0.481100 0.876666i \(-0.659762\pi\)
−0.481100 + 0.876666i \(0.659762\pi\)
\(510\) −5.23607 −0.231857
\(511\) −25.2361 −1.11638
\(512\) 1.00000 0.0441942
\(513\) 1.90983 0.0843211
\(514\) −3.38197 −0.149172
\(515\) −2.83282 −0.124829
\(516\) 30.2705 1.33258
\(517\) 0 0
\(518\) −19.4164 −0.853108
\(519\) −36.3607 −1.59606
\(520\) 4.00000 0.175412
\(521\) 9.03444 0.395806 0.197903 0.980222i \(-0.436587\pi\)
0.197903 + 0.980222i \(0.436587\pi\)
\(522\) −17.2361 −0.754402
\(523\) 33.7984 1.47790 0.738950 0.673760i \(-0.235322\pi\)
0.738950 + 0.673760i \(0.235322\pi\)
\(524\) −17.7984 −0.777526
\(525\) 18.1803 0.793455
\(526\) −18.7639 −0.818146
\(527\) 3.23607 0.140965
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 12.9443 0.562263
\(531\) −24.5967 −1.06741
\(532\) −1.70820 −0.0740600
\(533\) −10.9443 −0.474049
\(534\) 8.09017 0.350096
\(535\) 9.70820 0.419722
\(536\) −0.0901699 −0.00389475
\(537\) −16.7082 −0.721012
\(538\) −16.1803 −0.697584
\(539\) 0 0
\(540\) −2.76393 −0.118941
\(541\) 37.1246 1.59611 0.798056 0.602583i \(-0.205862\pi\)
0.798056 + 0.602583i \(0.205862\pi\)
\(542\) 2.00000 0.0859074
\(543\) 47.5967 2.04257
\(544\) 1.61803 0.0693726
\(545\) −1.30495 −0.0558980
\(546\) 16.9443 0.725148
\(547\) −7.32624 −0.313247 −0.156624 0.987658i \(-0.550061\pi\)
−0.156624 + 0.987658i \(0.550061\pi\)
\(548\) 4.90983 0.209738
\(549\) 24.9443 1.06460
\(550\) 0 0
\(551\) −3.81966 −0.162723
\(552\) −8.47214 −0.360598
\(553\) 26.8328 1.14105
\(554\) −10.2918 −0.437257
\(555\) −31.4164 −1.33355
\(556\) 0 0
\(557\) 30.7639 1.30351 0.651755 0.758430i \(-0.274033\pi\)
0.651755 + 0.758430i \(0.274033\pi\)
\(558\) 7.70820 0.326314
\(559\) −37.4164 −1.58255
\(560\) 2.47214 0.104467
\(561\) 0 0
\(562\) −4.90983 −0.207109
\(563\) 2.61803 0.110337 0.0551685 0.998477i \(-0.482430\pi\)
0.0551685 + 0.998477i \(0.482430\pi\)
\(564\) 6.47214 0.272526
\(565\) −6.00000 −0.252422
\(566\) 24.0000 1.00880
\(567\) 11.4164 0.479444
\(568\) −0.763932 −0.0320539
\(569\) −13.2148 −0.553992 −0.276996 0.960871i \(-0.589339\pi\)
−0.276996 + 0.960871i \(0.589339\pi\)
\(570\) −2.76393 −0.115768
\(571\) 6.47214 0.270850 0.135425 0.990788i \(-0.456760\pi\)
0.135425 + 0.990788i \(0.456760\pi\)
\(572\) 0 0
\(573\) 24.1803 1.01015
\(574\) −6.76393 −0.282321
\(575\) 11.2361 0.468576
\(576\) 3.85410 0.160588
\(577\) 17.7984 0.740956 0.370478 0.928841i \(-0.379194\pi\)
0.370478 + 0.928841i \(0.379194\pi\)
\(578\) −14.3820 −0.598211
