Properties

Label 242.2.a.f.1.1
Level $242$
Weight $2$
Character 242.1
Self dual yes
Analytic conductor $1.932$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [242,2,Mod(1,242)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(242, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("242.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.93237972891\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 242.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.381966 q^{3} +1.00000 q^{4} +3.23607 q^{5} +0.381966 q^{6} -2.00000 q^{7} +1.00000 q^{8} -2.85410 q^{9} +3.23607 q^{10} +0.381966 q^{12} +1.23607 q^{13} -2.00000 q^{14} +1.23607 q^{15} +1.00000 q^{16} -0.618034 q^{17} -2.85410 q^{18} -5.85410 q^{19} +3.23607 q^{20} -0.763932 q^{21} +1.23607 q^{23} +0.381966 q^{24} +5.47214 q^{25} +1.23607 q^{26} -2.23607 q^{27} -2.00000 q^{28} +4.47214 q^{29} +1.23607 q^{30} +2.00000 q^{31} +1.00000 q^{32} -0.618034 q^{34} -6.47214 q^{35} -2.85410 q^{36} -3.70820 q^{37} -5.85410 q^{38} +0.472136 q^{39} +3.23607 q^{40} +5.61803 q^{41} -0.763932 q^{42} -8.56231 q^{43} -9.23607 q^{45} +1.23607 q^{46} -6.47214 q^{47} +0.381966 q^{48} -3.00000 q^{49} +5.47214 q^{50} -0.236068 q^{51} +1.23607 q^{52} -1.52786 q^{53} -2.23607 q^{54} -2.00000 q^{56} -2.23607 q^{57} +4.47214 q^{58} -8.61803 q^{59} +1.23607 q^{60} -2.47214 q^{61} +2.00000 q^{62} +5.70820 q^{63} +1.00000 q^{64} +4.00000 q^{65} +11.0902 q^{67} -0.618034 q^{68} +0.472136 q^{69} -6.47214 q^{70} -5.23607 q^{71} -2.85410 q^{72} +10.3820 q^{73} -3.70820 q^{74} +2.09017 q^{75} -5.85410 q^{76} +0.472136 q^{78} +13.4164 q^{79} +3.23607 q^{80} +7.70820 q^{81} +5.61803 q^{82} +9.32624 q^{83} -0.763932 q^{84} -2.00000 q^{85} -8.56231 q^{86} +1.70820 q^{87} -8.09017 q^{89} -9.23607 q^{90} -2.47214 q^{91} +1.23607 q^{92} +0.763932 q^{93} -6.47214 q^{94} -18.9443 q^{95} +0.381966 q^{96} +7.14590 q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} + 2 q^{4} + 2 q^{5} + 3 q^{6} - 4 q^{7} + 2 q^{8} + q^{9} + 2 q^{10} + 3 q^{12} - 2 q^{13} - 4 q^{14} - 2 q^{15} + 2 q^{16} + q^{17} + q^{18} - 5 q^{19} + 2 q^{20} - 6 q^{21}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.381966 0.220528 0.110264 0.993902i \(-0.464830\pi\)
0.110264 + 0.993902i \(0.464830\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0.381966 0.155937
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.85410 −0.951367
\(10\) 3.23607 1.02333
\(11\) 0 0
\(12\) 0.381966 0.110264
\(13\) 1.23607 0.342824 0.171412 0.985199i \(-0.445167\pi\)
0.171412 + 0.985199i \(0.445167\pi\)
\(14\) −2.00000 −0.534522
\(15\) 1.23607 0.319151
\(16\) 1.00000 0.250000
\(17\) −0.618034 −0.149895 −0.0749476 0.997187i \(-0.523879\pi\)
−0.0749476 + 0.997187i \(0.523879\pi\)
\(18\) −2.85410 −0.672718
\(19\) −5.85410 −1.34302 −0.671512 0.740994i \(-0.734355\pi\)
−0.671512 + 0.740994i \(0.734355\pi\)
\(20\) 3.23607 0.723607
\(21\) −0.763932 −0.166704
\(22\) 0 0
\(23\) 1.23607 0.257738 0.128869 0.991662i \(-0.458865\pi\)
0.128869 + 0.991662i \(0.458865\pi\)
\(24\) 0.381966 0.0779685
\(25\) 5.47214 1.09443
\(26\) 1.23607 0.242413
\(27\) −2.23607 −0.430331
\(28\) −2.00000 −0.377964
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 1.23607 0.225674
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.618034 −0.105992
\(35\) −6.47214 −1.09399
\(36\) −2.85410 −0.475684
\(37\) −3.70820 −0.609625 −0.304812 0.952412i \(-0.598594\pi\)
−0.304812 + 0.952412i \(0.598594\pi\)
\(38\) −5.85410 −0.949661
\(39\) 0.472136 0.0756023
\(40\) 3.23607 0.511667
\(41\) 5.61803 0.877390 0.438695 0.898636i \(-0.355441\pi\)
0.438695 + 0.898636i \(0.355441\pi\)
\(42\) −0.763932 −0.117877
\(43\) −8.56231 −1.30574 −0.652870 0.757470i \(-0.726435\pi\)
−0.652870 + 0.757470i \(0.726435\pi\)
\(44\) 0 0
\(45\) −9.23607 −1.37683
\(46\) 1.23607 0.182248
\(47\) −6.47214 −0.944058 −0.472029 0.881583i \(-0.656478\pi\)
−0.472029 + 0.881583i \(0.656478\pi\)
\(48\) 0.381966 0.0551320
\(49\) −3.00000 −0.428571
\(50\) 5.47214 0.773877
\(51\) −0.236068 −0.0330561
\(52\) 1.23607 0.171412
\(53\) −1.52786 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(54\) −2.23607 −0.304290
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) −2.23607 −0.296174
\(58\) 4.47214 0.587220
\(59\) −8.61803 −1.12197 −0.560986 0.827825i \(-0.689578\pi\)
−0.560986 + 0.827825i \(0.689578\pi\)
\(60\) 1.23607 0.159576
\(61\) −2.47214 −0.316525 −0.158262 0.987397i \(-0.550589\pi\)
−0.158262 + 0.987397i \(0.550589\pi\)
\(62\) 2.00000 0.254000
\(63\) 5.70820 0.719166
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 11.0902 1.35488 0.677440 0.735578i \(-0.263089\pi\)
0.677440 + 0.735578i \(0.263089\pi\)
\(68\) −0.618034 −0.0749476
\(69\) 0.472136 0.0568385
\(70\) −6.47214 −0.773568
\(71\) −5.23607 −0.621407 −0.310703 0.950507i \(-0.600565\pi\)
−0.310703 + 0.950507i \(0.600565\pi\)
\(72\) −2.85410 −0.336359
\(73\) 10.3820 1.21512 0.607559 0.794275i \(-0.292149\pi\)
0.607559 + 0.794275i \(0.292149\pi\)
\(74\) −3.70820 −0.431070
\(75\) 2.09017 0.241352
\(76\) −5.85410 −0.671512
\(77\) 0 0
\(78\) 0.472136 0.0534589
\(79\) 13.4164 1.50946 0.754732 0.656033i \(-0.227767\pi\)
