Properties

Label 2400.4.a.z.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{201}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(7.58872\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -30.3549 q^{7} +9.00000 q^{9} +20.0000 q^{11} -16.3549 q^{13} +69.0647 q^{17} +86.3549 q^{19} +91.0647 q^{21} +34.3549 q^{23} -27.0000 q^{27} -39.4196 q^{29} -217.194 q^{31} -60.0000 q^{33} -281.774 q^{37} +49.0647 q^{39} +342.710 q^{41} -373.420 q^{43} -198.614 q^{47} +578.420 q^{49} -207.194 q^{51} -91.8706 q^{53} -259.065 q^{57} -49.1608 q^{59} -309.808 q^{61} -273.194 q^{63} -651.098 q^{67} -103.065 q^{69} -850.839 q^{71} -964.388 q^{73} -607.098 q^{77} -724.484 q^{79} +81.0000 q^{81} +433.678 q^{83} +118.259 q^{87} +1264.65 q^{89} +496.451 q^{91} +651.582 q^{93} +1745.87 q^{97} +180.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 4 q^{7} + 18 q^{9} + 40 q^{11} + 24 q^{13} - 32 q^{17} + 116 q^{19} + 12 q^{21} + 12 q^{23} - 54 q^{27} + 148 q^{29} + 76 q^{31} - 120 q^{33} - 280 q^{37} - 72 q^{39} + 572 q^{41} - 520 q^{43}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −30.3549 −1.63901 −0.819505 0.573072i \(-0.805752\pi\)
−0.819505 + 0.573072i \(0.805752\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 20.0000 0.548202 0.274101 0.961701i \(-0.411620\pi\)
0.274101 + 0.961701i \(0.411620\pi\)
\(12\) 0 0
\(13\) −16.3549 −0.348925 −0.174463 0.984664i \(-0.555819\pi\)
−0.174463 + 0.984664i \(0.555819\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 69.0647 0.985332 0.492666 0.870218i \(-0.336022\pi\)
0.492666 + 0.870218i \(0.336022\pi\)
\(18\) 0 0
\(19\) 86.3549 1.04269 0.521347 0.853345i \(-0.325430\pi\)
0.521347 + 0.853345i \(0.325430\pi\)
\(20\) 0 0
\(21\) 91.0647 0.946283
\(22\) 0 0
\(23\) 34.3549 0.311456 0.155728 0.987800i \(-0.450228\pi\)
0.155728 + 0.987800i \(0.450228\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −39.4196 −0.252415 −0.126207 0.992004i \(-0.540280\pi\)
−0.126207 + 0.992004i \(0.540280\pi\)
\(30\) 0 0
\(31\) −217.194 −1.25836 −0.629181 0.777259i \(-0.716609\pi\)
−0.629181 + 0.777259i \(0.716609\pi\)
\(32\) 0 0
\(33\) −60.0000 −0.316505
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −281.774 −1.25198 −0.625992 0.779829i \(-0.715306\pi\)
−0.625992 + 0.779829i \(0.715306\pi\)
\(38\) 0 0
\(39\) 49.0647 0.201452
\(40\) 0 0
\(41\) 342.710 1.30542 0.652711 0.757607i \(-0.273632\pi\)
0.652711 + 0.757607i \(0.273632\pi\)
\(42\) 0 0
\(43\) −373.420 −1.32432 −0.662162 0.749361i \(-0.730361\pi\)
−0.662162 + 0.749361i \(0.730361\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −198.614 −0.616399 −0.308200 0.951322i \(-0.599727\pi\)
−0.308200 + 0.951322i \(0.599727\pi\)
\(48\) 0 0
\(49\) 578.420 1.68635
\(50\) 0 0
\(51\) −207.194 −0.568882
\(52\) 0 0
\(53\) −91.8706 −0.238102 −0.119051 0.992888i \(-0.537985\pi\)
−0.119051 + 0.992888i \(0.537985\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −259.065 −0.601999
\(58\) 0 0
\(59\) −49.1608 −0.108478 −0.0542390 0.998528i \(-0.517273\pi\)
−0.0542390 + 0.998528i \(0.517273\pi\)
\(60\) 0 0
\(61\) −309.808 −0.650276 −0.325138 0.945667i \(-0.605411\pi\)
−0.325138 + 0.945667i \(0.605411\pi\)
\(62\) 0 0
\(63\) −273.194 −0.546337
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −651.098 −1.18723 −0.593614 0.804750i \(-0.702299\pi\)
−0.593614 + 0.804750i \(0.702299\pi\)
\(68\) 0 0
\(69\) −103.065 −0.179819
\(70\) 0 0
\(71\) −850.839 −1.42220 −0.711099 0.703092i \(-0.751802\pi\)
−0.711099 + 0.703092i \(0.751802\pi\)
\(72\) 0 0
\(73\) −964.388 −1.54621 −0.773103 0.634280i \(-0.781297\pi\)
−0.773103 + 0.634280i \(0.781297\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −607.098 −0.898509
\(78\) 0 0
\(79\) −724.484 −1.03178 −0.515891 0.856654i \(-0.672539\pi\)
−0.515891 + 0.856654i \(0.672539\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 433.678 0.573523 0.286761 0.958002i \(-0.407421\pi\)
0.286761 + 0.958002i \(0.407421\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 118.259 0.145732
