Properties

Label 2400.4.a.y.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{89}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.21699\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +12.8680 q^{7} +9.00000 q^{9} +49.7359 q^{11} +52.6039 q^{13} -84.6039 q^{17} -26.6039 q^{19} -38.6039 q^{21} -136.340 q^{23} -27.0000 q^{27} +6.00000 q^{29} +47.1320 q^{31} -149.208 q^{33} -344.227 q^{37} -157.812 q^{39} -43.2078 q^{41} -252.000 q^{43} -306.076 q^{47} -177.416 q^{49} +253.812 q^{51} +455.208 q^{53} +79.8117 q^{57} +708.151 q^{59} -652.039 q^{61} +115.812 q^{63} -704.528 q^{67} +409.019 q^{69} -531.775 q^{71} -57.6233 q^{73} +640.000 q^{77} +429.699 q^{79} +81.0000 q^{81} -227.697 q^{83} -18.0000 q^{87} +1032.87 q^{89} +676.905 q^{91} -141.396 q^{93} +152.416 q^{97} +447.623 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 12 q^{7} + 18 q^{9} + 24 q^{11} - 8 q^{13} - 56 q^{17} + 60 q^{19} + 36 q^{21} - 84 q^{23} - 54 q^{27} + 12 q^{29} + 132 q^{31} - 72 q^{33} + 104 q^{37} + 24 q^{39} + 140 q^{41} - 504 q^{43}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 12.8680 0.694805 0.347402 0.937716i \(-0.387064\pi\)
0.347402 + 0.937716i \(0.387064\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 49.7359 1.36327 0.681634 0.731693i \(-0.261270\pi\)
0.681634 + 0.731693i \(0.261270\pi\)
\(12\) 0 0
\(13\) 52.6039 1.12228 0.561142 0.827720i \(-0.310362\pi\)
0.561142 + 0.827720i \(0.310362\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −84.6039 −1.20703 −0.603513 0.797353i \(-0.706233\pi\)
−0.603513 + 0.797353i \(0.706233\pi\)
\(18\) 0 0
\(19\) −26.6039 −0.321229 −0.160614 0.987017i \(-0.551348\pi\)
−0.160614 + 0.987017i \(0.551348\pi\)
\(20\) 0 0
\(21\) −38.6039 −0.401146
\(22\) 0 0
\(23\) −136.340 −1.23604 −0.618018 0.786164i \(-0.712064\pi\)
−0.618018 + 0.786164i \(0.712064\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) 47.1320 0.273070 0.136535 0.990635i \(-0.456403\pi\)
0.136535 + 0.990635i \(0.456403\pi\)
\(32\) 0 0
\(33\) −149.208 −0.787083
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −344.227 −1.52948 −0.764738 0.644341i \(-0.777132\pi\)
−0.764738 + 0.644341i \(0.777132\pi\)
\(38\) 0 0
\(39\) −157.812 −0.647951
\(40\) 0 0
\(41\) −43.2078 −0.164583 −0.0822917 0.996608i \(-0.526224\pi\)
−0.0822917 + 0.996608i \(0.526224\pi\)
\(42\) 0 0
\(43\) −252.000 −0.893713 −0.446856 0.894606i \(-0.647456\pi\)
−0.446856 + 0.894606i \(0.647456\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −306.076 −0.949909 −0.474955 0.880010i \(-0.657536\pi\)
−0.474955 + 0.880010i \(0.657536\pi\)
\(48\) 0 0
\(49\) −177.416 −0.517246
\(50\) 0 0
\(51\) 253.812 0.696877
\(52\) 0 0
\(53\) 455.208 1.17977 0.589883 0.807489i \(-0.299174\pi\)
0.589883 + 0.807489i \(0.299174\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 79.8117 0.185462
\(58\) 0 0
\(59\) 708.151 1.56260 0.781301 0.624155i \(-0.214557\pi\)
0.781301 + 0.624155i \(0.214557\pi\)
\(60\) 0 0
\(61\) −652.039 −1.36861 −0.684303 0.729197i \(-0.739894\pi\)
−0.684303 + 0.729197i \(0.739894\pi\)
\(62\) 0 0
\(63\) 115.812 0.231602
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −704.528 −1.28465 −0.642327 0.766431i \(-0.722031\pi\)
−0.642327 + 0.766431i \(0.722031\pi\)
\(68\) 0 0
\(69\) 409.019 0.713625
\(70\) 0 0
\(71\) −531.775 −0.888874 −0.444437 0.895810i \(-0.646596\pi\)
−0.444437 + 0.895810i \(0.646596\pi\)
\(72\) 0 0
\(73\) −57.6233 −0.0923877 −0.0461938 0.998932i \(-0.514709\pi\)
−0.0461938 + 0.998932i \(0.514709\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 640.000 0.947205
\(78\) 0 0
\(79\) 429.699 0.611961 0.305981 0.952038i \(-0.401016\pi\)
0.305981 + 0.952038i \(0.401016\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −227.697 −0.301120 −0.150560 0.988601i \(-0.548108\pi\)
−0.150560 + 0.988601i \(0.548108\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −18.0000 −0.0221816
\(88\) 0 0
\(89\) 1032.87 1.23016 0.615079 0.788466i \(-0.289124\pi\)
0.615079 + 0.788466i \(0.289124\pi\)