0.754732 + 0.656033i \(0.227767\pi\)
\(80\) 3.23607 0.361803
\(81\) 7.70820 0.856467
\(82\) 5.61803 0.620408
\(83\) 9.32624 1.02369 0.511844 0.859079i \(-0.328963\pi\)
0.511844 + 0.859079i \(0.328963\pi\)
\(84\) −0.763932 −0.0833518
\(85\) −2.00000 −0.216930
\(86\) −8.56231 −0.923297
\(87\) 1.70820 0.183139
\(88\) 0 0
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) −9.23607 −0.973567
\(91\) −2.47214 −0.259150
\(92\) 1.23607 0.128869
\(93\) 0.763932 0.0792161
\(94\) −6.47214 −0.667550
\(95\) −18.9443 −1.94364
\(96\) 0.381966 0.0389842
\(97\) 7.14590 0.725556 0.362778 0.931876i \(-0.381828\pi\)
0.362778 + 0.931876i \(0.381828\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 5.47214 0.547214
\(101\) −4.18034 −0.415959 −0.207980 0.978133i \(-0.566689\pi\)
−0.207980 + 0.978133i \(0.566689\pi\)
\(102\) −0.236068 −0.0233742
\(103\) 15.7082 1.54778 0.773888 0.633323i \(-0.218309\pi\)
0.773888 + 0.633323i \(0.218309\pi\)
\(104\) 1.23607 0.121206
\(105\) −2.47214 −0.241256
\(106\) −1.52786 −0.148399
\(107\) −1.14590 −0.110778 −0.0553891 0.998465i \(-0.517640\pi\)
−0.0553891 + 0.998465i \(0.517640\pi\)
\(108\) −2.23607 −0.215166
\(109\) 18.9443 1.81453 0.907266 0.420557i \(-0.138165\pi\)
0.907266 + 0.420557i \(0.138165\pi\)
\(110\) 0 0
\(111\) −1.41641 −0.134439
\(112\) −2.00000 −0.188982
\(113\) −1.85410 −0.174419 −0.0872096 0.996190i \(-0.527795\pi\)
−0.0872096 + 0.996190i \(0.527795\pi\)
\(114\) −2.23607 −0.209427
\(115\) 4.00000 0.373002
\(116\) 4.47214 0.415227
\(117\) −3.52786 −0.326151
\(118\) −8.61803 −0.793354
\(119\) 1.23607 0.113310
\(120\) 1.23607 0.112837
\(121\) 0 0
\(122\) −2.47214 −0.223817
\(123\) 2.14590 0.193489
\(124\) 2.00000 0.179605
\(125\) 1.52786 0.136656
\(126\) 5.70820 0.508527
\(127\) −10.9443 −0.971147 −0.485574 0.874196i \(-0.661389\pi\)
−0.485574 + 0.874196i \(0.661389\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.27051 −0.287952
\(130\) 4.00000 0.350823
\(131\) 6.79837 0.593977 0.296988 0.954881i \(-0.404018\pi\)
0.296988 + 0.954881i \(0.404018\pi\)
\(132\) 0 0
\(133\) 11.7082 1.01523
\(134\) 11.0902 0.958045
\(135\) −7.23607 −0.622782
\(136\) −0.618034 −0.0529960
\(137\) 16.0902 1.37468 0.687338 0.726338i \(-0.258779\pi\)
0.687338 + 0.726338i \(0.258779\pi\)
\(138\) 0.472136 0.0401909
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −6.47214 −0.546995
\(141\) −2.47214 −0.208191
\(142\) −5.23607 −0.439401
\(143\) 0 0
\(144\) −2.85410 −0.237842
\(145\) 14.4721 1.20185
\(146\) 10.3820 0.859218
\(147\) −1.14590 −0.0945121
\(148\) −3.70820 −0.304812
\(149\) −6.18034 −0.506313 −0.253157 0.967425i \(-0.581469\pi\)
−0.253157 + 0.967425i \(0.581469\pi\)
\(150\) 2.09017 0.170662
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −5.85410 −0.474830
\(153\) 1.76393 0.142605
\(154\) 0 0
\(155\) 6.47214 0.519854
\(156\) 0.472136 0.0378011
\(157\) 9.70820 0.774799 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(158\) 13.4164 1.06735
\(159\) −0.583592 −0.0462819
\(160\) 3.23607 0.255834
\(161\) −2.47214 −0.194832
\(162\) 7.70820 0.605614
\(163\) 0.909830 0.0712634 0.0356317 0.999365i \(-0.488656\pi\)
0.0356317 + 0.999365i \(0.488656\pi\)
\(164\) 5.61803 0.438695
\(165\) 0 0
\(166\) 9.32624 0.723856
\(167\) −14.7639 −1.14247 −0.571234 0.820787i \(-0.693535\pi\)
−0.571234 + 0.820787i \(0.693535\pi\)
\(168\) −0.763932 −0.0589386
\(169\) −11.4721 −0.882472
\(170\) −2.00000 −0.153393
\(171\) 16.7082 1.27771
\(172\) −8.56231 −0.652870
\(173\) 21.8885 1.66416 0.832078 0.554659i \(-0.187151\pi\)
0.832078 + 0.554659i \(0.187151\pi\)
\(174\) 1.70820 0.129499
\(175\) −10.9443 −0.827309
\(176\) 0 0
\(177\) −3.29180 −0.247427
\(178\) −8.09017 −0.606384
\(179\) −8.61803 −0.644142 −0.322071 0.946715i \(-0.604379\pi\)
−0.322071 + 0.946715i \(0.604379\pi\)
\(180\) −9.23607 −0.688416
\(181\) −4.18034 −0.310722 −0.155361 0.987858i \(-0.549654\pi\)
−0.155361 + 0.987858i \(0.549654\pi\)
\(182\) −2.47214 −0.183247
\(183\) −0.944272 −0.0698026
\(184\) 1.23607 0.0911241
\(185\) −12.0000 −0.882258
\(186\) 0.763932 0.0560142
\(187\) 0 0
\(188\) −6.47214 −0.472029
\(189\) 4.47214 0.325300
\(190\) −18.9443 −1.37436
\(191\) 4.76393 0.344706 0.172353 0.985035i \(-0.444863\pi\)
0.172353 + 0.985035i \(0.444863\pi\)
\(192\) 0.381966 0.0275660
\(193\) 17.4164 1.25366 0.626830 0.779156i \(-0.284352\pi\)
0.626830 + 0.779156i \(0.284352\pi\)
\(194\) 7.14590 0.513046
\(195\) 1.52786 0.109413
\(196\) −3.00000 −0.214286
\(197\) −20.9443 −1.49222 −0.746109 0.665824i \(-0.768080\pi\)
−0.746109 + 0.665824i \(0.768080\pi\)
\(198\) 0 0
\(199\) −18.9443 −1.34292 −0.671462 0.741039i \(-0.734333\pi\)
−0.671462 + 0.741039i \(0.734333\pi\)
\(200\) 5.47214 0.386938
\(201\) 4.23607 0.298789
\(202\) −4.18034 −0.294128
\(203\) −8.94427 −0.627765
\(204\) −0.236068 −0.0165281
\(205\) 18.1803 1.26977
\(206\) 15.7082 1.09444
\(207\) −3.52786 −0.245204
\(208\) 1.23607 0.0857059
\(209\) 0 0
\(210\) −2.47214 −0.170594
\(211\) −6.09017 −0.419265 −0.209632 0.977780i \(-0.567227\pi\)
−0.209632 + 0.977780i \(0.567227\pi\)
\(212\) −1.52786 −0.104934
\(213\) −2.00000 −0.137038