\(88\) 0 0
\(89\) 1264.65 1.50621 0.753103 0.657903i \(-0.228556\pi\)
0.753103 + 0.657903i \(0.228556\pi\)
\(90\) 0 0
\(91\) 496.451 0.571892
\(92\) 0 0
\(93\) 651.582 0.726515
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1745.87 1.82749 0.913746 0.406287i \(-0.133177\pi\)
0.913746 + 0.406287i \(0.133177\pi\)
\(98\) 0 0
\(99\) 180.000 0.182734
\(100\) 0 0
\(101\) 1739.94 1.71416 0.857080 0.515183i \(-0.172276\pi\)
0.857080 + 0.515183i \(0.172276\pi\)
\(102\) 0 0
\(103\) 236.484 0.226228 0.113114 0.993582i \(-0.463917\pi\)
0.113114 + 0.993582i \(0.463917\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 514.647 0.464979 0.232490 0.972599i \(-0.425313\pi\)
0.232490 + 0.972599i \(0.425313\pi\)
\(108\) 0 0
\(109\) 342.902 0.301322 0.150661 0.988586i \(-0.451860\pi\)
0.150661 + 0.988586i \(0.451860\pi\)
\(110\) 0 0
\(111\) 845.323 0.722834
\(112\) 0 0
\(113\) −534.677 −0.445116 −0.222558 0.974919i \(-0.571441\pi\)
−0.222558 + 0.974919i \(0.571441\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −147.194 −0.116308
\(118\) 0 0
\(119\) −2096.45 −1.61497
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) −1028.13 −0.753685
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 627.582 0.438495 0.219248 0.975669i \(-0.429640\pi\)
0.219248 + 0.975669i \(0.429640\pi\)
\(128\) 0 0
\(129\) 1120.26 0.764599
\(130\) 0 0
\(131\) 2188.58 1.45968 0.729838 0.683621i \(-0.239596\pi\)
0.729838 + 0.683621i \(0.239596\pi\)
\(132\) 0 0
\(133\) −2621.29 −1.70898
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1896.35 1.18260 0.591301 0.806451i \(-0.298614\pi\)
0.591301 + 0.806451i \(0.298614\pi\)
\(138\) 0 0
\(139\) 441.128 0.269180 0.134590 0.990901i \(-0.457028\pi\)
0.134590 + 0.990901i \(0.457028\pi\)
\(140\) 0 0
\(141\) 595.841 0.355878
\(142\) 0 0
\(143\) −327.098 −0.191282
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1735.26 −0.973617
\(148\) 0 0
\(149\) −571.294 −0.314109 −0.157054 0.987590i \(-0.550200\pi\)
−0.157054 + 0.987590i \(0.550200\pi\)
\(150\) 0 0
\(151\) 2883.71 1.55413 0.777064 0.629421i \(-0.216708\pi\)
0.777064 + 0.629421i \(0.216708\pi\)
\(152\) 0 0
\(153\) 621.582 0.328444
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 167.579 0.0851862 0.0425931 0.999093i \(-0.486438\pi\)
0.0425931 + 0.999093i \(0.486438\pi\)
\(158\) 0 0
\(159\) 275.612 0.137468
\(160\) 0 0
\(161\) −1042.84 −0.510480
\(162\) 0 0
\(163\) −2257.16 −1.08463 −0.542314 0.840176i \(-0.682452\pi\)
−0.542314 + 0.840176i \(0.682452\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3820.29 1.77020 0.885099 0.465403i \(-0.154091\pi\)
0.885099 + 0.465403i \(0.154091\pi\)
\(168\) 0 0
\(169\) −1929.52 −0.878251
\(170\) 0 0
\(171\) 777.194 0.347564
\(172\) 0 0
\(173\) 4185.87 1.83957 0.919786 0.392419i \(-0.128362\pi\)
0.919786 + 0.392419i \(0.128362\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 147.483 0.0626298
\(178\) 0 0
\(179\) −1930.26 −0.806003 −0.403002 0.915199i \(-0.632033\pi\)
−0.403002 + 0.915199i \(0.632033\pi\)
\(180\) 0 0
\(181\) −2310.01 −0.948627 −0.474313 0.880356i \(-0.657304\pi\)
−0.474313 + 0.880356i \(0.657304\pi\)
\(182\) 0 0
\(183\) 929.423 0.375437
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1381.29 0.540161
\(188\) 0 0
\(189\) 819.582 0.315428
\(190\) 0 0
\(191\) −4642.97 −1.75892 −0.879460 0.475973i \(-0.842096\pi\)
−0.879460 + 0.475973i \(0.842096\pi\)
\(192\) 0 0
\(193\) −4003.23 −1.49305 −0.746526 0.665356i \(-0.768280\pi\)
−0.746526 + 0.665356i \(0.768280\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4118.97 1.48967 0.744833 0.667250i \(-0.232529\pi\)
0.744833 + 0.667250i \(0.232529\pi\)
\(198\) 0 0
\(199\) −2384.68 −0.849474 −0.424737 0.905317i \(-0.639633\pi\)
−0.424737 + 0.905317i \(0.639633\pi\)
\(200\) 0 0
\(201\) 1953.29 0.685446
\(202\) 0 0
\(203\) 1196.58 0.413711
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 309.194 0.103819
\(208\) 0 0
\(209\) 1727.10 0.571607
\(210\) 0 0
\(211\) 1310.29 0.427507 0.213754 0.976888i \(-0.431431\pi\)