\(90\) 0 0
\(91\) 676.905 0.779768
\(92\) 0 0
\(93\) −141.396 −0.157657
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 152.416 0.159541 0.0797704 0.996813i \(-0.474581\pi\)
0.0797704 + 0.996813i \(0.474581\pi\)
\(98\) 0 0
\(99\) 447.623 0.454423
\(100\) 0 0
\(101\) −290.753 −0.286446 −0.143223 0.989690i \(-0.545747\pi\)
−0.143223 + 0.989690i \(0.545747\pi\)
\(102\) 0 0
\(103\) 5.62132 0.00537753 0.00268876 0.999996i \(-0.499144\pi\)
0.00268876 + 0.999996i \(0.499144\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2170.57 −1.96109 −0.980545 0.196294i \(-0.937109\pi\)
−0.980545 + 0.196294i \(0.937109\pi\)
\(108\) 0 0
\(109\) 1411.58 1.24042 0.620208 0.784438i \(-0.287048\pi\)
0.620208 + 0.784438i \(0.287048\pi\)
\(110\) 0 0
\(111\) 1032.68 0.883043
\(112\) 0 0
\(113\) 1557.81 1.29687 0.648436 0.761269i \(-0.275423\pi\)
0.648436 + 0.761269i \(0.275423\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 473.435 0.374095
\(118\) 0 0
\(119\) −1088.68 −0.838648
\(120\) 0 0
\(121\) 1142.66 0.858499
\(122\) 0 0
\(123\) 129.623 0.0950223
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1920.19 1.34165 0.670825 0.741616i \(-0.265940\pi\)
0.670825 + 0.741616i \(0.265940\pi\)
\(128\) 0 0
\(129\) 756.000 0.515985
\(130\) 0 0
\(131\) 600.303 0.400372 0.200186 0.979758i \(-0.435845\pi\)
0.200186 + 0.979758i \(0.435845\pi\)
\(132\) 0 0
\(133\) −342.338 −0.223191
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1953.51 1.21825 0.609124 0.793075i \(-0.291521\pi\)
0.609124 + 0.793075i \(0.291521\pi\)
\(138\) 0 0
\(139\) −2261.25 −1.37983 −0.689916 0.723890i \(-0.742352\pi\)
−0.689916 + 0.723890i \(0.742352\pi\)
\(140\) 0 0
\(141\) 918.227 0.548430
\(142\) 0 0
\(143\) 2616.30 1.52997
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 532.247 0.298632
\(148\) 0 0
\(149\) −2938.16 −1.61546 −0.807728 0.589555i \(-0.799303\pi\)
−0.807728 + 0.589555i \(0.799303\pi\)
\(150\) 0 0
\(151\) −1053.40 −0.567710 −0.283855 0.958867i \(-0.591613\pi\)
−0.283855 + 0.958867i \(0.591613\pi\)
\(152\) 0 0
\(153\) −761.435 −0.402342
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2789.43 −1.41797 −0.708985 0.705224i \(-0.750846\pi\)
−0.708985 + 0.705224i \(0.750846\pi\)
\(158\) 0 0
\(159\) −1365.62 −0.681138
\(160\) 0 0
\(161\) −1754.42 −0.858803
\(162\) 0 0
\(163\) −2170.35 −1.04291 −0.521456 0.853278i \(-0.674611\pi\)
−0.521456 + 0.853278i \(0.674611\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3175.74 −1.47153 −0.735767 0.677234i \(-0.763178\pi\)
−0.735767 + 0.677234i \(0.763178\pi\)
\(168\) 0 0
\(169\) 570.169 0.259522
\(170\) 0 0
\(171\) −239.435 −0.107076
\(172\) 0 0
\(173\) −947.740 −0.416505 −0.208252 0.978075i \(-0.566778\pi\)
−0.208252 + 0.978075i \(0.566778\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2124.45 −0.902168
\(178\) 0 0
\(179\) −3003.47 −1.25413 −0.627067 0.778965i \(-0.715745\pi\)
−0.627067 + 0.778965i \(0.715745\pi\)
\(180\) 0 0
\(181\) 1502.91 0.617184 0.308592 0.951194i \(-0.400142\pi\)
0.308592 + 0.951194i \(0.400142\pi\)
\(182\) 0 0
\(183\) 1956.12 0.790166
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4207.85 −1.64550
\(188\) 0 0
\(189\) −347.435 −0.133715
\(190\) 0 0
\(191\) −3144.00 −1.19106 −0.595528 0.803334i \(-0.703057\pi\)
−0.595528 + 0.803334i \(0.703057\pi\)
\(192\) 0 0
\(193\) 3100.87 1.15651 0.578253 0.815858i \(-0.303735\pi\)
0.578253 + 0.815858i \(0.303735\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2563.13 0.926982 0.463491 0.886102i \(-0.346597\pi\)
0.463491 + 0.886102i \(0.346597\pi\)
\(198\) 0 0
\(199\) −2929.17 −1.04343 −0.521717 0.853119i \(-0.674708\pi\)
−0.521717 + 0.853119i \(0.674708\pi\)
\(200\) 0 0
\(201\) 2113.58 0.741695
\(202\) 0 0
\(203\) 77.2078 0.0266942
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1227.06 −0.412012
\(208\) 0 0
\(209\) −1323.17 −0.437921
\(210\) 0 0
\(211\) −3876.80 −1.26488 −0.632440 0.774609i \(-0.717947\pi\)
−0.632440 + 0.774609i \(0.717947\pi\)
\(212\) 0 0
\(213\) 1595.32 0.513192