\(214\) −1.14590 −0.0783320
\(215\) −27.7082 −1.88968
\(216\) −2.23607 −0.152145
\(217\) −4.00000 −0.271538
\(218\) 18.9443 1.28307
\(219\) 3.96556 0.267968
\(220\) 0 0
\(221\) −0.763932 −0.0513876
\(222\) −1.41641 −0.0950631
\(223\) 25.7082 1.72155 0.860774 0.508987i \(-0.169980\pi\)
0.860774 + 0.508987i \(0.169980\pi\)
\(224\) −2.00000 −0.133631
\(225\) −15.6180 −1.04120
\(226\) −1.85410 −0.123333
\(227\) 14.5066 0.962835 0.481418 0.876491i \(-0.340122\pi\)
0.481418 + 0.876491i \(0.340122\pi\)
\(228\) −2.23607 −0.148087
\(229\) 1.70820 0.112881 0.0564406 0.998406i \(-0.482025\pi\)
0.0564406 + 0.998406i \(0.482025\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 4.47214 0.293610
\(233\) −9.61803 −0.630098 −0.315049 0.949075i \(-0.602021\pi\)
−0.315049 + 0.949075i \(0.602021\pi\)
\(234\) −3.52786 −0.230624
\(235\) −20.9443 −1.36625
\(236\) −8.61803 −0.560986
\(237\) 5.12461 0.332879
\(238\) 1.23607 0.0801224
\(239\) −21.7082 −1.40419 −0.702093 0.712085i \(-0.747751\pi\)
−0.702093 + 0.712085i \(0.747751\pi\)
\(240\) 1.23607 0.0797878
\(241\) −11.0902 −0.714381 −0.357190 0.934032i \(-0.616265\pi\)
−0.357190 + 0.934032i \(0.616265\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) −2.47214 −0.158262
\(245\) −9.70820 −0.620234
\(246\) 2.14590 0.136817
\(247\) −7.23607 −0.460420
\(248\) 2.00000 0.127000
\(249\) 3.56231 0.225752
\(250\) 1.52786 0.0966306
\(251\) 20.9443 1.32199 0.660995 0.750390i \(-0.270134\pi\)
0.660995 + 0.750390i \(0.270134\pi\)
\(252\) 5.70820 0.359583
\(253\) 0 0
\(254\) −10.9443 −0.686705
\(255\) −0.763932 −0.0478393
\(256\) 1.00000 0.0625000
\(257\) −5.61803 −0.350443 −0.175222 0.984529i \(-0.556064\pi\)
−0.175222 + 0.984529i \(0.556064\pi\)
\(258\) −3.27051 −0.203613
\(259\) 7.41641 0.460833
\(260\) 4.00000 0.248069
\(261\) −12.7639 −0.790068
\(262\) 6.79837 0.420005
\(263\) −23.2361 −1.43280 −0.716399 0.697691i \(-0.754211\pi\)
−0.716399 + 0.697691i \(0.754211\pi\)
\(264\) 0 0
\(265\) −4.94427 −0.303724
\(266\) 11.7082 0.717876
\(267\) −3.09017 −0.189115
\(268\) 11.0902 0.677440
\(269\) 6.18034 0.376822 0.188411 0.982090i \(-0.439666\pi\)
0.188411 + 0.982090i \(0.439666\pi\)
\(270\) −7.23607 −0.440373
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −0.618034 −0.0374738
\(273\) −0.944272 −0.0571499
\(274\) 16.0902 0.972043
\(275\) 0 0
\(276\) 0.472136 0.0284192
\(277\) −23.7082 −1.42449 −0.712244 0.701932i \(-0.752321\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(278\) 0 0
\(279\) −5.70820 −0.341741
\(280\) −6.47214 −0.386784
\(281\) −16.0902 −0.959859 −0.479930 0.877307i \(-0.659338\pi\)
−0.479930 + 0.877307i \(0.659338\pi\)
\(282\) −2.47214 −0.147214
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) −5.23607 −0.310703
\(285\) −7.23607 −0.428628
\(286\) 0 0
\(287\) −11.2361 −0.663244
\(288\) −2.85410 −0.168180
\(289\) −16.6180 −0.977531
\(290\) 14.4721 0.849833
\(291\) 2.72949 0.160006
\(292\) 10.3820 0.607559
\(293\) −28.3607 −1.65685 −0.828424 0.560101i \(-0.810762\pi\)
−0.828424 + 0.560101i \(0.810762\pi\)
\(294\) −1.14590 −0.0668301
\(295\) −27.8885 −1.62373
\(296\) −3.70820 −0.215535
\(297\) 0 0
\(298\) −6.18034 −0.358017
\(299\) 1.52786 0.0883587
\(300\) 2.09017 0.120676
\(301\) 17.1246 0.987046
\(302\) −8.00000 −0.460348
\(303\) −1.59675 −0.0917308
\(304\) −5.85410 −0.335756
\(305\) −8.00000 −0.458079
\(306\) 1.76393 0.100837
\(307\) 27.7984 1.58654 0.793268 0.608872i \(-0.208378\pi\)
0.793268 + 0.608872i \(0.208378\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 6.47214 0.367593
\(311\) 26.0689 1.47823 0.739115 0.673579i \(-0.235244\pi\)
0.739115 + 0.673579i \(0.235244\pi\)
\(312\) 0.472136 0.0267294
\(313\) 4.32624 0.244533 0.122267 0.992497i \(-0.460984\pi\)
0.122267 + 0.992497i \(0.460984\pi\)
\(314\) 9.70820 0.547866
\(315\) 18.4721 1.04079
\(316\) 13.4164 0.754732
\(317\) −3.70820 −0.208273 −0.104137 0.994563i \(-0.533208\pi\)
−0.104137 + 0.994563i \(0.533208\pi\)
\(318\) −0.583592 −0.0327262
\(319\) 0 0
\(320\) 3.23607 0.180902
\(321\) −0.437694 −0.0244297
\(322\) −2.47214 −0.137767
\(323\) 3.61803 0.201313
\(324\) 7.70820 0.428234
\(325\) 6.76393 0.375195
\(326\) 0.909830 0.0503908
\(327\) 7.23607 0.400155
\(328\) 5.61803 0.310204
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) 6.27051 0.344658 0.172329 0.985039i \(-0.444871\pi\)
0.172329 + 0.985039i \(0.444871\pi\)
\(332\) 9.32624 0.511844
\(333\) 10.5836 0.579977
\(334\) −14.7639 −0.807846
\(335\) 35.8885 1.96080
\(336\) −0.763932 −0.0416759
\(337\) −26.7984 −1.45980 −0.729900 0.683554i \(-0.760433\pi\)
−0.729900 + 0.683554i \(0.760433\pi\)
\(338\) −11.4721 −0.624002
\(339\) −0.708204 −0.0384644
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 16.7082 0.903476
\(343\) 20.0000 1.07990
\(344\) −8.56231 −0.461649
\(345\) 1.52786 0.0822574
\(346\) 21.8885 1.17674
\(347\) 16.6180 0.892103 0.446051 0.895007i \(-0.352830\pi\)
0.446051 + 0.895007i \(0.352830\pi\)
\(348\) 1.70820 0.0915693
\(349\) −19.5967 −1.04899 −0.524495 0.851414i \(-0.675746\pi\)
−0.524495 + 0.851414i \(0.675746\pi\)
\(350\) −10.9443 −0.584996
\(351\) −2.76393 −0.147528