0.213754 + 0.976888i \(0.431431\pi\)
\(212\) 0 0
\(213\) 2552.52 0.821106
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6592.90 2.06247
\(218\) 0 0
\(219\) 2893.16 0.892703
\(220\) 0 0
\(221\) −1129.55 −0.343807
\(222\) 0 0
\(223\) −883.967 −0.265448 −0.132724 0.991153i \(-0.542372\pi\)
−0.132724 + 0.991153i \(0.542372\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2407.36 0.703885 0.351942 0.936022i \(-0.385521\pi\)
0.351942 + 0.936022i \(0.385521\pi\)
\(228\) 0 0
\(229\) 5505.94 1.58883 0.794417 0.607373i \(-0.207777\pi\)
0.794417 + 0.607373i \(0.207777\pi\)
\(230\) 0 0
\(231\) 1821.29 0.518755
\(232\) 0 0
\(233\) 673.523 0.189373 0.0946865 0.995507i \(-0.469815\pi\)
0.0946865 + 0.995507i \(0.469815\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2173.45 0.595700
\(238\) 0 0
\(239\) −914.773 −0.247580 −0.123790 0.992308i \(-0.539505\pi\)
−0.123790 + 0.992308i \(0.539505\pi\)
\(240\) 0 0
\(241\) −5516.33 −1.47443 −0.737216 0.675657i \(-0.763860\pi\)
−0.737216 + 0.675657i \(0.763860\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1412.33 −0.363822
\(248\) 0 0
\(249\) −1301.03 −0.331123
\(250\) 0 0
\(251\) −4923.93 −1.23823 −0.619115 0.785300i \(-0.712509\pi\)
−0.619115 + 0.785300i \(0.712509\pi\)
\(252\) 0 0
\(253\) 687.098 0.170741
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 767.771 0.186351 0.0931756 0.995650i \(-0.470298\pi\)
0.0931756 + 0.995650i \(0.470298\pi\)
\(258\) 0 0
\(259\) 8553.23 2.05202
\(260\) 0 0
\(261\) −354.776 −0.0841383
\(262\) 0 0
\(263\) 2623.97 0.615212 0.307606 0.951514i \(-0.400472\pi\)
0.307606 + 0.951514i \(0.400472\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3793.94 −0.869608
\(268\) 0 0
\(269\) 4539.69 1.02896 0.514479 0.857503i \(-0.327985\pi\)
0.514479 + 0.857503i \(0.327985\pi\)
\(270\) 0 0
\(271\) 3841.51 0.861090 0.430545 0.902569i \(-0.358321\pi\)
0.430545 + 0.902569i \(0.358321\pi\)
\(272\) 0 0
\(273\) −1489.35 −0.330182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8471.07 1.83746 0.918732 0.394881i \(-0.129214\pi\)
0.918732 + 0.394881i \(0.129214\pi\)
\(278\) 0 0
\(279\) −1954.75 −0.419454
\(280\) 0 0
\(281\) 3931.10 0.834555 0.417277 0.908779i \(-0.362984\pi\)
0.417277 + 0.908779i \(0.362984\pi\)
\(282\) 0 0
\(283\) 5678.84 1.19283 0.596417 0.802675i \(-0.296591\pi\)
0.596417 + 0.802675i \(0.296591\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10402.9 −2.13960
\(288\) 0 0
\(289\) −143.070 −0.0291207
\(290\) 0 0
\(291\) −5237.62 −1.05510
\(292\) 0 0
\(293\) −6180.79 −1.23237 −0.616187 0.787600i \(-0.711323\pi\)
−0.616187 + 0.787600i \(0.711323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −540.000 −0.105502
\(298\) 0 0
\(299\) −561.871 −0.108675
\(300\) 0 0
\(301\) 11335.1 2.17058
\(302\) 0 0
\(303\) −5219.81 −0.989671
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5058.91 −0.940480 −0.470240 0.882539i \(-0.655833\pi\)
−0.470240 + 0.882539i \(0.655833\pi\)
\(308\) 0 0
\(309\) −709.453 −0.130613
\(310\) 0 0
\(311\) −7795.82 −1.42142 −0.710708 0.703487i \(-0.751625\pi\)
−0.710708 + 0.703487i \(0.751625\pi\)
\(312\) 0 0
\(313\) 8138.34 1.46967 0.734834 0.678247i \(-0.237260\pi\)
0.734834 + 0.678247i \(0.237260\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6911.10 1.22450 0.612249 0.790665i \(-0.290265\pi\)
0.612249 + 0.790665i \(0.290265\pi\)
\(318\) 0 0
\(319\) −788.392 −0.138374
\(320\) 0 0
\(321\) −1543.94 −0.268456
\(322\) 0 0
\(323\) 5964.07 1.02740
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1028.71 −0.173968
\(328\) 0 0
\(329\) 6028.90 1.01028
\(330\) 0 0
\(331\) −6510.62 −1.08114 −0.540568 0.841300i \(-0.681791\pi\)
−0.540568 + 0.841300i \(0.681791\pi\)
\(332\) 0 0
\(333\) −2535.97 −0.417328
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 247.990 0.0400856 0.0200428 0.999799i \(-0.493620\pi\)
0.0200428 + 0.999799i \(0.493620\pi\)
\(338\) 0 0
\(339\) 1604.03 0.256988
\(340\) 0 0
\(341\) −4343.88 −0.689837
\(342\) 0 0
\(343\) −7146.14 −1.12494