\(579\) −24.6525 −1.02452
\(580\) 5.52786 0.229532
\(581\) 12.6525 0.524913
\(582\) 36.2705 1.50346
\(583\) 0 0
\(584\) 12.6180 0.522138
\(585\) 15.4164 0.637390
\(586\) 16.3607 0.675853
\(587\) 28.8541 1.19094 0.595468 0.803379i \(-0.296967\pi\)
0.595468 + 0.803379i \(0.296967\pi\)
\(588\) −7.85410 −0.323898
\(589\) 1.70820 0.0703853
\(590\) 7.88854 0.324766
\(591\) −8.00000 −0.329076
\(592\) 9.70820 0.399005
\(593\) 31.6869 1.30123 0.650613 0.759410i \(-0.274512\pi\)
0.650613 + 0.759410i \(0.274512\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 16.1803 0.662773
\(597\) −2.76393 −0.113120
\(598\) 10.4721 0.428237
\(599\) 13.4164 0.548180 0.274090 0.961704i \(-0.411623\pi\)
0.274090 + 0.961704i \(0.411623\pi\)
\(600\) −9.09017 −0.371105
\(601\) −33.8541 −1.38094 −0.690469 0.723362i \(-0.742596\pi\)
−0.690469 + 0.723362i \(0.742596\pi\)
\(602\) −23.1246 −0.942489
\(603\) −0.347524 −0.0141523
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 47.5967 1.93349
\(607\) −17.1246 −0.695067 −0.347533 0.937668i \(-0.612981\pi\)
−0.347533 + 0.937668i \(0.612981\pi\)
\(608\) 0.854102 0.0346384
\(609\) 23.4164 0.948881
\(610\) −8.00000 −0.323911
\(611\) −8.00000 −0.323645
\(612\) 6.23607 0.252078
\(613\) 22.2918 0.900357 0.450179 0.892939i \(-0.351360\pi\)
0.450179 + 0.892939i \(0.351360\pi\)
\(614\) 3.20163 0.129207
\(615\) −10.9443 −0.441316
\(616\) 0 0
\(617\) −32.4508 −1.30642 −0.653211 0.757176i \(-0.726579\pi\)
−0.653211 + 0.757176i \(0.726579\pi\)
\(618\) 6.00000 0.241355
\(619\) 29.7984 1.19770 0.598849 0.800862i \(-0.295625\pi\)
0.598849 + 0.800862i \(0.295625\pi\)
\(620\) −2.47214 −0.0992834
\(621\) −7.23607 −0.290373
\(622\) −32.0689 −1.28585
\(623\) −6.18034 −0.247610
\(624\) −8.47214 −0.339157
\(625\) 4.41641 0.176656
\(626\) −11.3262 −0.452688
\(627\) 0 0
\(628\) −3.70820 −0.147973
\(629\) 15.7082 0.626327
\(630\) 9.52786 0.379599
\(631\) 10.2918 0.409710 0.204855 0.978792i \(-0.434328\pi\)
0.204855 + 0.978792i \(0.434328\pi\)
\(632\) −13.4164 −0.533676
\(633\) 13.3262 0.529670
\(634\) 9.70820 0.385562
\(635\) −8.58359 −0.340629
\(636\) −27.4164 −1.08713
\(637\) 9.70820 0.384653
\(638\) 0 0
\(639\) −2.94427 −0.116474
\(640\) −1.23607 −0.0488599
\(641\) 32.3262 1.27681 0.638405 0.769701i \(-0.279595\pi\)
0.638405 + 0.769701i \(0.279595\pi\)
\(642\) −20.5623 −0.811529
\(643\) −6.97871 −0.275214 −0.137607 0.990487i \(-0.543941\pi\)
−0.137607 + 0.990487i \(0.543941\pi\)