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 606.493 0.189730
\(218\) 0 0
\(219\) 172.870 0.0533400
\(220\) 0 0
\(221\) −4450.49 −1.35463
\(222\) 0 0
\(223\) 4268.94 1.28193 0.640963 0.767572i \(-0.278535\pi\)
0.640963 + 0.767572i \(0.278535\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4191.03 1.22541 0.612706 0.790311i \(-0.290081\pi\)
0.612706 + 0.790311i \(0.290081\pi\)
\(228\) 0 0
\(229\) 2036.12 0.587556 0.293778 0.955874i \(-0.405087\pi\)
0.293778 + 0.955874i \(0.405087\pi\)
\(230\) 0 0
\(231\) −1920.00 −0.546869
\(232\) 0 0
\(233\) 4544.76 1.27784 0.638921 0.769273i \(-0.279381\pi\)
0.638921 + 0.769273i \(0.279381\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1289.10 −0.353316
\(238\) 0 0
\(239\) −2068.00 −0.559697 −0.279848 0.960044i \(-0.590284\pi\)
−0.279848 + 0.960044i \(0.590284\pi\)
\(240\) 0 0
\(241\) −1901.25 −0.508175 −0.254087 0.967181i \(-0.581775\pi\)
−0.254087 + 0.967181i \(0.581775\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1399.47 −0.360510
\(248\) 0 0
\(249\) 683.091 0.173852
\(250\) 0 0
\(251\) 3794.42 0.954191 0.477095 0.878852i \(-0.341690\pi\)
0.477095 + 0.878852i \(0.341690\pi\)
\(252\) 0 0
\(253\) −6780.99 −1.68505
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3103.33 −0.753231 −0.376616 0.926370i \(-0.622912\pi\)
−0.376616 + 0.926370i \(0.622912\pi\)
\(258\) 0 0
\(259\) −4429.50 −1.06269
\(260\) 0 0
\(261\) 54.0000 0.0128066
\(262\) 0 0
\(263\) 4110.83 0.963821 0.481910 0.876221i \(-0.339943\pi\)
0.481910 + 0.876221i \(0.339943\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3098.61 −0.710232
\(268\) 0 0
\(269\) −4272.34 −0.968361 −0.484180 0.874968i \(-0.660882\pi\)
−0.484180 + 0.874968i \(0.660882\pi\)
\(270\) 0 0
\(271\) −4396.64 −0.985524 −0.492762 0.870164i \(-0.664013\pi\)
−0.492762 + 0.870164i \(0.664013\pi\)
\(272\) 0 0
\(273\) −2030.71 −0.450199
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3068.54 0.665598 0.332799 0.942998i \(-0.392007\pi\)
0.332799 + 0.942998i \(0.392007\pi\)
\(278\) 0 0
\(279\) 424.188 0.0910233
\(280\) 0 0
\(281\) 2672.71 0.567405 0.283702 0.958912i \(-0.408437\pi\)
0.283702 + 0.958912i \(0.408437\pi\)
\(282\) 0 0
\(283\) 6135.64 1.28878 0.644392 0.764696i \(-0.277111\pi\)
0.644392 + 0.764696i \(0.277111\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −555.996 −0.114353
\(288\) 0 0
\(289\) 2244.82 0.456914
\(290\) 0 0
\(291\) −457.247 −0.0921109
\(292\) 0 0
\(293\) −40.7922 −0.00813347 −0.00406674 0.999992i \(-0.501294\pi\)
−0.00406674 + 0.999992i \(0.501294\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1342.87 −0.262361
\(298\) 0 0
\(299\) −7172.00 −1.38718
\(300\) 0 0
\(301\) −3242.73 −0.620956
\(302\) 0 0
\(303\) 872.260 0.165380
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7126.80 −1.32491 −0.662456 0.749101i \(-0.730486\pi\)
−0.662456 + 0.749101i \(0.730486\pi\)
\(308\) 0 0
\(309\) −16.8640 −0.00310472
\(310\) 0 0
\(311\) 1704.52 0.310787 0.155393 0.987853i \(-0.450335\pi\)
0.155393 + 0.987853i \(0.450335\pi\)
\(312\) 0 0
\(313\) −5343.52 −0.964963 −0.482482 0.875906i \(-0.660265\pi\)
−0.482482 + 0.875906i \(0.660265\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5644.19 1.00003 0.500015 0.866017i \(-0.333328\pi\)
0.500015 + 0.866017i \(0.333328\pi\)
\(318\) 0 0
\(319\) 298.416 0.0523764
\(320\) 0 0
\(321\) 6511.70 1.13224
\(322\) 0 0
\(323\) 2250.79 0.387732
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4234.75 −0.716154
\(328\) 0 0
\(329\) −3938.57 −0.660001
\(330\) 0 0
\(331\) 2361.55 0.392152 0.196076 0.980589i \(-0.437180\pi\)
0.196076 + 0.980589i \(0.437180\pi\)
\(332\) 0 0
\(333\) −3098.04 −0.509825
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5117.10 −0.827141 −0.413570 0.910472i \(-0.635718\pi\)
−0.413570 + 0.910472i \(0.635718\pi\)
\(338\) 0 0
\(339\) −4673.43 −0.748750
\(340\) 0 0
\(341\) 2344.16 0.372267
\(342\) 0 0
\(343\) −6696.69 −1.05419
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6087.39 −0.941753 −0.470876 0.882199i \(-0.656062\pi\)