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6105.88 0.944613 0.472306 0.881434i \(-0.343422\pi\)
0.472306 + 0.881434i \(0.343422\pi\)
\(348\) 0 0
\(349\) 7452.90 1.14311 0.571554 0.820565i \(-0.306341\pi\)
0.571554 + 0.820565i \(0.306341\pi\)
\(350\) 0 0
\(351\) 441.582 0.0671507
\(352\) 0 0
\(353\) −12974.6 −1.95629 −0.978144 0.207929i \(-0.933328\pi\)
−0.978144 + 0.207929i \(0.933328\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6289.35 0.932403
\(358\) 0 0
\(359\) 5776.40 0.849211 0.424605 0.905379i \(-0.360413\pi\)
0.424605 + 0.905379i \(0.360413\pi\)
\(360\) 0 0
\(361\) 598.168 0.0872092
\(362\) 0 0
\(363\) 2793.00 0.403842
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7191.40 1.02286 0.511428 0.859326i \(-0.329117\pi\)
0.511428 + 0.859326i \(0.329117\pi\)
\(368\) 0 0
\(369\) 3084.39 0.435140
\(370\) 0 0
\(371\) 2788.72 0.390252
\(372\) 0 0
\(373\) −6487.77 −0.900601 −0.450300 0.892877i \(-0.648683\pi\)
−0.450300 + 0.892877i \(0.648683\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 644.703 0.0880740
\(378\) 0 0
\(379\) 1464.68 0.198510 0.0992551 0.995062i \(-0.468354\pi\)
0.0992551 + 0.995062i \(0.468354\pi\)
\(380\) 0 0
\(381\) −1882.75 −0.253165
\(382\) 0 0
\(383\) −3568.29 −0.476060 −0.238030 0.971258i \(-0.576502\pi\)
−0.238030 + 0.971258i \(0.576502\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3360.78 −0.441441
\(388\) 0 0
\(389\) 5562.52 0.725015 0.362507 0.931981i \(-0.381921\pi\)
0.362507 + 0.931981i \(0.381921\pi\)
\(390\) 0 0
\(391\) 2372.71 0.306888
\(392\) 0 0
\(393\) −6565.75 −0.842744
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1601.77 −0.202496 −0.101248 0.994861i \(-0.532283\pi\)
−0.101248 + 0.994861i \(0.532283\pi\)
\(398\) 0 0
\(399\) 7863.88 0.986683
\(400\) 0 0
\(401\) −5435.04 −0.676840 −0.338420 0.940995i \(-0.609893\pi\)
−0.338420 + 0.940995i \(0.609893\pi\)
\(402\) 0 0
\(403\) 3552.19 0.439074
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5635.49 −0.686341
\(408\) 0 0
\(409\) 11535.2 1.39457 0.697283 0.716796i \(-0.254392\pi\)
0.697283 + 0.716796i \(0.254392\pi\)
\(410\) 0 0
\(411\) −5689.06 −0.682776
\(412\) 0 0
\(413\) 1492.27 0.177796
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1323.38 −0.155411
\(418\) 0 0
\(419\) 8858.90 1.03290 0.516451 0.856317i \(-0.327253\pi\)
0.516451 + 0.856317i \(0.327253\pi\)
\(420\) 0 0
\(421\) 13361.9 1.54684 0.773422 0.633892i \(-0.218544\pi\)
0.773422 + 0.633892i \(0.218544\pi\)
\(422\) 0 0
\(423\) −1787.52 −0.205466
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9404.18 1.06581
\(428\) 0 0
\(429\) 981.294 0.110437
\(430\) 0 0
\(431\) 12223.1 1.36605 0.683024 0.730396i \(-0.260664\pi\)
0.683024 + 0.730396i \(0.260664\pi\)
\(432\) 0 0
\(433\) −110.192 −0.0122298 −0.00611490 0.999981i \(-0.501946\pi\)
−0.00611490 + 0.999981i \(0.501946\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2966.71 0.324753
\(438\) 0 0
\(439\) −10838.5 −1.17834 −0.589172 0.808008i \(-0.700546\pi\)
−0.589172 + 0.808008i \(0.700546\pi\)
\(440\) 0 0
\(441\) 5205.78 0.562118
\(442\) 0 0
\(443\) 14291.2 1.53272 0.766362 0.642409i \(-0.222065\pi\)
0.766362 + 0.642409i \(0.222065\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1713.88 0.181351
\(448\) 0 0
\(449\) 2451.92 0.257714 0.128857 0.991663i \(-0.458869\pi\)
0.128857 + 0.991663i \(0.458869\pi\)
\(450\) 0 0
\(451\) 6854.20 0.715635
\(452\) 0 0
\(453\) −8651.14 −0.897276
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1352.31 0.138421 0.0692104 0.997602i \(-0.477952\pi\)
0.0692104 + 0.997602i \(0.477952\pi\)
\(458\) 0 0
\(459\) −1864.75 −0.189627
\(460\) 0 0
\(461\) 5331.29 0.538618 0.269309 0.963054i \(-0.413205\pi\)
0.269309 + 0.963054i \(0.413205\pi\)
\(462\) 0 0
\(463\) −1.69784 −0.000170422 0 −8.52110e−5 1.00000i \(-0.500027\pi\)
−8.52110e−5 1.00000i \(0.500027\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9081.89 0.899914 0.449957 0.893050i \(-0.351439\pi\)
0.449957 + 0.893050i \(0.351439\pi\)