\(644\) 6.47214 0.255038
\(645\) −37.4164 −1.47327
\(646\) 1.38197 0.0543727
\(647\) 46.9443 1.84557 0.922785 0.385316i \(-0.125907\pi\)
0.922785 + 0.385316i \(0.125907\pi\)
\(648\) −5.70820 −0.224239
\(649\) 0 0
\(650\) 11.2361 0.440715
\(651\) −10.4721 −0.410435
\(652\) 12.0902 0.473488
\(653\) −46.6525 −1.82565 −0.912826 0.408348i \(-0.866105\pi\)
−0.912826 + 0.408348i \(0.866105\pi\)
\(654\) 2.76393 0.108078
\(655\) 22.0000 0.859611
\(656\) 3.38197 0.132044
\(657\) 48.6312 1.89728
\(658\) −4.94427 −0.192748
\(659\) −28.0902 −1.09424 −0.547119 0.837055i \(-0.684275\pi\)
−0.547119 + 0.837055i \(0.684275\pi\)
\(660\) 0 0
\(661\) −12.4721 −0.485110 −0.242555 0.970138i \(-0.577985\pi\)
−0.242555 + 0.970138i \(0.577985\pi\)
\(662\) −27.2705 −1.05990
\(663\) −13.7082 −0.532383
\(664\) −6.32624 −0.245506
\(665\) 2.11146 0.0818788
\(666\) 37.4164 1.44986
\(667\) 14.4721 0.560363
\(668\) −19.2361 −0.744266
\(669\) 32.1803 1.24416
\(670\) 0.111456 0.00430593
\(671\) 0 0
\(672\) −5.23607 −0.201986
\(673\) 3.14590 0.121265 0.0606327 0.998160i \(-0.480688\pi\)
0.0606327 + 0.998160i \(0.480688\pi\)
\(674\) −2.20163 −0.0848035
\(675\) −7.76393 −0.298834
\(676\) −2.52786 −0.0972255
\(677\) 30.3607 1.16686 0.583428 0.812165i \(-0.301711\pi\)
0.583428 + 0.812165i \(0.301711\pi\)
\(678\) 12.7082 0.488056
\(679\) −27.7082 −1.06334
\(680\) −2.00000 −0.0766965
\(681\) −61.5410 −2.35826
\(682\) 0 0
\(683\) 9.52786 0.364574 0.182287 0.983245i \(-0.441650\pi\)
0.182287 + 0.983245i \(0.441650\pi\)
\(684\) 3.29180 0.125865
\(685\) −6.06888 −0.231880
\(686\) 20.0000 0.763604
\(687\) −30.6525 −1.16946
\(688\) 11.5623 0.440809
\(689\) 33.8885 1.29105
\(690\) 10.4721 0.398667
\(691\) 25.2148 0.959216 0.479608 0.877483i \(-0.340779\pi\)
0.479608 + 0.877483i \(0.340779\pi\)
\(692\) −13.8885 −0.527963
\(693\) 0 0
\(694\) 14.3820 0.545932
\(695\) 0 0
\(696\) −11.7082 −0.443798
\(697\) 5.47214 0.207272
\(698\) 29.5967 1.12025
\(699\) −19.3262 −0.730985
\(700\) 6.94427 0.262469
\(701\) 38.8328 1.46670 0.733348 0.679854i \(-0.237957\pi\)
0.733348 + 0.679854i \(0.237957\pi\)
\(702\) −7.23607 −0.273108
\(703\) 8.29180 0.312731
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 30.3820 1.14344
\(707\) −36.3607 −1.36748
\(708\) −16.7082 −0.627933
\(709\) 15.5279 0.583161 0.291581 0.956546i \(-0.405819\pi\)
0.291581 + 0.956546i \(0.405819\pi\)
\(710\) 0.944272 0.0354379
\(711\) −51.7082 −1.93921
\(712\) 3.09017 0.115809