\(352\) 0 0
\(353\) 32.6180 1.73608 0.868041 0.496492i \(-0.165379\pi\)
0.868041 + 0.496492i \(0.165379\pi\)
\(354\) −3.29180 −0.174957
\(355\) −16.9443 −0.899309
\(356\) −8.09017 −0.428778
\(357\) 0.472136 0.0249881
\(358\) −8.61803 −0.455477
\(359\) 5.12461 0.270467 0.135233 0.990814i \(-0.456822\pi\)
0.135233 + 0.990814i \(0.456822\pi\)
\(360\) −9.23607 −0.486784
\(361\) 15.2705 0.803711
\(362\) −4.18034 −0.219714
\(363\) 0 0
\(364\) −2.47214 −0.129575
\(365\) 33.5967 1.75853
\(366\) −0.944272 −0.0493579
\(367\) 19.7082 1.02876 0.514380 0.857562i \(-0.328022\pi\)
0.514380 + 0.857562i \(0.328022\pi\)
\(368\) 1.23607 0.0644345
\(369\) −16.0344 −0.834720
\(370\) −12.0000 −0.623850
\(371\) 3.05573 0.158645
\(372\) 0.763932 0.0396080
\(373\) −4.29180 −0.222221 −0.111110 0.993808i \(-0.535441\pi\)
−0.111110 + 0.993808i \(0.535441\pi\)
\(374\) 0 0
\(375\) 0.583592 0.0301366
\(376\) −6.47214 −0.333775
\(377\) 5.52786 0.284699
\(378\) 4.47214 0.230022
\(379\) 14.2705 0.733027 0.366513 0.930413i \(-0.380551\pi\)
0.366513 + 0.930413i \(0.380551\pi\)
\(380\) −18.9443 −0.971821
\(381\) −4.18034 −0.214165
\(382\) 4.76393 0.243744
\(383\) −28.3607 −1.44916 −0.724582 0.689189i \(-0.757967\pi\)
−0.724582 + 0.689189i \(0.757967\pi\)
\(384\) 0.381966 0.0194921
\(385\) 0 0
\(386\) 17.4164 0.886472
\(387\) 24.4377 1.24224
\(388\) 7.14590 0.362778
\(389\) −10.6525 −0.540102 −0.270051 0.962846i \(-0.587041\pi\)
−0.270051 + 0.962846i \(0.587041\pi\)
\(390\) 1.52786 0.0773664
\(391\) −0.763932 −0.0386337
\(392\) −3.00000 −0.151523
\(393\) 2.59675 0.130989
\(394\) −20.9443 −1.05516
\(395\) 43.4164 2.18452
\(396\) 0 0
\(397\) −17.1246 −0.859460 −0.429730 0.902958i \(-0.641391\pi\)
−0.429730 + 0.902958i \(0.641391\pi\)
\(398\) −18.9443 −0.949591
\(399\) 4.47214 0.223887
\(400\) 5.47214 0.273607
\(401\) −17.7984 −0.888808 −0.444404 0.895826i \(-0.646585\pi\)
−0.444404 + 0.895826i \(0.646585\pi\)
\(402\) 4.23607 0.211276
\(403\) 2.47214 0.123146
\(404\) −4.18034 −0.207980
\(405\) 24.9443 1.23949
\(406\) −8.94427 −0.443897
\(407\) 0 0
\(408\) −0.236068 −0.0116871
\(409\) −13.4164 −0.663399 −0.331699 0.943385i \(-0.607622\pi\)
−0.331699 + 0.943385i \(0.607622\pi\)
\(410\) 18.1803 0.897863
\(411\) 6.14590 0.303155
\(412\) 15.7082 0.773888
\(413\) 17.2361 0.848131
\(414\) −3.52786 −0.173385
\(415\) 30.1803 1.48149
\(416\) 1.23607 0.0606032
\(417\) 0 0
\(418\) 0 0
\(419\) −10.8541 −0.530258 −0.265129 0.964213i \(-0.585414\pi\)
−0.265129 + 0.964213i \(0.585414\pi\)
\(420\) −2.47214 −0.120628
\(421\) −31.4164 −1.53114 −0.765571 0.643351i \(-0.777543\pi\)
−0.765571 + 0.643351i \(0.777543\pi\)
\(422\) −6.09017 −0.296465
\(423\) 18.4721 0.898146
\(424\) −1.52786 −0.0741996
\(425\) −3.38197 −0.164049
\(426\) −2.00000 −0.0969003
\(427\) 4.94427 0.239270
\(428\) −1.14590 −0.0553891
\(429\) 0 0
\(430\) −27.7082 −1.33621
\(431\) −16.9443 −0.816177 −0.408088 0.912942i \(-0.633804\pi\)
−0.408088 + 0.912942i \(0.633804\pi\)
\(432\) −2.23607 −0.107583
\(433\) 27.7426 1.33323 0.666613 0.745404i \(-0.267743\pi\)
0.666613 + 0.745404i \(0.267743\pi\)
\(434\) −4.00000 −0.192006
\(435\) 5.52786 0.265041
\(436\) 18.9443 0.907266
\(437\) −7.23607 −0.346148
\(438\) 3.96556 0.189482
\(439\) −6.58359 −0.314218 −0.157109 0.987581i \(-0.550217\pi\)
−0.157109 + 0.987581i \(0.550217\pi\)
\(440\) 0 0
\(441\) 8.56231 0.407729
\(442\) −0.763932 −0.0363365
\(443\) −8.56231 −0.406807 −0.203404 0.979095i \(-0.565200\pi\)
−0.203404 + 0.979095i \(0.565200\pi\)
\(444\) −1.41641 −0.0672197
\(445\) −26.1803 −1.24107
\(446\) 25.7082 1.21732
\(447\) −2.36068 −0.111656
\(448\) −2.00000 −0.0944911
\(449\) 9.27051 0.437502 0.218751 0.975781i \(-0.429802\pi\)
0.218751 + 0.975781i \(0.429802\pi\)
\(450\) −15.6180 −0.736241
\(451\) 0 0
\(452\) −1.85410 −0.0872096
\(453\) −3.05573 −0.143571
\(454\) 14.5066 0.680827
\(455\) −8.00000 −0.375046
\(456\) −2.23607 −0.104713
\(457\) −9.43769 −0.441477 −0.220738 0.975333i \(-0.570847\pi\)
−0.220738 + 0.975333i \(0.570847\pi\)
\(458\) 1.70820 0.0798191
\(459\) 1.38197 0.0645046
\(460\) 4.00000 0.186501
\(461\) 1.34752 0.0627605 0.0313802 0.999508i \(-0.490010\pi\)
0.0313802 + 0.999508i \(0.490010\pi\)
\(462\) 0 0
\(463\) −19.4164 −0.902357 −0.451178 0.892434i \(-0.648996\pi\)
−0.451178 + 0.892434i \(0.648996\pi\)
\(464\) 4.47214 0.207614
\(465\) 2.47214 0.114643
\(466\) −9.61803 −0.445547
\(467\) −33.3050 −1.54117 −0.770585 0.637338i \(-0.780036\pi\)
−0.770585 + 0.637338i \(0.780036\pi\)
\(468\) −3.52786 −0.163076
\(469\) −22.1803 −1.02419
\(470\) −20.9443 −0.966087
\(471\) 3.70820 0.170865
\(472\) −8.61803 −0.396677
\(473\) 0 0
\(474\) 5.12461 0.235381
\(475\) −32.0344 −1.46984
\(476\) 1.23607 0.0566551
\(477\) 4.36068 0.199662
\(478\) −21.7082 −0.992910
\(479\) −34.4721 −1.57507 −0.787536 0.616269i \(-0.788644\pi\)
−0.787536 + 0.616269i \(0.788644\pi\)
\(480\) 1.23607 0.0564185
\(481\) −4.58359 −0.208994
\(482\) −11.0902 −0.505143
\(483\) −0.944272 −0.0429659
\(484\) 0 0
\(485\) 23.1246 1.05003
\(486\) 9.65248 0.437845
\(487\) −1.34752 −0.0610621 −0.0305311 0.999534i \(-0.509720\pi\)
−0.0305311 + 0.999534i \(0.509720\pi\)