−0.470876 + 0.882199i \(0.656062\pi\)
\(348\) 0 0
\(349\) 7827.52 1.20057 0.600283 0.799788i \(-0.295055\pi\)
0.600283 + 0.799788i \(0.295055\pi\)
\(350\) 0 0
\(351\) −1420.30 −0.215984
\(352\) 0 0
\(353\) −2515.47 −0.379278 −0.189639 0.981854i \(-0.560732\pi\)
−0.189639 + 0.981854i \(0.560732\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3266.04 0.484194
\(358\) 0 0
\(359\) 915.914 0.134652 0.0673261 0.997731i \(-0.478553\pi\)
0.0673261 + 0.997731i \(0.478553\pi\)
\(360\) 0 0
\(361\) −6151.23 −0.896812
\(362\) 0 0
\(363\) −3427.99 −0.495655
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −12237.6 −1.74060 −0.870298 0.492525i \(-0.836074\pi\)
−0.870298 + 0.492525i \(0.836074\pi\)
\(368\) 0 0
\(369\) −388.870 −0.0548611
\(370\) 0 0
\(371\) 5857.60 0.819707
\(372\) 0 0
\(373\) −3825.20 −0.530996 −0.265498 0.964111i \(-0.585536\pi\)
−0.265498 + 0.964111i \(0.585536\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 315.623 0.0431178
\(378\) 0 0
\(379\) −8197.63 −1.11104 −0.555519 0.831504i \(-0.687481\pi\)
−0.555519 + 0.831504i \(0.687481\pi\)
\(380\) 0 0
\(381\) −5760.58 −0.774602
\(382\) 0 0
\(383\) −452.196 −0.0603294 −0.0301647 0.999545i \(-0.509603\pi\)
−0.0301647 + 0.999545i \(0.509603\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2268.00 −0.297904
\(388\) 0 0
\(389\) 6816.13 0.888410 0.444205 0.895925i \(-0.353486\pi\)
0.444205 + 0.895925i \(0.353486\pi\)
\(390\) 0 0
\(391\) 11534.9 1.49193
\(392\) 0 0
\(393\) −1800.91 −0.231155
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13380.3 −1.69153 −0.845766 0.533554i \(-0.820856\pi\)
−0.845766 + 0.533554i \(0.820856\pi\)
\(398\) 0 0
\(399\) 1027.01 0.128860
\(400\) 0 0
\(401\) 6130.00 0.763386 0.381693 0.924289i \(-0.375341\pi\)
0.381693 + 0.924289i \(0.375341\pi\)
\(402\) 0 0
\(403\) 2479.33 0.306462
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −17120.5 −2.08509
\(408\) 0 0
\(409\) −15003.5 −1.81387 −0.906935 0.421270i \(-0.861584\pi\)
−0.906935 + 0.421270i \(0.861584\pi\)
\(410\) 0 0
\(411\) −5860.54 −0.703355
\(412\) 0 0
\(413\) 9112.47 1.08570
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6783.75 0.796646
\(418\) 0 0
\(419\) −16300.7 −1.90057 −0.950287 0.311375i \(-0.899210\pi\)
−0.950287 + 0.311375i \(0.899210\pi\)
\(420\) 0 0
\(421\) 7663.91 0.887211 0.443606 0.896222i \(-0.353699\pi\)
0.443606 + 0.896222i \(0.353699\pi\)
\(422\) 0 0
\(423\) −2754.68 −0.316636
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8390.41 −0.950914
\(428\) 0 0
\(429\) −7848.91 −0.883331
\(430\) 0 0
\(431\) −3702.20 −0.413755 −0.206878 0.978367i \(-0.566330\pi\)
−0.206878 + 0.978367i \(0.566330\pi\)
\(432\) 0 0
\(433\) 10275.8 1.14047 0.570237 0.821481i \(-0.306852\pi\)
0.570237 + 0.821481i \(0.306852\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3627.17 0.397050
\(438\) 0 0
\(439\) 14178.6 1.54148 0.770738 0.637152i \(-0.219888\pi\)
0.770738 + 0.637152i \(0.219888\pi\)
\(440\) 0 0
\(441\) −1596.74 −0.172415
\(442\) 0 0
\(443\) −13395.6 −1.43666 −0.718332 0.695700i \(-0.755094\pi\)
−0.718332 + 0.695700i \(0.755094\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8814.47 0.932684
\(448\) 0 0
\(449\) −9490.39 −0.997504 −0.498752 0.866745i \(-0.666208\pi\)
−0.498752 + 0.866745i \(0.666208\pi\)
\(450\) 0 0
\(451\) −2148.98 −0.224371
\(452\) 0 0
\(453\) 3160.19 0.327767
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −587.064 −0.0600913 −0.0300456 0.999549i \(-0.509565\pi\)
−0.0300456 + 0.999549i \(0.509565\pi\)
\(458\) 0 0
\(459\) 2284.30 0.232292
\(460\) 0 0
\(461\) 2800.42 0.282925 0.141462 0.989944i \(-0.454820\pi\)
0.141462 + 0.989944i \(0.454820\pi\)
\(462\) 0 0
\(463\) 19745.6 1.98198 0.990988 0.133952i \(-0.0427668\pi\)
0.990988 + 0.133952i \(0.0427668\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13552.0 −1.34285 −0.671427 0.741071i \(-0.734318\pi\)
−0.671427 + 0.741071i \(0.734318\pi\)
\(468\) 0 0
\(469\) −9065.84 −0.892584
\(470\) 0 0