\(468\) 0 0
\(469\) 19764.0 1.94588
\(470\) 0 0
\(471\) −502.736 −0.0491823
\(472\) 0 0
\(473\) −7468.39 −0.725998
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −826.836 −0.0793673
\(478\) 0 0
\(479\) −6270.21 −0.598107 −0.299053 0.954236i \(-0.596671\pi\)
−0.299053 + 0.954236i \(0.596671\pi\)
\(480\) 0 0
\(481\) 4608.39 0.436849
\(482\) 0 0
\(483\) 3128.52 0.294726
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13938.7 1.29697 0.648486 0.761227i \(-0.275403\pi\)
0.648486 + 0.761227i \(0.275403\pi\)
\(488\) 0 0
\(489\) 6771.48 0.626211
\(490\) 0 0
\(491\) −5301.54 −0.487281 −0.243641 0.969866i \(-0.578342\pi\)
−0.243641 + 0.969866i \(0.578342\pi\)
\(492\) 0 0
\(493\) −2722.50 −0.248712
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25827.1 2.33100
\(498\) 0 0
\(499\) −12167.0 −1.09152 −0.545762 0.837940i \(-0.683760\pi\)
−0.545762 + 0.837940i \(0.683760\pi\)
\(500\) 0 0
\(501\) −11460.9 −1.02202
\(502\) 0 0
\(503\) −12761.8 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5788.55 0.507058
\(508\) 0 0
\(509\) −1875.68 −0.163336 −0.0816680 0.996660i \(-0.526025\pi\)
−0.0816680 + 0.996660i \(0.526025\pi\)
\(510\) 0 0
\(511\) 29273.9 2.53425
\(512\) 0 0
\(513\) −2331.58 −0.200666
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −3972.27 −0.337912
\(518\) 0 0
\(519\) −12557.6 −1.06208
\(520\) 0 0
\(521\) 12565.0 1.05659 0.528293 0.849062i \(-0.322832\pi\)
0.528293 + 0.849062i \(0.322832\pi\)
\(522\) 0 0
\(523\) 20006.3 1.67268 0.836341 0.548209i \(-0.184690\pi\)
0.836341 + 0.548209i \(0.184690\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15000.4 −1.23990
\(528\) 0 0
\(529\) −10986.7 −0.902995
\(530\) 0 0
\(531\) −442.448 −0.0361593
\(532\) 0 0
\(533\) −5604.98 −0.455495
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5790.79 0.465346
\(538\) 0 0
\(539\) 11568.4 0.924464
\(540\) 0 0
\(541\) 3930.27 0.312339 0.156170 0.987730i \(-0.450085\pi\)
0.156170 + 0.987730i \(0.450085\pi\)
\(542\) 0 0
\(543\) 6930.02 0.547690
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19908.5 1.55618 0.778088 0.628156i \(-0.216190\pi\)
0.778088 + 0.628156i \(0.216190\pi\)
\(548\) 0 0
\(549\) −2788.27 −0.216759
\(550\) 0 0
\(551\) −3404.07 −0.263191
\(552\) 0 0
\(553\) 21991.6 1.69110
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11820.0 −0.899153 −0.449576 0.893242i \(-0.648425\pi\)
−0.449576 + 0.893242i \(0.648425\pi\)
\(558\) 0 0
\(559\) 6107.24 0.462091
\(560\) 0 0
\(561\) −4143.88 −0.311862
\(562\) 0 0
\(563\) −21578.2 −1.61530 −0.807648 0.589665i \(-0.799260\pi\)
−0.807648 + 0.589665i \(0.799260\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2458.75 −0.182112
\(568\) 0 0
\(569\) 22874.5 1.68533 0.842663 0.538441i \(-0.180986\pi\)
0.842663 + 0.538441i \(0.180986\pi\)
\(570\) 0 0
\(571\) 2857.53 0.209429 0.104714 0.994502i \(-0.466607\pi\)
0.104714 + 0.994502i \(0.466607\pi\)
\(572\) 0 0
\(573\) 13928.9 1.01551
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10000.7 0.721553 0.360776 0.932652i \(-0.382512\pi\)
0.360776 + 0.932652i \(0.382512\pi\)
\(578\) 0 0
\(579\) 12009.7 0.862014
\(580\) 0 0
\(581\) −13164.3 −0.940009
\(582\) 0 0
\(583\) −1837.41 −0.130528
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10215.0 −0.718262 −0.359131 0.933287i \(-0.616927\pi\)
−0.359131 + 0.933287i \(0.616927\pi\)
\(588\) 0 0
\(589\) −18755.8 −1.31208
\(590\) 0 0
\(591\) −12356.9 −0.860060
\(592\) 0 0
\(593\) 3995.50 0.276687 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7154.03 0.490444
\(598\) 0 0
\(599\) −7844.51 −0.535089 −0.267544 0.963546i \(-0.586212\pi\)
−0.267544 + 0.963546i \(0.586212\pi\)
\(600\) 0 0
\(601\) 5265.24 0.357361 0.178680 0.983907i \(-0.442817\pi\)
0.178680 + 0.983907i \(0.442817\pi\)
\(602\) 0 0
\(603\) −5859.88 −0.395743
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −16213.6 −1.08416 −0.542082 0.840325i \(-0.682364\pi\)
−0.542082 + 0.840325i \(0.682364\pi\)
\(608\) 0 0
\(609\) −3589.73 −0.238856
\(610\) 0 0