\(488\) −2.47214 −0.111908
\(489\) 0.347524 0.0157156
\(490\) −9.70820 −0.438572
\(491\) 22.8541 1.03139 0.515696 0.856772i \(-0.327534\pi\)
0.515696 + 0.856772i \(0.327534\pi\)
\(492\) 2.14590 0.0967446
\(493\) −2.76393 −0.124481
\(494\) −7.23607 −0.325566
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 10.4721 0.469739
\(498\) 3.56231 0.159631
\(499\) −30.8541 −1.38122 −0.690610 0.723228i \(-0.742658\pi\)
−0.690610 + 0.723228i \(0.742658\pi\)
\(500\) 1.52786 0.0683282
\(501\) −5.63932 −0.251946
\(502\) 20.9443 0.934789
\(503\) −3.23607 −0.144289 −0.0721446 0.997394i \(-0.522984\pi\)
−0.0721446 + 0.997394i \(0.522984\pi\)
\(504\) 5.70820 0.254264
\(505\) −13.5279 −0.601982
\(506\) 0 0
\(507\) −4.38197 −0.194610
\(508\) −10.9443 −0.485574
\(509\) −8.29180 −0.367527 −0.183764 0.982970i \(-0.558828\pi\)
−0.183764 + 0.982970i \(0.558828\pi\)
\(510\) −0.763932 −0.0338275
\(511\) −20.7639 −0.918542
\(512\) 1.00000 0.0441942
\(513\) 13.0902 0.577945
\(514\) −5.61803 −0.247801
\(515\) 50.8328 2.23996
\(516\) −3.27051 −0.143976
\(517\) 0 0
\(518\) 7.41641 0.325858
\(519\) 8.36068 0.366993
\(520\) 4.00000 0.175412
\(521\) −20.0344 −0.877725 −0.438862 0.898554i \(-0.644618\pi\)
−0.438862 + 0.898554i \(0.644618\pi\)
\(522\) −12.7639 −0.558662
\(523\) 9.20163 0.402359 0.201180 0.979554i \(-0.435523\pi\)
0.201180 + 0.979554i \(0.435523\pi\)
\(524\) 6.79837 0.296988
\(525\) −4.18034 −0.182445
\(526\) −23.2361 −1.01314
\(527\) −1.23607 −0.0538440
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) −4.94427 −0.214765
\(531\) 24.5967 1.06741
\(532\) 11.7082 0.507615
\(533\) 6.94427 0.300790
\(534\) −3.09017 −0.133725
\(535\) −3.70820 −0.160320
\(536\) 11.0902 0.479022
\(537\) −3.29180 −0.142051
\(538\) 6.18034 0.266453
\(539\) 0 0
\(540\) −7.23607 −0.311391
\(541\) −3.12461 −0.134338 −0.0671688 0.997742i \(-0.521397\pi\)
−0.0671688 + 0.997742i \(0.521397\pi\)
\(542\) 2.00000 0.0859074
\(543\) −1.59675 −0.0685230
\(544\) −0.618034 −0.0264980
\(545\) 61.3050 2.62602
\(546\) −0.944272 −0.0404111
\(547\) 8.32624 0.356004 0.178002 0.984030i \(-0.443037\pi\)
0.178002 + 0.984030i \(0.443037\pi\)
\(548\) 16.0902 0.687338
\(549\) 7.05573 0.301131
\(550\) 0 0
\(551\) −26.1803 −1.11532
\(552\) 0.472136 0.0200954
\(553\) −26.8328 −1.14105
\(554\) −23.7082 −1.00727
\(555\) −4.58359 −0.194563
\(556\) 0 0
\(557\) 35.2361 1.49300 0.746500 0.665385i \(-0.231733\pi\)
0.746500 + 0.665385i \(0.231733\pi\)
\(558\) −5.70820 −0.241648
\(559\) −10.5836 −0.447638
\(560\) −6.47214 −0.273498
\(561\) 0 0
\(562\) −16.0902 −0.678723
\(563\) 0.381966 0.0160979 0.00804897 0.999968i \(-0.497438\pi\)
0.00804897 + 0.999968i \(0.497438\pi\)
\(564\) −2.47214 −0.104096
\(565\) −6.00000 −0.252422
\(566\) 24.0000 1.00880
\(567\) −15.4164 −0.647428
\(568\) −5.23607 −0.219701
\(569\) 38.2148 1.60205 0.801023 0.598633i \(-0.204289\pi\)
0.801023 + 0.598633i \(0.204289\pi\)
\(570\) −7.23607 −0.303086
\(571\) −2.47214 −0.103456 −0.0517278 0.998661i \(-0.516473\pi\)
−0.0517278 + 0.998661i \(0.516473\pi\)
\(572\) 0 0
\(573\) 1.81966 0.0760174
\(574\) −11.2361 −0.468984
\(575\) 6.76393 0.282075
\(576\) −2.85410 −0.118921
\(577\) −6.79837 −0.283020 −0.141510 0.989937i \(-0.545196\pi\)
−0.141510 + 0.989937i \(0.545196\pi\)
\(578\) −16.6180 −0.691219
\(579\) 6.65248 0.276467
\(580\) 14.4721 0.600923
\(581\) −18.6525 −0.773835
\(582\) 2.72949 0.113141
\(583\) 0 0
\(584\) 10.3820 0.429609
\(585\) −11.4164 −0.472010
\(586\) −28.3607 −1.17157
\(587\) 22.1459 0.914059 0.457030 0.889452i \(-0.348913\pi\)
0.457030 + 0.889452i \(0.348913\pi\)
\(588\) −1.14590 −0.0472560
\(589\) −11.7082 −0.482428
\(590\) −27.8885 −1.14815
\(591\) −8.00000 −0.329076
\(592\) −3.70820 −0.152406
\(593\) −28.6869 −1.17803 −0.589015 0.808122i \(-0.700484\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) −6.18034 −0.253157
\(597\) −7.23607 −0.296153
\(598\) 1.52786 0.0624790
\(599\) −13.4164 −0.548180 −0.274090 0.961704i \(-0.588377\pi\)
−0.274090 + 0.961704i \(0.588377\pi\)
\(600\) 2.09017 0.0853308
\(601\) −27.1459 −1.10730 −0.553652 0.832748i \(-0.686766\pi\)
−0.553652 + 0.832748i \(0.686766\pi\)
\(602\) 17.1246 0.697947
\(603\) −31.6525 −1.28899
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) −1.59675 −0.0648634
\(607\) 23.1246 0.938599 0.469300 0.883039i \(-0.344506\pi\)
0.469300 + 0.883039i \(0.344506\pi\)
\(608\) −5.85410 −0.237415
\(609\) −3.41641 −0.138440
\(610\) −8.00000 −0.323911
\(611\) −8.00000 −0.323645
\(612\) 1.76393 0.0713027
\(613\) 35.7082 1.44224 0.721120 0.692810i \(-0.243627\pi\)
0.721120 + 0.692810i \(0.243627\pi\)
\(614\) 27.7984 1.12185
\(615\) 6.94427 0.280020
\(616\) 0 0
\(617\) 23.4508 0.944096 0.472048 0.881573i \(-0.343515\pi\)
0.472048 + 0.881573i \(0.343515\pi\)
\(618\) 6.00000 0.241355
\(619\) 5.20163 0.209071 0.104536 0.994521i \(-0.466664\pi\)
0.104536 + 0.994521i \(0.466664\pi\)
\(620\) 6.47214 0.259927
\(621\) −2.76393 −0.110913
\(622\) 26.0689 1.04527
\(623\) 16.1803 0.648252
\(624\) 0.472136 0.0189006
\(625\) −22.4164 −0.896656
\(626\) 4.32624 0.172911
\(627\) 0 0
\(628\) 9.70820 0.387400