\(471\) 8368.30 0.818665
\(472\) 0 0
\(473\) −12533.5 −1.21837
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4096.87 0.393255
\(478\) 0 0
\(479\) 14131.9 1.34803 0.674014 0.738719i \(-0.264569\pi\)
0.674014 + 0.738719i \(0.264569\pi\)
\(480\) 0 0
\(481\) −18107.7 −1.71651
\(482\) 0 0
\(483\) 5263.25 0.495830
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7958.52 −0.740524 −0.370262 0.928927i \(-0.620732\pi\)
−0.370262 + 0.928927i \(0.620732\pi\)
\(488\) 0 0
\(489\) 6511.04 0.602125
\(490\) 0 0
\(491\) −10984.3 −1.00960 −0.504799 0.863237i \(-0.668433\pi\)
−0.504799 + 0.863237i \(0.668433\pi\)
\(492\) 0 0
\(493\) −507.623 −0.0463736
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6842.86 −0.617594
\(498\) 0 0
\(499\) −17710.3 −1.58882 −0.794411 0.607381i \(-0.792220\pi\)
−0.794411 + 0.607381i \(0.792220\pi\)
\(500\) 0 0
\(501\) 9527.23 0.849591
\(502\) 0 0
\(503\) 2279.89 0.202098 0.101049 0.994881i \(-0.467780\pi\)
0.101049 + 0.994881i \(0.467780\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1710.51 −0.149835
\(508\) 0 0
\(509\) −3254.99 −0.283447 −0.141724 0.989906i \(-0.545264\pi\)
−0.141724 + 0.989906i \(0.545264\pi\)
\(510\) 0 0
\(511\) −741.495 −0.0641914
\(512\) 0 0
\(513\) 718.305 0.0618205
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15223.0 −1.29498
\(518\) 0 0
\(519\) 2843.22 0.240469
\(520\) 0 0
\(521\) 21591.2 1.81560 0.907799 0.419406i \(-0.137762\pi\)
0.907799 + 0.419406i \(0.137762\pi\)
\(522\) 0 0
\(523\) −16868.8 −1.41037 −0.705185 0.709024i \(-0.749136\pi\)
−0.705185 + 0.709024i \(0.749136\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3987.55 −0.329603
\(528\) 0 0
\(529\) 6421.54 0.527784
\(530\) 0 0
\(531\) 6373.36 0.520867
\(532\) 0 0
\(533\) −2272.90 −0.184709
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9010.42 0.724075
\(538\) 0 0
\(539\) −8823.93 −0.705145
\(540\) 0 0
\(541\) −4366.23 −0.346985 −0.173493 0.984835i \(-0.555505\pi\)
−0.173493 + 0.984835i \(0.555505\pi\)
\(542\) 0 0
\(543\) −4508.73 −0.356331
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16579.7 1.29597 0.647987 0.761652i \(-0.275611\pi\)
0.647987 + 0.761652i \(0.275611\pi\)
\(548\) 0 0
\(549\) −5868.35 −0.456202
\(550\) 0 0
\(551\) −159.623 −0.0123415
\(552\) 0 0
\(553\) 5529.35 0.425193
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5971.66 0.454268 0.227134 0.973863i \(-0.427064\pi\)
0.227134 + 0.973863i \(0.427064\pi\)
\(558\) 0 0
\(559\) −13256.2 −1.00300
\(560\) 0 0
\(561\) 12623.6 0.950030
\(562\) 0 0
\(563\) 15561.2 1.16488 0.582441 0.812873i \(-0.302098\pi\)
0.582441 + 0.812873i \(0.302098\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1042.30 0.0772005
\(568\) 0 0
\(569\) 11871.6 0.874662 0.437331 0.899301i \(-0.355924\pi\)
0.437331 + 0.899301i \(0.355924\pi\)
\(570\) 0 0
\(571\) 18660.0 1.36759 0.683797 0.729672i \(-0.260327\pi\)
0.683797 + 0.729672i \(0.260327\pi\)
\(572\) 0 0
\(573\) 9432.00 0.687657
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7549.12 0.544669 0.272334 0.962203i \(-0.412204\pi\)
0.272334 + 0.962203i \(0.412204\pi\)
\(578\) 0 0
\(579\) −9302.61 −0.667709
\(580\) 0 0
\(581\) −2930.00 −0.209220
\(582\) 0 0
\(583\) 22640.2 1.60834
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4513.39 0.317355 0.158678 0.987330i \(-0.449277\pi\)
0.158678 + 0.987330i \(0.449277\pi\)
\(588\) 0 0
\(589\) −1253.90 −0.0877179
\(590\) 0 0
\(591\) −7689.39 −0.535193
\(592\) 0 0
\(593\) −8335.46 −0.577228 −0.288614 0.957445i \(-0.593194\pi\)
−0.288614 + 0.957445i \(0.593194\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8787.51 0.602427
\(598\) 0 0
\(599\) 10806.9 0.737162 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(600\) 0 0
\(601\) −25653.1 −1.74112 −0.870559 0.492063i \(-0.836243\pi\)
−0.870559 + 0.492063i \(0.836243\pi\)
\(602\) 0 0
\(603\) −6340.75 −0.428218
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8879.17 −0.593730 −0.296865 0.954919i \(-0.595941\pi\)
−0.296865 + 0.954919i \(0.595941\pi\)