\(713\) −6.47214 −0.242383
\(714\) −8.47214 −0.317062
\(715\) 0 0
\(716\) −6.38197 −0.238505
\(717\) −21.7082 −0.810708
\(718\) −35.1246 −1.31084
\(719\) −26.8328 −1.00070 −0.500348 0.865825i \(-0.666794\pi\)
−0.500348 + 0.865825i \(0.666794\pi\)
\(720\) −4.76393 −0.177541
\(721\) −4.58359 −0.170702
\(722\) −18.2705 −0.679958
\(723\) 0.236068 0.00877946
\(724\) 18.1803 0.675667
\(725\) 15.5279 0.576690
\(726\) 0 0
\(727\) 43.1246 1.59940 0.799702 0.600398i \(-0.204991\pi\)
0.799702 + 0.600398i \(0.204991\pi\)
\(728\) 6.47214 0.239873
\(729\) −39.5623 −1.46527
\(730\) −15.5967 −0.577262
\(731\) 18.7082 0.691948
\(732\) 16.9443 0.626278
\(733\) 17.4164 0.643290 0.321645 0.946860i \(-0.395764\pi\)
0.321645 + 0.946860i \(0.395764\pi\)
\(734\) 6.29180 0.232234
\(735\) 9.70820 0.358092
\(736\) −3.23607 −0.119283
\(737\) 0 0
\(738\) 13.0344 0.479804
\(739\) −17.4377 −0.641456 −0.320728 0.947171i \(-0.603928\pi\)
−0.320728 + 0.947171i \(0.603928\pi\)
\(740\) −12.0000 −0.441129
\(741\) −7.23607 −0.265824
\(742\) 20.9443 0.768888
\(743\) −13.2361 −0.485584 −0.242792 0.970078i \(-0.578063\pi\)
−0.242792 + 0.970078i \(0.578063\pi\)
\(744\) 5.23607 0.191964
\(745\) −20.0000 −0.732743
\(746\) −17.7082 −0.648343
\(747\) −24.3820 −0.892089
\(748\) 0 0
\(749\) 15.7082 0.573965
\(750\) 27.4164 1.00111
\(751\) 37.7771 1.37851 0.689253 0.724521i \(-0.257939\pi\)
0.689253 + 0.724521i \(0.257939\pi\)
\(752\) 2.47214 0.0901495
\(753\) 8.00000 0.291536
\(754\) 14.4721 0.527044
\(755\) 9.88854 0.359881
\(756\) −4.47214 −0.162650
\(757\) 28.6525 1.04139 0.520696 0.853742i \(-0.325673\pi\)
0.520696 + 0.853742i \(0.325673\pi\)
\(758\) −19.2705 −0.699936
\(759\) 0 0
\(760\) −1.05573 −0.0382953
\(761\) −46.7426 −1.69442 −0.847210 0.531258i \(-0.821719\pi\)
−0.847210 + 0.531258i \(0.821719\pi\)
\(762\) 18.1803 0.658604
\(763\) −2.11146 −0.0764398
\(764\) 9.23607 0.334149
\(765\) −7.70820 −0.278691
\(766\) 16.3607 0.591135
\(767\) 20.6525 0.745718
\(768\) 2.61803 0.0944702
\(769\) −13.4164 −0.483808 −0.241904 0.970300i \(-0.577772\pi\)
−0.241904 + 0.970300i \(0.577772\pi\)
\(770\) 0 0
\(771\) −8.85410 −0.318873
\(772\) −9.41641 −0.338904
\(773\) 31.8885 1.14695 0.573476 0.819223i \(-0.305595\pi\)
0.573476 + 0.819223i \(0.305595\pi\)
\(774\) 44.5623 1.60176
\(775\) −6.94427 −0.249446
\(776\) 13.8541 0.497333
\(777\) −50.8328 −1.82362
\(778\) 20.6525 0.740427
\(779\) 2.88854 0.103493
\(780\) 10.4721 0.374963