\(629\) 2.29180 0.0913799
\(630\) 18.4721 0.735948
\(631\) 23.7082 0.943809 0.471904 0.881650i \(-0.343567\pi\)
0.471904 + 0.881650i \(0.343567\pi\)
\(632\) 13.4164 0.533676
\(633\) −2.32624 −0.0924597
\(634\) −3.70820 −0.147272
\(635\) −35.4164 −1.40546
\(636\) −0.583592 −0.0231409
\(637\) −3.70820 −0.146924
\(638\) 0 0
\(639\) 14.9443 0.591186
\(640\) 3.23607 0.127917
\(641\) 16.6738 0.658574 0.329287 0.944230i \(-0.393192\pi\)
0.329287 + 0.944230i \(0.393192\pi\)
\(642\) −0.437694 −0.0172744
\(643\) 39.9787 1.57661 0.788303 0.615287i \(-0.210960\pi\)
0.788303 + 0.615287i \(0.210960\pi\)
\(644\) −2.47214 −0.0974158
\(645\) −10.5836 −0.416729
\(646\) 3.61803 0.142350
\(647\) 29.0557 1.14230 0.571149 0.820846i \(-0.306498\pi\)
0.571149 + 0.820846i \(0.306498\pi\)
\(648\) 7.70820 0.302807
\(649\) 0 0
\(650\) 6.76393 0.265303
\(651\) −1.52786 −0.0598817
\(652\) 0.909830 0.0356317
\(653\) −15.3475 −0.600595 −0.300298 0.953846i \(-0.597086\pi\)
−0.300298 + 0.953846i \(0.597086\pi\)
\(654\) 7.23607 0.282953
\(655\) 22.0000 0.859611
\(656\) 5.61803 0.219347
\(657\) −29.6312 −1.15602
\(658\) 12.9443 0.504620
\(659\) −16.9098 −0.658713 −0.329357 0.944206i \(-0.606832\pi\)
−0.329357 + 0.944206i \(0.606832\pi\)
\(660\) 0 0
\(661\) −3.52786 −0.137218 −0.0686090 0.997644i \(-0.521856\pi\)
−0.0686090 + 0.997644i \(0.521856\pi\)
\(662\) 6.27051 0.243710
\(663\) −0.291796 −0.0113324
\(664\) 9.32624 0.361928
\(665\) 37.8885 1.46925
\(666\) 10.5836 0.410106
\(667\) 5.52786 0.214040
\(668\) −14.7639 −0.571234
\(669\) 9.81966 0.379650
\(670\) 35.8885 1.38650
\(671\) 0 0
\(672\) −0.763932 −0.0294693
\(673\) 9.85410 0.379848 0.189924 0.981799i \(-0.439176\pi\)
0.189924 + 0.981799i \(0.439176\pi\)
\(674\) −26.7984 −1.03223
\(675\) −12.2361 −0.470966
\(676\) −11.4721 −0.441236
\(677\) −14.3607 −0.551926 −0.275963 0.961168i \(-0.588997\pi\)
−0.275963 + 0.961168i \(0.588997\pi\)
\(678\) −0.708204 −0.0271984
\(679\) −14.2918 −0.548469
\(680\) −2.00000 −0.0766965
\(681\) 5.54102 0.212332
\(682\) 0 0
\(683\) 18.4721 0.706817 0.353408 0.935469i \(-0.385023\pi\)
0.353408 + 0.935469i \(0.385023\pi\)
\(684\) 16.7082 0.638854
\(685\) 52.0689 1.98945
\(686\) 20.0000 0.763604
\(687\) 0.652476 0.0248935
\(688\) −8.56231 −0.326435
\(689\) −1.88854 −0.0719478
\(690\) 1.52786 0.0581648
\(691\) −26.2148 −0.997257 −0.498629 0.866816i \(-0.666163\pi\)
−0.498629 + 0.866816i \(0.666163\pi\)
\(692\) 21.8885 0.832078
\(693\) 0 0
\(694\) 16.6180 0.630812
\(695\) 0 0
\(696\) 1.70820 0.0647493
\(697\) −3.47214 −0.131517
\(698\) −19.5967 −0.741748
\(699\) −3.67376 −0.138954
\(700\) −10.9443 −0.413655
\(701\) −14.8328 −0.560228 −0.280114 0.959967i \(-0.590372\pi\)
−0.280114 + 0.959967i \(0.590372\pi\)
\(702\) −2.76393 −0.104318
\(703\) 21.7082 0.818740
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 32.6180 1.22760
\(707\) 8.36068 0.314436
\(708\) −3.29180 −0.123713
\(709\) 24.4721 0.919070 0.459535 0.888160i \(-0.348016\pi\)
0.459535 + 0.888160i \(0.348016\pi\)
\(710\) −16.9443 −0.635907
\(711\) −38.2918 −1.43605
\(712\) −8.09017 −0.303192
\(713\) 2.47214 0.0925822
\(714\) 0.472136 0.0176692
\(715\) 0 0
\(716\) −8.61803 −0.322071
\(717\) −8.29180 −0.309663
\(718\) 5.12461 0.191249
\(719\) 26.8328 1.00070 0.500348 0.865825i \(-0.333206\pi\)
0.500348 + 0.865825i \(0.333206\pi\)
\(720\) −9.23607 −0.344208
\(721\) −31.4164 −1.17001
\(722\) 15.2705 0.568310
\(723\) −4.23607 −0.157541
\(724\) −4.18034 −0.155361
\(725\) 24.4721 0.908872
\(726\) 0 0
\(727\) 2.87539 0.106642 0.0533211 0.998577i \(-0.483019\pi\)
0.0533211 + 0.998577i \(0.483019\pi\)
\(728\) −2.47214 −0.0916235
\(729\) −19.4377 −0.719915
\(730\) 33.5967 1.24347
\(731\) 5.29180 0.195724
\(732\) −0.944272 −0.0349013
\(733\) −9.41641 −0.347803 −0.173901 0.984763i \(-0.555637\pi\)
−0.173901 + 0.984763i \(0.555637\pi\)
\(734\) 19.7082 0.727443
\(735\) −3.70820 −0.136779
\(736\) 1.23607 0.0455621
\(737\) 0 0
\(738\) −16.0344 −0.590236
\(739\) −37.5623 −1.38175 −0.690876 0.722973i \(-0.742775\pi\)
−0.690876 + 0.722973i \(0.742775\pi\)
\(740\) −12.0000 −0.441129
\(741\) −2.76393 −0.101536
\(742\) 3.05573 0.112179
\(743\) −8.76393 −0.321517 −0.160759 0.986994i \(-0.551394\pi\)
−0.160759 + 0.986994i \(0.551394\pi\)
\(744\) 0.763932 0.0280071
\(745\) −20.0000 −0.732743
\(746\) −4.29180 −0.157134
\(747\) −26.6180 −0.973903
\(748\) 0 0
\(749\) 2.29180 0.0837404
\(750\) 0.583592 0.0213098
\(751\) −33.7771 −1.23254 −0.616272 0.787534i \(-0.711358\pi\)
−0.616272 + 0.787534i \(0.711358\pi\)
\(752\) −6.47214 −0.236015
\(753\) 8.00000 0.291536
\(754\) 5.52786 0.201313
\(755\) −25.8885 −0.942181
\(756\) 4.47214 0.162650
\(757\) −2.65248 −0.0964059 −0.0482029 0.998838i \(-0.515349\pi\)
−0.0482029 + 0.998838i \(0.515349\pi\)
\(758\) 14.2705 0.518328
\(759\) 0 0
\(760\) −18.9443 −0.687181
\(761\) −4.25735 −0.154329 −0.0771645 0.997018i \(-0.524587\pi\)
−0.0771645 + 0.997018i \(0.524587\pi\)
\(762\) −4.18034 −0.151438
\(763\) −37.8885 −1.37166
\(764\) 4.76393 0.172353
\(765\) 5.70820 0.206381
\(766\) −28.3607 −1.02471
\(767\) −10.6525 −0.384639
\(768\) 0.381966 0.0137830