\(611\) 3248.30 0.215077
\(612\) 0 0
\(613\) 4538.37 0.299026 0.149513 0.988760i \(-0.452229\pi\)
0.149513 + 0.988760i \(0.452229\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1715.15 −0.111911 −0.0559556 0.998433i \(-0.517821\pi\)
−0.0559556 + 0.998433i \(0.517821\pi\)
\(618\) 0 0
\(619\) −695.376 −0.0451527 −0.0225764 0.999745i \(-0.507187\pi\)
−0.0225764 + 0.999745i \(0.507187\pi\)
\(620\) 0 0
\(621\) −927.582 −0.0599398
\(622\) 0 0
\(623\) −38388.2 −2.46869
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5181.29 −0.330017
\(628\) 0 0
\(629\) −19460.7 −1.23362
\(630\) 0 0
\(631\) 9877.82 0.623185 0.311593 0.950216i \(-0.399138\pi\)
0.311593 + 0.950216i \(0.399138\pi\)
\(632\) 0 0
\(633\) −3930.87 −0.246821
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −9459.99 −0.588412
\(638\) 0 0
\(639\) −7657.55 −0.474066
\(640\) 0 0
\(641\) 2441.03 0.150413 0.0752067 0.997168i \(-0.476038\pi\)
0.0752067 + 0.997168i \(0.476038\pi\)
\(642\) 0 0
\(643\) 8080.27 0.495575 0.247788 0.968814i \(-0.420296\pi\)
0.247788 + 0.968814i \(0.420296\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1852.94 0.112591 0.0562957 0.998414i \(-0.482071\pi\)
0.0562957 + 0.998414i \(0.482071\pi\)
\(648\) 0 0
\(649\) −983.217 −0.0594679
\(650\) 0 0
\(651\) −19778.7 −1.19077
\(652\) 0 0
\(653\) 8211.29 0.492087 0.246043 0.969259i \(-0.420869\pi\)
0.246043 + 0.969259i \(0.420869\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8679.49 −0.515402
\(658\) 0 0
\(659\) 22558.3 1.33346 0.666728 0.745301i \(-0.267694\pi\)
0.666728 + 0.745301i \(0.267694\pi\)
\(660\) 0 0
\(661\) −20058.9 −1.18033 −0.590166 0.807282i \(-0.700938\pi\)
−0.590166 + 0.807282i \(0.700938\pi\)
\(662\) 0 0
\(663\) 3388.64 0.198497
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1354.26 −0.0786162
\(668\) 0 0
\(669\) 2651.90 0.153256
\(670\) 0 0
\(671\) −6196.15 −0.356483
\(672\) 0 0
\(673\) −12172.8 −0.697218 −0.348609 0.937268i \(-0.613346\pi\)
−0.348609 + 0.937268i \(0.613346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29440.0 1.67130 0.835650 0.549263i \(-0.185091\pi\)
0.835650 + 0.549263i \(0.185091\pi\)
\(678\) 0 0
\(679\) −52995.8 −2.99528
\(680\) 0 0
\(681\) −7222.07 −0.406388
\(682\) 0 0
\(683\) 21223.7 1.18902 0.594512 0.804087i \(-0.297345\pi\)
0.594512 + 0.804087i \(0.297345\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −16517.8 −0.917313
\(688\) 0 0
\(689\) 1502.53 0.0830798
\(690\) 0 0
\(691\) −2278.77 −0.125454 −0.0627268 0.998031i \(-0.519980\pi\)
−0.0627268 + 0.998031i \(0.519980\pi\)
\(692\) 0 0
\(693\) −5463.88 −0.299503
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 23669.1 1.28627
\(698\) 0 0
\(699\) −2020.57 −0.109335
\(700\) 0 0
\(701\) −8985.49 −0.484133 −0.242067 0.970260i \(-0.577825\pi\)
−0.242067 + 0.970260i \(0.577825\pi\)
\(702\) 0 0
\(703\) −24332.6 −1.30544
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −52815.6 −2.80953
\(708\) 0 0
\(709\) −530.836 −0.0281184 −0.0140592 0.999901i \(-0.504475\pi\)
−0.0140592 + 0.999901i \(0.504475\pi\)
\(710\) 0 0
\(711\) −6520.36 −0.343928
\(712\) 0 0
\(713\) −7461.68 −0.391924
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2744.32 0.142941
\(718\) 0 0
\(719\) −12797.7 −0.663804 −0.331902 0.943314i \(-0.607690\pi\)
−0.331902 + 0.943314i \(0.607690\pi\)
\(720\) 0 0
\(721\) −7178.45 −0.370790
\(722\) 0 0
\(723\) 16549.0 0.851263
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 30477.7 1.55482 0.777411 0.628993i \(-0.216533\pi\)
0.777411 + 0.628993i \(0.216533\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −25790.1 −1.30490
\(732\) 0 0
\(733\) 4322.79 0.217825 0.108913 0.994051i \(-0.465263\pi\)
0.108913 + 0.994051i \(0.465263\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13022.0 −0.650841
\(738\) 0 0
\(739\) 24280.6 1.20863 0.604315 0.796745i \(-0.293447\pi\)
0.604315 + 0.796745i \(0.293447\pi\)
\(740\) 0 0
\(741\) 4236.98 0.210053
\(742\) 0 0
\(743\) 11638.4 0.574658 0.287329 0.957832i \(-0.407233\pi\)