\(781\) 0 0
\(782\) −5.23607 −0.187241
\(783\) −10.0000 −0.357371
\(784\) −3.00000 −0.107143
\(785\) 4.58359 0.163595
\(786\) −46.5967 −1.66205
\(787\) −25.2148 −0.898810 −0.449405 0.893328i \(-0.648364\pi\)
−0.449405 + 0.893328i \(0.648364\pi\)
\(788\) −3.05573 −0.108856
\(789\) −49.1246 −1.74888
\(790\) 16.5836 0.590018
\(791\) −9.70820 −0.345184
\(792\) 0 0
\(793\) −20.9443 −0.743753
\(794\) 23.1246 0.820662
\(795\) 33.8885 1.20190
\(796\) −1.05573 −0.0374193
\(797\) −29.2361 −1.03559 −0.517797 0.855503i \(-0.673248\pi\)
−0.517797 + 0.855503i \(0.673248\pi\)
\(798\) −4.47214 −0.158312
\(799\) 4.00000 0.141510
\(800\) −3.47214 −0.122759
\(801\) 11.9098 0.420813
\(802\) 6.79837 0.240059
\(803\) 0 0
\(804\) −0.236068 −0.00832548
\(805\) −8.00000 −0.281963
\(806\) −6.47214 −0.227971
\(807\) −42.3607 −1.49117
\(808\) 18.1803 0.639582
\(809\) 28.0902 0.987598 0.493799 0.869576i \(-0.335608\pi\)
0.493799 + 0.869576i \(0.335608\pi\)
\(810\) 7.05573 0.247913
\(811\) 10.6180 0.372850 0.186425 0.982469i \(-0.440310\pi\)
0.186425 + 0.982469i \(0.440310\pi\)
\(812\) 8.94427 0.313882
\(813\) 5.23607 0.183637
\(814\) 0 0
\(815\) −14.9443 −0.523475
\(816\) 4.23607 0.148292
\(817\) 9.87539 0.345496
\(818\) 13.4164 0.469094
\(819\) 24.9443 0.871623
\(820\) −4.18034 −0.145984
\(821\) −36.5410 −1.27529 −0.637645 0.770330i \(-0.720091\pi\)
−0.637645 + 0.770330i \(0.720091\pi\)
\(822\) 12.8541 0.448338
\(823\) −25.5967 −0.892247 −0.446123 0.894972i \(-0.647196\pi\)
−0.446123 + 0.894972i \(0.647196\pi\)
\(824\) 2.29180 0.0798385
\(825\) 0 0
\(826\) 12.7639 0.444114
\(827\) 41.6180 1.44720 0.723600 0.690219i \(-0.242486\pi\)
0.723600 + 0.690219i \(0.242486\pi\)
\(828\) −12.4721 −0.433437
\(829\) 48.9443 1.69990 0.849952 0.526859i \(-0.176631\pi\)
0.849952 + 0.526859i \(0.176631\pi\)
\(830\) 7.81966 0.271424
\(831\) −26.9443 −0.934686
\(832\) −3.23607 −0.112190
\(833\) −4.85410 −0.168185
\(834\) 0 0
\(835\) 23.7771 0.822840
\(836\) 0 0
\(837\) 4.47214 0.154580
\(838\) −4.14590 −0.143218
\(839\) 47.8885 1.65330 0.826648 0.562719i \(-0.190245\pi\)
0.826648 + 0.562719i \(0.190245\pi\)
\(840\) 6.47214 0.223310
\(841\) −9.00000 −0.310345
\(842\) −4.58359 −0.157961
\(843\) −12.8541 −0.442719
\(844\) 5.09017 0.175211
\(845\) 3.12461 0.107490
\(846\) 9.52786 0.327575
\(847\) 0 0
\(848\) −10.4721 −0.359615
\(849\) 62.8328 2.15642
\(850\) −5.61803 −0.192697
\(851\) −31.4164 −1.07694
\(852\) −2.00000 −0.0685189