\(769\) 13.4164 0.483808 0.241904 0.970300i \(-0.422228\pi\)
0.241904 + 0.970300i \(0.422228\pi\)
\(770\) 0 0
\(771\) −2.14590 −0.0772826
\(772\) 17.4164 0.626830
\(773\) −3.88854 −0.139861 −0.0699306 0.997552i \(-0.522278\pi\)
−0.0699306 + 0.997552i \(0.522278\pi\)
\(774\) 24.4377 0.878395
\(775\) 10.9443 0.393130
\(776\) 7.14590 0.256523
\(777\) 2.83282 0.101627
\(778\) −10.6525 −0.381910
\(779\) −32.8885 −1.17835
\(780\) 1.52786 0.0547063
\(781\) 0 0
\(782\) −0.763932 −0.0273182
\(783\) −10.0000 −0.357371
\(784\) −3.00000 −0.107143
\(785\) 31.4164 1.12130
\(786\) 2.59675 0.0926229
\(787\) 26.2148 0.934456 0.467228 0.884137i \(-0.345253\pi\)
0.467228 + 0.884137i \(0.345253\pi\)
\(788\) −20.9443 −0.746109
\(789\) −8.87539 −0.315972
\(790\) 43.4164 1.54469
\(791\) 3.70820 0.131849
\(792\) 0 0
\(793\) −3.05573 −0.108512
\(794\) −17.1246 −0.607730
\(795\) −1.88854 −0.0669797
\(796\) −18.9443 −0.671462
\(797\) −24.7639 −0.877183 −0.438592 0.898686i \(-0.644523\pi\)
−0.438592 + 0.898686i \(0.644523\pi\)
\(798\) 4.47214 0.158312
\(799\) 4.00000 0.141510
\(800\) 5.47214 0.193469
\(801\) 23.0902 0.815851
\(802\) −17.7984 −0.628482
\(803\) 0 0
\(804\) 4.23607 0.149395
\(805\) −8.00000 −0.281963
\(806\) 2.47214 0.0870773
\(807\) 2.36068 0.0830999
\(808\) −4.18034 −0.147064
\(809\) 16.9098 0.594518 0.297259 0.954797i \(-0.403928\pi\)
0.297259 + 0.954797i \(0.403928\pi\)
\(810\) 24.9443 0.876452
\(811\) 8.38197 0.294331 0.147165 0.989112i \(-0.452985\pi\)
0.147165 + 0.989112i \(0.452985\pi\)
\(812\) −8.94427 −0.313882
\(813\) 0.763932 0.0267923
\(814\) 0 0
\(815\) 2.94427 0.103133
\(816\) −0.236068 −0.00826403
\(817\) 50.1246 1.75364
\(818\) −13.4164 −0.469094
\(819\) 7.05573 0.246547
\(820\) 18.1803 0.634885
\(821\) 30.5410 1.06589 0.532944 0.846150i \(-0.321085\pi\)
0.532944 + 0.846150i \(0.321085\pi\)
\(822\) 6.14590 0.214363
\(823\) 23.5967 0.822531 0.411265 0.911516i \(-0.365087\pi\)
0.411265 + 0.911516i \(0.365087\pi\)
\(824\) 15.7082 0.547221
\(825\) 0 0
\(826\) 17.2361 0.599720
\(827\) 39.3820 1.36945 0.684723 0.728804i \(-0.259923\pi\)
0.684723 + 0.728804i \(0.259923\pi\)
\(828\) −3.52786 −0.122602
\(829\) 31.0557 1.07861 0.539305 0.842111i \(-0.318687\pi\)
0.539305 + 0.842111i \(0.318687\pi\)
\(830\) 30.1803 1.04757
\(831\) −9.05573 −0.314140
\(832\) 1.23607 0.0428529
\(833\) 1.85410 0.0642408
\(834\) 0 0
\(835\) −47.7771 −1.65339
\(836\) 0 0
\(837\) −4.47214 −0.154580
\(838\) −10.8541 −0.374949
\(839\) 12.1115 0.418134 0.209067 0.977901i \(-0.432957\pi\)
0.209067 + 0.977901i \(0.432957\pi\)
\(840\) −2.47214 −0.0852968
\(841\) −9.00000 −0.310345
\(842\) −31.4164 −1.08268
\(843\) −6.14590 −0.211676
\(844\) −6.09017 −0.209632
\(845\) −37.1246 −1.27713
\(846\) 18.4721 0.635085
\(847\) 0 0
\(848\) −1.52786 −0.0524671
\(849\) 9.16718 0.314617
\(850\) −3.38197 −0.116000
\(851\) −4.58359 −0.157124
\(852\) −2.00000 −0.0685189
\(853\) −30.4721 −1.04335 −0.521673 0.853146i \(-0.674692\pi\)
−0.521673 + 0.853146i \(0.674692\pi\)
\(854\) 4.94427 0.169190
\(855\) 54.0689 1.84912
\(856\) −1.14590 −0.0391660
\(857\) −10.7426 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(858\) 0 0
\(859\) 46.5066 1.58678 0.793392 0.608711i \(-0.208313\pi\)
0.793392 + 0.608711i \(0.208313\pi\)
\(860\) −27.7082 −0.944842
\(861\) −4.29180 −0.146264
\(862\) −16.9443 −0.577124
\(863\) −33.2361 −1.13137 −0.565684 0.824622i \(-0.691388\pi\)
−0.565684 + 0.824622i \(0.691388\pi\)
\(864\) −2.23607 −0.0760726
\(865\) 70.8328 2.40839
\(866\) 27.7426 0.942733
\(867\) −6.34752 −0.215573
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 5.52786 0.187412
\(871\) 13.7082 0.464485
\(872\) 18.9443 0.641534
\(873\) −20.3951 −0.690270
\(874\) −7.23607 −0.244764
\(875\) −3.05573 −0.103302
\(876\) 3.96556 0.133984
\(877\) −28.1803 −0.951582 −0.475791 0.879558i \(-0.657838\pi\)
−0.475791 + 0.879558i \(0.657838\pi\)
\(878\) −6.58359 −0.222185
\(879\) −10.8328 −0.365382
\(880\) 0 0
\(881\) −46.3394 −1.56121 −0.780607 0.625022i \(-0.785090\pi\)
−0.780607 + 0.625022i \(0.785090\pi\)
\(882\) 8.56231 0.288308
\(883\) −3.43769 −0.115688 −0.0578438 0.998326i \(-0.518423\pi\)
−0.0578438 + 0.998326i \(0.518423\pi\)
\(884\) −0.763932 −0.0256938
\(885\) −10.6525 −0.358079
\(886\) −8.56231 −0.287656
\(887\) −37.7771 −1.26843 −0.634215 0.773157i \(-0.718677\pi\)
−0.634215 + 0.773157i \(0.718677\pi\)
\(888\) −1.41641 −0.0475315
\(889\) 21.8885 0.734118
\(890\) −26.1803 −0.877567
\(891\) 0 0
\(892\) 25.7082 0.860774
\(893\) 37.8885 1.26789
\(894\) −2.36068 −0.0789529
\(895\) −27.8885 −0.932211
\(896\) −2.00000 −0.0668153
\(897\) 0.583592 0.0194856
\(898\) 9.27051 0.309361
\(899\) 8.94427 0.298308
\(900\) −15.6180 −0.520601
\(901\) 0.944272 0.0314583
\(902\) 0 0
\(903\) 6.54102 0.217672
\(904\) −1.85410 −0.0616665
\(905\) −13.5279 −0.449681
\(906\) −3.05573 −0.101520
\(907\) 10.4377 0.346578 0.173289 0.984871i \(-0.444561\pi\)
0.173289 + 0.984871i \(0.444561\pi\)
\(908\) 14.5066 0.481418
\(909\) 11.9311 0.395730
\(910\) −8.00000 −0.265197
\(911\) 18.1803 0.602342 0.301171 0.953570i \(-0.402623\pi\)
0.301171 + 0.953570i \(0.402623\pi\)