\(608\) 0 0
\(609\) −231.623 −0.0154119
\(610\) 0 0
\(611\) −16100.8 −1.06607
\(612\) 0 0
\(613\) −3846.28 −0.253425 −0.126713 0.991939i \(-0.540443\pi\)
−0.126713 + 0.991939i \(0.540443\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15821.2 1.03231 0.516156 0.856495i \(-0.327363\pi\)
0.516156 + 0.856495i \(0.327363\pi\)
\(618\) 0 0
\(619\) 11518.7 0.747942 0.373971 0.927440i \(-0.377996\pi\)
0.373971 + 0.927440i \(0.377996\pi\)
\(620\) 0 0
\(621\) 3681.17 0.237875
\(622\) 0 0
\(623\) 13290.9 0.854719
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3969.51 0.252834
\(628\) 0 0
\(629\) 29123.0 1.84612
\(630\) 0 0
\(631\) −9053.33 −0.571169 −0.285584 0.958354i \(-0.592188\pi\)
−0.285584 + 0.958354i \(0.592188\pi\)
\(632\) 0 0
\(633\) 11630.4 0.730279
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −9332.75 −0.580498
\(638\) 0 0
\(639\) −4785.97 −0.296291
\(640\) 0 0
\(641\) 1700.77 0.104799 0.0523996 0.998626i \(-0.483313\pi\)
0.0523996 + 0.998626i \(0.483313\pi\)
\(642\) 0 0
\(643\) −17275.1 −1.05951 −0.529755 0.848151i \(-0.677716\pi\)
−0.529755 + 0.848151i \(0.677716\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11182.2 0.679468 0.339734 0.940522i \(-0.389663\pi\)
0.339734 + 0.940522i \(0.389663\pi\)
\(648\) 0 0
\(649\) 35220.6 2.13024
\(650\) 0 0
\(651\) −1819.48 −0.109541
\(652\) 0 0
\(653\) −20720.5 −1.24174 −0.620869 0.783915i \(-0.713220\pi\)
−0.620869 + 0.783915i \(0.713220\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −518.610 −0.0307959
\(658\) 0 0
\(659\) −8745.26 −0.516945 −0.258473 0.966019i \(-0.583219\pi\)
−0.258473 + 0.966019i \(0.583219\pi\)
\(660\) 0 0
\(661\) −25921.8 −1.52533 −0.762663 0.646796i \(-0.776108\pi\)
−0.762663 + 0.646796i \(0.776108\pi\)
\(662\) 0 0
\(663\) 13351.5 0.782094
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −818.039 −0.0474881
\(668\) 0 0
\(669\) −12806.8 −0.740120
\(670\) 0 0
\(671\) −32429.8 −1.86578
\(672\) 0 0
\(673\) 12111.4 0.693702 0.346851 0.937920i \(-0.387251\pi\)
0.346851 + 0.937920i \(0.387251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4961.50 −0.281663 −0.140832 0.990034i \(-0.544978\pi\)
−0.140832 + 0.990034i \(0.544978\pi\)
\(678\) 0 0
\(679\) 1961.28 0.110850
\(680\) 0 0
\(681\) −12573.1 −0.707492
\(682\) 0 0
\(683\) −24838.1 −1.39151 −0.695755 0.718279i \(-0.744930\pi\)
−0.695755 + 0.718279i \(0.744930\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6108.35 −0.339226
\(688\) 0 0
\(689\) 23945.7 1.32403
\(690\) 0 0
\(691\) −6857.65 −0.377536 −0.188768 0.982022i \(-0.560449\pi\)
−0.188768 + 0.982022i \(0.560449\pi\)
\(692\) 0 0
\(693\) 5760.00 0.315735
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3655.55 0.198657
\(698\) 0 0
\(699\) −13634.3 −0.737762
\(700\) 0 0
\(701\) 32760.0 1.76509 0.882545 0.470228i \(-0.155828\pi\)
0.882545 + 0.470228i \(0.155828\pi\)
\(702\) 0 0
\(703\) 9157.78 0.491312
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3741.40 −0.199024
\(708\) 0 0
\(709\) 8678.69 0.459711 0.229855 0.973225i \(-0.426175\pi\)
0.229855 + 0.973225i \(0.426175\pi\)
\(710\) 0 0
\(711\) 3867.29 0.203987
\(712\) 0 0
\(713\) −6425.97 −0.337524
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6203.99 0.323141
\(718\) 0 0
\(719\) −8160.85 −0.423294 −0.211647 0.977346i \(-0.567883\pi\)
−0.211647 + 0.977346i \(0.567883\pi\)
\(720\) 0 0
\(721\) 72.3349 0.00373633
\(722\) 0 0
\(723\) 5703.74 0.293395
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23907.3 1.21963 0.609816 0.792543i \(-0.291243\pi\)
0.609816 + 0.792543i \(0.291243\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 21320.2 1.07874
\(732\) 0 0
\(733\) 28946.6 1.45862 0.729309 0.684185i \(-0.239842\pi\)
0.729309 + 0.684185i \(0.239842\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35040.4 −1.75133
\(738\) 0 0
\(739\) −39038.5 −1.94324 −0.971620 0.236547i \(-0.923984\pi\)
−0.971620 + 0.236547i \(0.923984\pi\)
\(740\) 0 0
\(741\) 4198.40 0.208141
\(742\) 0 0
\(743\) −4175.77 −0.206183 −0.103092 0.994672i \(-0.532874\pi\)