\(853\) −21.5279 −0.737100 −0.368550 0.929608i \(-0.620146\pi\)
−0.368550 + 0.929608i \(0.620146\pi\)
\(854\) −12.9443 −0.442944
\(855\) −4.06888 −0.139153
\(856\) −7.85410 −0.268448
\(857\) 31.7426 1.08431 0.542154 0.840279i \(-0.317609\pi\)
0.542154 + 0.840279i \(0.317609\pi\)
\(858\) 0 0
\(859\) 8.49342 0.289792 0.144896 0.989447i \(-0.453715\pi\)
0.144896 + 0.989447i \(0.453715\pi\)
\(860\) −14.2918 −0.487346
\(861\) −17.7082 −0.603494
\(862\) 0.944272 0.0321620
\(863\) −28.7639 −0.979136 −0.489568 0.871965i \(-0.662845\pi\)
−0.489568 + 0.871965i \(0.662845\pi\)
\(864\) 2.23607 0.0760726
\(865\) 17.1672 0.583702
\(866\) −14.7426 −0.500975
\(867\) −37.6525 −1.27875
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 14.4721 0.490651
\(871\) 0.291796 0.00988713
\(872\) 1.05573 0.0357515
\(873\) 53.3951 1.80715
\(874\) −2.76393 −0.0934914
\(875\) −20.9443 −0.708046
\(876\) 33.0344 1.11613
\(877\) −5.81966 −0.196516 −0.0982580 0.995161i \(-0.531327\pi\)
−0.0982580 + 0.995161i \(0.531327\pi\)
\(878\) −33.4164 −1.12775
\(879\) 42.8328 1.44472
\(880\) 0 0
\(881\) 45.3394 1.52752 0.763761 0.645499i \(-0.223350\pi\)
0.763761 + 0.645499i \(0.223350\pi\)
\(882\) −11.5623 −0.389323
\(883\) −23.5623 −0.792935 −0.396467 0.918049i \(-0.629764\pi\)
−0.396467 + 0.918049i \(0.629764\pi\)
\(884\) −5.23607 −0.176108
\(885\) 20.6525 0.694225
\(886\) 11.5623 0.388443
\(887\) 33.7771 1.13412 0.567062 0.823675i \(-0.308080\pi\)
0.567062 + 0.823675i \(0.308080\pi\)
\(888\) 25.4164 0.852919
\(889\) −13.8885 −0.465807
\(890\) −3.81966 −0.128035
\(891\) 0 0
\(892\) 12.2918 0.411560
\(893\) 2.11146 0.0706572
\(894\) 42.3607 1.41675
\(895\) 7.88854 0.263685
\(896\) −2.00000 −0.0668153
\(897\) 27.4164 0.915407
\(898\) −24.2705 −0.809917
\(899\) −8.94427 −0.298308
\(900\) −13.3820 −0.446066
\(901\) −16.9443 −0.564496
\(902\) 0 0
\(903\) −60.5410 −2.01468
\(904\) 4.85410 0.161445
\(905\) −22.4721 −0.746999
\(906\) −20.9443 −0.695827
\(907\) 30.5623 1.01480 0.507402 0.861709i \(-0.330606\pi\)
0.507402 + 0.861709i \(0.330606\pi\)
\(908\) −23.5066 −0.780093
\(909\) 70.0689 2.32404
\(910\) −8.00000 −0.265197
\(911\) −4.18034 −0.138501 −0.0692504 0.997599i \(-0.522061\pi\)
−0.0692504 + 0.997599i \(0.522061\pi\)
\(912\) 2.23607 0.0740436
\(913\) 0 0
\(914\) −29.5623 −0.977834
\(915\) −20.9443 −0.692396
\(916\) −11.7082 −0.386850
\(917\) 35.5967 1.17551
\(918\) 3.61803 0.119413
\(919\) 16.5836 0.547042 0.273521 0.961866i \(-0.411812\pi\)