0.287329 + 0.957832i \(0.407233\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3903.10 0.191174
\(748\) 0 0
\(749\) −15622.0 −0.762106
\(750\) 0 0
\(751\) −11817.8 −0.574216 −0.287108 0.957898i \(-0.592694\pi\)
−0.287108 + 0.957898i \(0.592694\pi\)
\(752\) 0 0
\(753\) 14771.8 0.714893
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 311.180 0.0149406 0.00747031 0.999972i \(-0.497622\pi\)
0.00747031 + 0.999972i \(0.497622\pi\)
\(758\) 0 0
\(759\) −2061.29 −0.0985774
\(760\) 0 0
\(761\) −7381.11 −0.351597 −0.175798 0.984426i \(-0.556251\pi\)
−0.175798 + 0.984426i \(0.556251\pi\)
\(762\) 0 0
\(763\) −10408.8 −0.493869
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 804.020 0.0378507
\(768\) 0 0
\(769\) −6695.05 −0.313953 −0.156976 0.987602i \(-0.550175\pi\)
−0.156976 + 0.987602i \(0.550175\pi\)
\(770\) 0 0
\(771\) −2303.31 −0.107590
\(772\) 0 0
\(773\) 25149.8 1.17022 0.585108 0.810955i \(-0.301052\pi\)
0.585108 + 0.810955i \(0.301052\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −25659.7 −1.18473
\(778\) 0 0
\(779\) 29594.7 1.36115
\(780\) 0 0
\(781\) −17016.8 −0.779652
\(782\) 0 0
\(783\) 1064.33 0.0485773
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25047.8 1.13451 0.567254 0.823543i \(-0.308006\pi\)
0.567254 + 0.823543i \(0.308006\pi\)
\(788\) 0 0
\(789\) −7871.90 −0.355193
\(790\) 0 0
\(791\) 16230.1 0.729550
\(792\) 0 0
\(793\) 5066.87 0.226898
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −34617.1 −1.53852 −0.769260 0.638936i \(-0.779375\pi\)
−0.769260 + 0.638936i \(0.779375\pi\)
\(798\) 0 0
\(799\) −13717.2 −0.607358
\(800\) 0 0
\(801\) 11381.8 0.502069
\(802\) 0 0
\(803\) −19287.8 −0.847634
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13619.1 −0.594069
\(808\) 0 0
\(809\) −39309.0 −1.70832 −0.854160 0.520011i \(-0.825928\pi\)
−0.854160 + 0.520011i \(0.825928\pi\)
\(810\) 0 0
\(811\) 36235.7 1.56894 0.784469 0.620168i \(-0.212935\pi\)
0.784469 + 0.620168i \(0.212935\pi\)
\(812\) 0 0
\(813\) −11524.5 −0.497150
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −32246.6 −1.38086
\(818\) 0 0
\(819\) 4468.06 0.190631
\(820\) 0 0
\(821\) 4570.56 0.194292 0.0971459 0.995270i \(-0.469029\pi\)
0.0971459 + 0.995270i \(0.469029\pi\)
\(822\) 0 0
\(823\) 18993.8 0.804473 0.402237 0.915536i \(-0.368233\pi\)
0.402237 + 0.915536i \(0.368233\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32809.1 −1.37954 −0.689772 0.724027i \(-0.742289\pi\)
−0.689772 + 0.724027i \(0.742289\pi\)
\(828\) 0 0
\(829\) 5188.36 0.217369 0.108685 0.994076i \(-0.465336\pi\)
0.108685 + 0.994076i \(0.465336\pi\)
\(830\) 0 0
\(831\) −25413.2 −1.06086
\(832\) 0 0
\(833\) 39948.4 1.66162
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5864.24 0.242172
\(838\) 0 0
\(839\) 4074.61 0.167665 0.0838327 0.996480i \(-0.473284\pi\)
0.0838327 + 0.996480i \(0.473284\pi\)
\(840\) 0 0
\(841\) −22835.1 −0.936287
\(842\) 0 0
\(843\) −11793.3 −0.481830
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28260.4 1.14645
\(848\) 0 0
\(849\) −17036.5 −0.688683
\(850\) 0 0
\(851\) −9680.33 −0.389938
\(852\) 0 0
\(853\) −45902.6 −1.84253 −0.921263 0.388941i \(-0.872841\pi\)
−0.921263 + 0.388941i \(0.872841\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17316.3 0.690216 0.345108 0.938563i \(-0.387842\pi\)
0.345108 + 0.938563i \(0.387842\pi\)
\(858\) 0 0
\(859\) −14329.6 −0.569171 −0.284586 0.958651i \(-0.591856\pi\)
−0.284586 + 0.958651i \(0.591856\pi\)
\(860\) 0 0
\(861\) 31208.8 1.23530
\(862\) 0 0
\(863\) −28679.6 −1.13125 −0.565623 0.824664i \(-0.691364\pi\)
−0.565623 + 0.824664i \(0.691364\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 429.209 0.0168128
\(868\) 0 0
\(869\) −14489.7 −0.565626
\(870\) 0 0
\(871\) 10648.6 0.414254
\(872\) 0 0
\(873\) 15712.9 0.609164
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30048.4 1.15697 0.578485 0.815693i \(-0.303644\pi\)
0.578485 + 0.815693i \(0.303644\pi\)
\(878\) 0 0
\(879\) 18542.4 0.711511
\(880\) 0 0