−0.103092 + 0.994672i \(0.532874\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2049.27 −0.100373
\(748\) 0 0
\(749\) −27930.8 −1.36257
\(750\) 0 0
\(751\) −22219.1 −1.07961 −0.539805 0.841790i \(-0.681502\pi\)
−0.539805 + 0.841790i \(0.681502\pi\)
\(752\) 0 0
\(753\) −11383.3 −0.550902
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −22514.1 −1.08096 −0.540482 0.841355i \(-0.681758\pi\)
−0.540482 + 0.841355i \(0.681758\pi\)
\(758\) 0 0
\(759\) 20343.0 0.972863
\(760\) 0 0
\(761\) −26354.3 −1.25538 −0.627689 0.778465i \(-0.715999\pi\)
−0.627689 + 0.778465i \(0.715999\pi\)
\(762\) 0 0
\(763\) 18164.2 0.861846
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 37251.5 1.75368
\(768\) 0 0
\(769\) −26226.3 −1.22983 −0.614917 0.788591i \(-0.710811\pi\)
−0.614917 + 0.788591i \(0.710811\pi\)
\(770\) 0 0
\(771\) 9309.99 0.434878
\(772\) 0 0
\(773\) 28023.6 1.30393 0.651965 0.758249i \(-0.273945\pi\)
0.651965 + 0.758249i \(0.273945\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 13288.5 0.613543
\(778\) 0 0
\(779\) 1149.49 0.0528690
\(780\) 0 0
\(781\) −26448.3 −1.21177
\(782\) 0 0
\(783\) −162.000 −0.00739388
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16361.2 0.741061 0.370530 0.928820i \(-0.379176\pi\)
0.370530 + 0.928820i \(0.379176\pi\)
\(788\) 0 0
\(789\) −12332.5 −0.556462
\(790\) 0 0
\(791\) 20045.9 0.901073
\(792\) 0 0
\(793\) −34299.8 −1.53597
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20999.9 0.933319 0.466660 0.884437i \(-0.345457\pi\)
0.466660 + 0.884437i \(0.345457\pi\)
\(798\) 0 0
\(799\) 25895.2 1.14657
\(800\) 0 0
\(801\) 9295.83 0.410052
\(802\) 0 0
\(803\) −2865.95 −0.125949
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12817.0 0.559083
\(808\) 0 0
\(809\) −29390.4 −1.27727 −0.638635 0.769510i \(-0.720501\pi\)
−0.638635 + 0.769510i \(0.720501\pi\)
\(810\) 0 0
\(811\) 17296.9 0.748924 0.374462 0.927242i \(-0.377827\pi\)
0.374462 + 0.927242i \(0.377827\pi\)
\(812\) 0 0
\(813\) 13189.9 0.568993
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6704.18 0.287086
\(818\) 0 0
\(819\) 6092.14 0.259923
\(820\) 0 0
\(821\) 19989.1 0.849725 0.424862 0.905258i \(-0.360322\pi\)
0.424862 + 0.905258i \(0.360322\pi\)
\(822\) 0 0
\(823\) −20226.7 −0.856694 −0.428347 0.903614i \(-0.640904\pi\)
−0.428347 + 0.903614i \(0.640904\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24124.7 −1.01439 −0.507193 0.861833i \(-0.669317\pi\)
−0.507193 + 0.861833i \(0.669317\pi\)
\(828\) 0 0
\(829\) 43594.3 1.82641 0.913204 0.407503i \(-0.133600\pi\)
0.913204 + 0.407503i \(0.133600\pi\)
\(830\) 0 0
\(831\) −9205.61 −0.384283
\(832\) 0 0
\(833\) 15010.0 0.624330
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1272.57 −0.0525523
\(838\) 0 0
\(839\) 29937.7 1.23190 0.615949 0.787786i \(-0.288773\pi\)
0.615949 + 0.787786i \(0.288773\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) −8018.14 −0.327591
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14703.7 0.596489
\(848\) 0 0
\(849\) −18406.9 −0.744079
\(850\) 0 0
\(851\) 46931.9 1.89049
\(852\) 0 0
\(853\) 2147.83 0.0862136 0.0431068 0.999070i \(-0.486274\pi\)
0.0431068 + 0.999070i \(0.486274\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15771.5 −0.628638 −0.314319 0.949317i \(-0.601776\pi\)
−0.314319 + 0.949317i \(0.601776\pi\)
\(858\) 0 0
\(859\) 29364.8 1.16637 0.583187 0.812338i \(-0.301806\pi\)
0.583187 + 0.812338i \(0.301806\pi\)
\(860\) 0 0
\(861\) 1667.99 0.0660219
\(862\) 0 0
\(863\) 44989.3 1.77457 0.887285 0.461221i \(-0.152588\pi\)
0.887285 + 0.461221i \(0.152588\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6734.45 −0.263799
\(868\) 0 0
\(869\) 21371.5 0.834267
\(870\) 0 0
\(871\) −37060.9 −1.44175
\(872\) 0 0
\(873\) 1371.74 0.0531803
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36547.6 −1.40721 −0.703606 0.710590i \(-0.748428\pi\)
−0.703606 + 0.710590i \(0.748428\pi\)
\(878\) 0 0
\(879\) 122.377 0.00469586
\(880\) 0 0