0.273521 + 0.961866i \(0.411812\pi\)
\(920\) 4.00000 0.131876
\(921\) 8.38197 0.276195
\(922\) 32.6525 1.07535
\(923\) 2.47214 0.0813713
\(924\) 0 0
\(925\) −33.7082 −1.10832
\(926\) 7.41641 0.243718
\(927\) 8.83282 0.290108
\(928\) −4.47214 −0.146805
\(929\) −58.7426 −1.92728 −0.963642 0.267197i \(-0.913902\pi\)
−0.963642 + 0.267197i \(0.913902\pi\)
\(930\) −6.47214 −0.212230
\(931\) −2.56231 −0.0839762
\(932\) −7.38197 −0.241804
\(933\) −83.9574 −2.74864
\(934\) 29.3050 0.958887
\(935\) 0 0
\(936\) −12.4721 −0.407665
\(937\) −31.1459 −1.01749 −0.508746 0.860917i \(-0.669891\pi\)
−0.508746 + 0.860917i \(0.669891\pi\)
\(938\) 0.180340 0.00588831
\(939\) −29.6525 −0.967672
\(940\) −3.05573 −0.0996669
\(941\) 25.8197 0.841697 0.420848 0.907131i \(-0.361732\pi\)
0.420848 + 0.907131i \(0.361732\pi\)
\(942\) −9.70820 −0.316310
\(943\) −10.9443 −0.356395
\(944\) −6.38197 −0.207715
\(945\) 5.52786 0.179821
\(946\) 0 0
\(947\) 21.2148 0.689388 0.344694 0.938715i \(-0.387983\pi\)
0.344694 + 0.938715i \(0.387983\pi\)
\(948\) −35.1246 −1.14079
\(949\) −40.8328 −1.32549
\(950\) −2.96556 −0.0962154
\(951\) 25.4164 0.824183
\(952\) −3.23607 −0.104882
\(953\) 4.32624 0.140141 0.0700703 0.997542i \(-0.477678\pi\)
0.0700703 + 0.997542i \(0.477678\pi\)
\(954\) −40.3607 −1.30673
\(955\) −11.4164 −0.369426
\(956\) −8.29180 −0.268176
\(957\) 0 0
\(958\) −25.5279 −0.824768
\(959\) −9.81966 −0.317093
\(960\) −3.23607 −0.104444
\(961\) −27.0000 −0.870968
\(962\) −31.4164 −1.01291
\(963\) −30.2705 −0.975454
\(964\) 0.0901699 0.00290418
\(965\) 11.6393 0.374683
\(966\) 16.9443 0.545173
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 0 0
\(969\) 3.61803 0.116228
\(970\) −17.1246 −0.549838
\(971\) −45.8885 −1.47263 −0.736317 0.676637i \(-0.763437\pi\)
−0.736317 + 0.676637i \(0.763437\pi\)
\(972\) −21.6525 −0.694503
\(973\) 0 0
\(974\) −32.6525 −1.04625
\(975\) 29.4164 0.942079
\(976\) 6.47214 0.207168
\(977\) 19.3050 0.617620 0.308810 0.951124i \(-0.400069\pi\)
0.308810 + 0.951124i \(0.400069\pi\)
\(978\) 31.6525 1.01213
\(979\) 0 0
\(980\) 3.70820 0.118454
\(981\) 4.06888 0.129909
\(982\) 16.1459 0.515236
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) 8.85410 0.282258
\(985\) 3.77709 0.120348
\(986\) −7.23607 −0.230443
\(987\) −12.9443 −0.412021
\(988\) −2.76393 −0.0879324
\(989\) −37.4164 −1.18977
\(990\) 0 0
\(991\) −36.5410 −1.16076 −0.580382 0.814344i \(-0.697097\pi\)