\(881\) 12576.6 0.480948 0.240474 0.970656i \(-0.422697\pi\)
0.240474 + 0.970656i \(0.422697\pi\)
\(882\) 0 0
\(883\) 18031.5 0.687213 0.343607 0.939114i \(-0.388351\pi\)
0.343607 + 0.939114i \(0.388351\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7089.07 0.268351 0.134176 0.990958i \(-0.457161\pi\)
0.134176 + 0.990958i \(0.457161\pi\)
\(888\) 0 0
\(889\) −19050.2 −0.718698
\(890\) 0 0
\(891\) 1620.00 0.0609114
\(892\) 0 0
\(893\) −17151.3 −0.642716
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1685.61 0.0627435
\(898\) 0 0
\(899\) 8561.70 0.317629
\(900\) 0 0
\(901\) −6345.02 −0.234609
\(902\) 0 0
\(903\) −34005.3 −1.25319
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18949.2 0.693714 0.346857 0.937918i \(-0.387249\pi\)
0.346857 + 0.937918i \(0.387249\pi\)
\(908\) 0 0
\(909\) 15659.4 0.571387
\(910\) 0 0
\(911\) 13418.4 0.488005 0.244003 0.969775i \(-0.421539\pi\)
0.244003 + 0.969775i \(0.421539\pi\)
\(912\) 0 0
\(913\) 8673.57 0.314407
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −66434.2 −2.39242
\(918\) 0 0
\(919\) −17684.3 −0.634768 −0.317384 0.948297i \(-0.602804\pi\)
−0.317384 + 0.948297i \(0.602804\pi\)
\(920\) 0 0
\(921\) 15176.7 0.542986
\(922\) 0 0
\(923\) 13915.4 0.496241
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2128.36 0.0754093
\(928\) 0 0
\(929\) 34376.8 1.21406 0.607032 0.794677i \(-0.292360\pi\)
0.607032 + 0.794677i \(0.292360\pi\)
\(930\) 0 0
\(931\) 49949.4 1.75835
\(932\) 0 0
\(933\) 23387.5 0.820655
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41657.0 −1.45237 −0.726187 0.687497i \(-0.758709\pi\)
−0.726187 + 0.687497i \(0.758709\pi\)
\(938\) 0 0
\(939\) −24415.0 −0.848513
\(940\) 0 0
\(941\) 13683.4 0.474035 0.237017 0.971505i \(-0.423830\pi\)
0.237017 + 0.971505i \(0.423830\pi\)
\(942\) 0 0
\(943\) 11773.8 0.406581
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13500.9 0.463273 0.231637 0.972802i \(-0.425592\pi\)
0.231637 + 0.972802i \(0.425592\pi\)
\(948\) 0 0
\(949\) 15772.5 0.539511
\(950\) 0 0
\(951\) −20733.3 −0.706965
\(952\) 0 0
\(953\) −5242.25 −0.178188 −0.0890939 0.996023i \(-0.528397\pi\)
−0.0890939 + 0.996023i \(0.528397\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2365.17 0.0798905
\(958\) 0 0
\(959\) −57563.7 −1.93830
\(960\) 0 0
\(961\) 17382.3 0.583473
\(962\) 0 0
\(963\) 4631.82 0.154993
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 45761.1 1.52180 0.760898 0.648871i \(-0.224759\pi\)
0.760898 + 0.648871i \(0.224759\pi\)
\(968\) 0 0
\(969\) −17892.2 −0.593169
\(970\) 0 0
\(971\) −47771.8 −1.57886 −0.789428 0.613843i \(-0.789623\pi\)
−0.789428 + 0.613843i \(0.789623\pi\)
\(972\) 0 0
\(973\) −13390.4 −0.441188
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −49812.5 −1.63116 −0.815581 0.578644i \(-0.803582\pi\)
−0.815581 + 0.578644i \(0.803582\pi\)
\(978\) 0 0
\(979\) 25292.9 0.825706
\(980\) 0 0
\(981\) 3086.12 0.100441
\(982\) 0 0
\(983\) 49131.6 1.59416 0.797078 0.603877i \(-0.206378\pi\)
0.797078 + 0.603877i \(0.206378\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −18086.7 −0.583288
\(988\) 0 0
\(989\) −12828.8 −0.412469
\(990\) 0 0
\(991\) 46553.2 1.49224 0.746121 0.665811i \(-0.231914\pi\)
0.746121 + 0.665811i \(0.231914\pi\)
\(992\) 0 0
\(993\) 19531.9 0.624194
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −17111.5 −0.543557 −0.271778 0.962360i \(-0.587612\pi\)
−0.271778 + 0.962360i \(0.587612\pi\)
\(998\) 0 0
\(999\) 7607.91 0.240945
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.z.1.1 2
4.3 odd 2 2400.4.a.ba.1.2 2
5.4 even 2 480.4.a.p.1.2 yes 2
15.14 odd 2 1440.4.a.bf.1.2 2
20.19 odd 2 480.4.a.n.1.1 2
40.19 odd 2 960.4.a.bp.1.1 2
40.29 even 2 960.4.a.bl.1.2 2
60.59 even 2 1440.4.a.ba.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.n.1.1 2 20.19 odd 2
480.4.a.p.1.2 yes 2 5.4 even 2
960.4.a.bl.1.2 2 40.29 even 2
960.4.a.bp.1.1 2 40.19 odd 2
1440.4.a.ba.1.1 2 60.59 even 2
1440.4.a.bf.1.2 2 15.14 odd 2
2400.4.a.z.1.1 2 1.1 even 1 trivial
2400.4.a.ba.1.2 2 4.3 odd 2