\(912\) −2.23607 −0.0740436
\(913\) 0 0
\(914\) −9.43769 −0.312171
\(915\) −3.05573 −0.101019
\(916\) 1.70820 0.0564406
\(917\) −13.5967 −0.449004
\(918\) 1.38197 0.0456117
\(919\) 43.4164 1.43218 0.716088 0.698010i \(-0.245931\pi\)
0.716088 + 0.698010i \(0.245931\pi\)
\(920\) 4.00000 0.131876
\(921\) 10.6180 0.349876
\(922\) 1.34752 0.0443783
\(923\) −6.47214 −0.213033
\(924\) 0 0
\(925\) −20.2918 −0.667190
\(926\) −19.4164 −0.638063
\(927\) −44.8328 −1.47250
\(928\) 4.47214 0.146805
\(929\) −16.2574 −0.533386 −0.266693 0.963781i \(-0.585931\pi\)
−0.266693 + 0.963781i \(0.585931\pi\)
\(930\) 2.47214 0.0810645
\(931\) 17.5623 0.575581
\(932\) −9.61803 −0.315049
\(933\) 9.95743 0.325992
\(934\) −33.3050 −1.08977
\(935\) 0 0
\(936\) −3.52786 −0.115312
\(937\) −37.8541 −1.23664 −0.618320 0.785927i \(-0.712186\pi\)
−0.618320 + 0.785927i \(0.712186\pi\)
\(938\) −22.1803 −0.724214
\(939\) 1.65248 0.0539265
\(940\) −20.9443 −0.683127
\(941\) 48.1803 1.57063 0.785317 0.619094i \(-0.212500\pi\)
0.785317 + 0.619094i \(0.212500\pi\)
\(942\) 3.70820 0.120820
\(943\) 6.94427 0.226137
\(944\) −8.61803 −0.280493
\(945\) 14.4721 0.470779
\(946\) 0 0
\(947\) −30.2148 −0.981848 −0.490924 0.871202i \(-0.663341\pi\)
−0.490924 + 0.871202i \(0.663341\pi\)
\(948\) 5.12461 0.166440
\(949\) 12.8328 0.416571
\(950\) −32.0344 −1.03933
\(951\) −1.41641 −0.0459302
\(952\) 1.23607 0.0400612
\(953\) −11.3262 −0.366893 −0.183446 0.983030i \(-0.558725\pi\)
−0.183446 + 0.983030i \(0.558725\pi\)
\(954\) 4.36068 0.141182
\(955\) 15.4164 0.498863
\(956\) −21.7082 −0.702093
\(957\) 0 0
\(958\) −34.4721 −1.11374
\(959\) −32.1803 −1.03916
\(960\) 1.23607 0.0398939
\(961\) −27.0000 −0.870968
\(962\) −4.58359 −0.147781
\(963\) 3.27051 0.105391
\(964\) −11.0902 −0.357190
\(965\) 56.3607 1.81431
\(966\) −0.944272 −0.0303815
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 0 0
\(969\) 1.38197 0.0443951
\(970\) 23.1246 0.742487
\(971\) −10.1115 −0.324492 −0.162246 0.986750i \(-0.551874\pi\)
−0.162246 + 0.986750i \(0.551874\pi\)
\(972\) 9.65248 0.309603
\(973\) 0 0
\(974\) −1.34752 −0.0431775
\(975\) 2.58359 0.0827412
\(976\) −2.47214 −0.0791311
\(977\) −43.3050 −1.38545 −0.692724 0.721203i \(-0.743590\pi\)
−0.692724 + 0.721203i \(0.743590\pi\)
\(978\) 0.347524 0.0111126
\(979\) 0 0
\(980\) −9.70820 −0.310117
\(981\) −54.0689 −1.72629
\(982\) 22.8541 0.729304
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) 2.14590 0.0684087
\(985\) −67.7771 −2.15956
\(986\) −2.76393 −0.0880215
\(987\) 4.94427 0.157378
\(988\) −7.23607 −0.230210
\(989\) −10.5836 −0.336539
\(990\) 0 0
\(991\) 30.5410 0.970167 0.485084 0.874468i \(-0.338789\pi\)
0.485084 + 0.874468i \(0.338789\pi\)
\(992\) 2.00000 0.0635001
\(993\) 2.39512 0.0760069
\(994\) 10.4721 0.332156
\(995\) −61.3050 −1.94350
\(996\) 3.56231 0.112876
\(997\) 8.65248 0.274027 0.137013 0.990569i \(-0.456250\pi\)
0.137013 + 0.990569i \(0.456250\pi\)
\(998\) −30.8541 −0.976670
\(999\) 8.29180 0.262341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 242.2.a.f.1.1 2
3.2 odd 2 2178.2.a.p.1.1 2
4.3 odd 2 1936.2.a.o.1.2 2
5.4 even 2 6050.2.a.bs.1.2 2
8.3 odd 2 7744.2.a.cz.1.1 2
8.5 even 2 7744.2.a.bm.1.2 2
11.2 odd 10 242.2.c.c.81.1 4
11.3 even 5 242.2.c.a.9.1 4
11.4 even 5 242.2.c.a.27.1 4
11.5 even 5 22.2.c.a.3.1 4
11.6 odd 10 242.2.c.c.3.1 4
11.7 odd 10 242.2.c.d.27.1 4
11.8 odd 10 242.2.c.d.9.1 4
11.9 even 5 22.2.c.a.15.1 yes 4
11.10 odd 2 242.2.a.d.1.1 2
33.5 odd 10 198.2.f.e.91.1 4
33.20 odd 10 198.2.f.e.37.1 4
33.32 even 2 2178.2.a.x.1.1 2
44.27 odd 10 176.2.m.c.113.1 4
44.31 odd 10 176.2.m.c.81.1 4
44.43 even 2 1936.2.a.n.1.2 2
55.9 even 10 550.2.h.h.301.1 4
55.27 odd 20 550.2.ba.c.399.1 8
55.38 odd 20 550.2.ba.c.399.2 8
55.42 odd 20 550.2.ba.c.499.2 8
55.49 even 10 550.2.h.h.201.1 4
55.53 odd 20 550.2.ba.c.499.1 8
55.54 odd 2 6050.2.a.ci.1.2 2
88.5 even 10 704.2.m.h.641.1 4
88.21 odd 2 7744.2.a.bn.1.2 2
88.27 odd 10 704.2.m.a.641.1 4
88.43 even 2 7744.2.a.cy.1.1 2
88.53 even 10 704.2.m.h.257.1 4
88.75 odd 10 704.2.m.a.257.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.3.1 4 11.5 even 5
22.2.c.a.15.1 yes 4 11.9 even 5
176.2.m.c.81.1 4 44.31 odd 10
176.2.m.c.113.1 4 44.27 odd 10
198.2.f.e.37.1 4 33.20 odd 10
198.2.f.e.91.1 4 33.5 odd 10
242.2.a.d.1.1 2 11.10 odd 2
242.2.a.f.1.1 2 1.1 even 1 trivial
242.2.c.a.9.1 4 11.3 even 5
242.2.c.a.27.1 4 11.4 even 5
242.2.c.c.3.1 4 11.6 odd 10
242.2.c.c.81.1 4 11.2 odd 10
242.2.c.d.9.1 4 11.8 odd 10
242.2.c.d.27.1 4 11.7 odd 10
550.2.h.h.201.1 4 55.49 even 10
550.2.h.h.301.1 4 55.9 even 10
550.2.ba.c.399.1 8 55.27 odd 20
550.2.ba.c.399.2 8 55.38 odd 20
550.2.ba.c.499.1 8 55.53 odd 20
550.2.ba.c.499.2 8 55.42 odd 20
704.2.m.a.257.1 4 88.75 odd 10
704.2.m.a.641.1 4 88.27 odd 10
704.2.m.h.257.1 4 88.53 even 10
704.2.m.h.641.1 4 88.5 even 10
1936.2.a.n.1.2 2 44.43 even 2
1936.2.a.o.1.2 2 4.3 odd 2
2178.2.a.p.1.1 2 3.2 odd 2
2178.2.a.x.1.1 2 33.32 even 2
6050.2.a.bs.1.2 2 5.4 even 2
6050.2.a.ci.1.2 2 55.54 odd 2
7744.2.a.bm.1.2 2 8.5 even 2
7744.2.a.bn.1.2 2 88.21 odd 2
7744.2.a.cy.1.1 2 88.43 even 2
7744.2.a.cz.1.1 2 8.3 odd 2