−0.580382 + 0.814344i \(0.697097\pi\)
\(992\) 2.00000 0.0635001
\(993\) −71.3951 −2.26566
\(994\) 1.52786 0.0484609
\(995\) 1.30495 0.0413697
\(996\) −16.5623 −0.524797
\(997\) −22.6525 −0.717411 −0.358706 0.933451i \(-0.616782\pi\)
−0.358706 + 0.933451i \(0.616782\pi\)
\(998\) −24.1459 −0.764325
\(999\) 21.7082 0.686817
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 242.2.a.f.1.2 2
3.2 odd 2 2178.2.a.p.1.2 2
4.3 odd 2 1936.2.a.o.1.1 2
5.4 even 2 6050.2.a.bs.1.1 2
8.3 odd 2 7744.2.a.cz.1.2 2
8.5 even 2 7744.2.a.bm.1.1 2
11.2 odd 10 242.2.c.d.81.1 4
11.3 even 5 22.2.c.a.9.1 yes 4
11.4 even 5 22.2.c.a.5.1 4
11.5 even 5 242.2.c.a.3.1 4
11.6 odd 10 242.2.c.d.3.1 4
11.7 odd 10 242.2.c.c.27.1 4
11.8 odd 10 242.2.c.c.9.1 4
11.9 even 5 242.2.c.a.81.1 4
11.10 odd 2 242.2.a.d.1.2 2
33.14 odd 10 198.2.f.e.163.1 4
33.26 odd 10 198.2.f.e.181.1 4
33.32 even 2 2178.2.a.x.1.2 2
44.3 odd 10 176.2.m.c.97.1 4
44.15 odd 10 176.2.m.c.49.1 4
44.43 even 2 1936.2.a.n.1.1 2
55.3 odd 20 550.2.ba.c.449.1 8
55.4 even 10 550.2.h.h.401.1 4
55.14 even 10 550.2.h.h.251.1 4
55.37 odd 20 550.2.ba.c.49.1 8
55.47 odd 20 550.2.ba.c.449.2 8
55.48 odd 20 550.2.ba.c.49.2 8
55.54 odd 2 6050.2.a.ci.1.1 2
88.3 odd 10 704.2.m.a.449.1 4
88.21 odd 2 7744.2.a.bn.1.1 2
88.37 even 10 704.2.m.h.577.1 4
88.43 even 2 7744.2.a.cy.1.2 2
88.59 odd 10 704.2.m.a.577.1 4
88.69 even 10 704.2.m.h.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.5.1 4 11.4 even 5
22.2.c.a.9.1 yes 4 11.3 even 5
176.2.m.c.49.1 4 44.15 odd 10
176.2.m.c.97.1 4 44.3 odd 10
198.2.f.e.163.1 4 33.14 odd 10
198.2.f.e.181.1 4 33.26 odd 10
242.2.a.d.1.2 2 11.10 odd 2
242.2.a.f.1.2 2 1.1 even 1 trivial
242.2.c.a.3.1 4 11.5 even 5
242.2.c.a.81.1 4 11.9 even 5
242.2.c.c.9.1 4 11.8 odd 10
242.2.c.c.27.1 4 11.7 odd 10
242.2.c.d.3.1 4 11.6 odd 10
242.2.c.d.81.1 4 11.2 odd 10
550.2.h.h.251.1 4 55.14 even 10
550.2.h.h.401.1 4 55.4 even 10
550.2.ba.c.49.1 8 55.37 odd 20
550.2.ba.c.49.2 8 55.48 odd 20
550.2.ba.c.449.1 8 55.3 odd 20
550.2.ba.c.449.2 8 55.47 odd 20
704.2.m.a.449.1 4 88.3 odd 10
704.2.m.a.577.1 4 88.59 odd 10
704.2.m.h.449.1 4 88.69 even 10
704.2.m.h.577.1 4 88.37 even 10
1936.2.a.n.1.1 2 44.43 even 2
1936.2.a.o.1.1 2 4.3 odd 2
2178.2.a.p.1.2 2 3.2 odd 2
2178.2.a.x.1.2 2 33.32 even 2
6050.2.a.bs.1.1 2 5.4 even 2
6050.2.a.ci.1.1 2 55.54 odd 2
7744.2.a.bm.1.1 2 8.5 even 2
7744.2.a.bn.1.1 2 88.21 odd 2
7744.2.a.cy.1.2 2 88.43 even 2
7744.2.a.cz.1.2 2 8.3 odd 2