\(881\) 21146.4 0.808672 0.404336 0.914610i \(-0.367503\pi\)
0.404336 + 0.914610i \(0.367503\pi\)
\(882\) 0 0
\(883\) −39103.3 −1.49030 −0.745148 0.666899i \(-0.767621\pi\)
−0.745148 + 0.666899i \(0.767621\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32169.3 1.21775 0.608873 0.793268i \(-0.291622\pi\)
0.608873 + 0.793268i \(0.291622\pi\)
\(888\) 0 0
\(889\) 24709.0 0.932184
\(890\) 0 0
\(891\) 4028.61 0.151474
\(892\) 0 0
\(893\) 8142.80 0.305138
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 21516.0 0.800890
\(898\) 0 0
\(899\) 282.792 0.0104913
\(900\) 0 0
\(901\) −38512.3 −1.42401
\(902\) 0 0
\(903\) 9728.18 0.358509
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10810.4 −0.395759 −0.197880 0.980226i \(-0.563405\pi\)
−0.197880 + 0.980226i \(0.563405\pi\)
\(908\) 0 0
\(909\) −2616.78 −0.0954820
\(910\) 0 0
\(911\) 244.183 0.00888053 0.00444026 0.999990i \(-0.498587\pi\)
0.00444026 + 0.999990i \(0.498587\pi\)
\(912\) 0 0
\(913\) −11324.7 −0.410508
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7724.68 0.278180
\(918\) 0 0
\(919\) 34164.1 1.22630 0.613151 0.789966i \(-0.289902\pi\)
0.613151 + 0.789966i \(0.289902\pi\)
\(920\) 0 0
\(921\) 21380.4 0.764938
\(922\) 0 0
\(923\) −27973.4 −0.997569
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 50.5919 0.00179251
\(928\) 0 0
\(929\) −35758.6 −1.26287 −0.631433 0.775431i \(-0.717533\pi\)
−0.631433 + 0.775431i \(0.717533\pi\)
\(930\) 0 0
\(931\) 4719.94 0.166155
\(932\) 0 0
\(933\) −5113.57 −0.179433
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40301.0 −1.40510 −0.702549 0.711635i \(-0.747955\pi\)
−0.702549 + 0.711635i \(0.747955\pi\)
\(938\) 0 0
\(939\) 16030.6 0.557122
\(940\) 0 0
\(941\) 48866.6 1.69289 0.846443 0.532480i \(-0.178740\pi\)
0.846443 + 0.532480i \(0.178740\pi\)
\(942\) 0 0
\(943\) 5890.94 0.203431
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42669.4 1.46417 0.732084 0.681214i \(-0.238548\pi\)
0.732084 + 0.681214i \(0.238548\pi\)
\(948\) 0 0
\(949\) −3031.21 −0.103685
\(950\) 0 0
\(951\) −16932.6 −0.577368
\(952\) 0 0
\(953\) 42523.5 1.44541 0.722703 0.691158i \(-0.242899\pi\)
0.722703 + 0.691158i \(0.242899\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −895.247 −0.0302395
\(958\) 0 0
\(959\) 25137.7 0.846444
\(960\) 0 0
\(961\) −27569.6 −0.925433
\(962\) 0 0
\(963\) −19535.1 −0.653697
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 13205.1 0.439138 0.219569 0.975597i \(-0.429535\pi\)
0.219569 + 0.975597i \(0.429535\pi\)
\(968\) 0 0
\(969\) −6752.38 −0.223857
\(970\) 0 0
\(971\) −3545.55 −0.117180 −0.0585901 0.998282i \(-0.518661\pi\)
−0.0585901 + 0.998282i \(0.518661\pi\)
\(972\) 0 0
\(973\) −29097.7 −0.958713
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13070.8 0.428015 0.214008 0.976832i \(-0.431348\pi\)
0.214008 + 0.976832i \(0.431348\pi\)
\(978\) 0 0
\(979\) 51370.7 1.67703
\(980\) 0 0
\(981\) 12704.3 0.413472
\(982\) 0 0
\(983\) 12342.3 0.400467 0.200234 0.979748i \(-0.435830\pi\)
0.200234 + 0.979748i \(0.435830\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 11815.7 0.381052
\(988\) 0 0
\(989\) 34357.6 1.10466
\(990\) 0 0
\(991\) 35095.4 1.12497 0.562484 0.826808i \(-0.309846\pi\)
0.562484 + 0.826808i \(0.309846\pi\)
\(992\) 0 0
\(993\) −7084.64 −0.226409
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 46486.0 1.47666 0.738328 0.674442i \(-0.235616\pi\)
0.738328 + 0.674442i \(0.235616\pi\)
\(998\) 0 0
\(999\) 9294.13 0.294348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.y.1.2 2
4.3 odd 2 2400.4.a.bb.1.1 2
5.4 even 2 480.4.a.r.1.1 yes 2
15.14 odd 2 1440.4.a.y.1.1 2
20.19 odd 2 480.4.a.o.1.2 2
40.19 odd 2 960.4.a.bn.1.2 2
40.29 even 2 960.4.a.bk.1.1 2
60.59 even 2 1440.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.o.1.2 2 20.19 odd 2
480.4.a.r.1.1 yes 2 5.4 even 2
960.4.a.bk.1.1 2 40.29 even 2
960.4.a.bn.1.2 2 40.19 odd 2
1440.4.a.s.1.2 2 60.59 even 2
1440.4.a.y.1.1 2 15.14 odd 2
2400.4.a.y.1.2 2 1.1 even 1 trivial
2400.4.a.bb.1.1 2 4.3 odd 2