Properties

Label 2400.4.a.x.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.80625 q^{7} +9.00000 q^{9} +39.2250 q^{11} -78.4187 q^{13} +95.2562 q^{17} -133.256 q^{19} -20.4187 q^{21} -66.8062 q^{23} -27.0000 q^{27} +99.6750 q^{29} +322.031 q^{31} -117.675 q^{33} -108.744 q^{37} +235.256 q^{39} +278.187 q^{41} -381.675 q^{43} -211.519 q^{47} -296.675 q^{49} -285.769 q^{51} +411.862 q^{53} +399.769 q^{57} +447.225 q^{59} +158.837 q^{61} +61.2562 q^{63} -455.475 q^{67} +200.419 q^{69} +630.450 q^{71} -58.8375 q^{73} +266.975 q^{77} +1257.32 q^{79} +81.0000 q^{81} +229.800 q^{83} -299.025 q^{87} -1178.19 q^{89} -533.737 q^{91} -966.094 q^{93} -1692.05 q^{97} +353.025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 12 q^{7} + 18 q^{9} - 24 q^{11} - 80 q^{13} - 40 q^{17} - 36 q^{19} + 36 q^{21} - 108 q^{23} - 54 q^{27} - 108 q^{29} + 516 q^{31} + 72 q^{33} - 448 q^{37} + 240 q^{39} - 212 q^{41} - 456 q^{43}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.80625 0.367503 0.183751 0.982973i \(-0.441176\pi\)
0.183751 + 0.982973i \(0.441176\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 39.2250 1.07516 0.537581 0.843212i \(-0.319338\pi\)
0.537581 + 0.843212i \(0.319338\pi\)
\(12\) 0 0
\(13\) −78.4187 −1.67303 −0.836517 0.547941i \(-0.815412\pi\)
−0.836517 + 0.547941i \(0.815412\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 95.2562 1.35900 0.679501 0.733675i \(-0.262196\pi\)
0.679501 + 0.733675i \(0.262196\pi\)
\(18\) 0 0
\(19\) −133.256 −1.60900 −0.804502 0.593950i \(-0.797568\pi\)
−0.804502 + 0.593950i \(0.797568\pi\)
\(20\) 0 0
\(21\) −20.4187 −0.212178
\(22\) 0 0
\(23\) −66.8062 −0.605655 −0.302828 0.953045i \(-0.597931\pi\)
−0.302828 + 0.953045i \(0.597931\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 99.6750 0.638248 0.319124 0.947713i \(-0.396611\pi\)
0.319124 + 0.947713i \(0.396611\pi\)
\(30\) 0 0
\(31\) 322.031 1.86576 0.932879 0.360189i \(-0.117288\pi\)
0.932879 + 0.360189i \(0.117288\pi\)
\(32\) 0 0
\(33\) −117.675 −0.620745
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −108.744 −0.483172 −0.241586 0.970379i \(-0.577668\pi\)
−0.241586 + 0.970379i \(0.577668\pi\)
\(38\) 0 0
\(39\) 235.256 0.965927
\(40\) 0 0
\(41\) 278.187 1.05965 0.529824 0.848108i \(-0.322258\pi\)
0.529824 + 0.848108i \(0.322258\pi\)
\(42\) 0 0
\(43\) −381.675 −1.35360 −0.676801 0.736166i \(-0.736634\pi\)
−0.676801 + 0.736166i \(0.736634\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −211.519 −0.656451 −0.328225 0.944599i \(-0.606451\pi\)
−0.328225 + 0.944599i \(0.606451\pi\)
\(48\) 0 0
\(49\) −296.675 −0.864942
\(50\) 0 0
\(51\) −285.769 −0.784620
\(52\) 0 0
\(53\) 411.862 1.06743 0.533714 0.845665i \(-0.320796\pi\)
0.533714 + 0.845665i \(0.320796\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 399.769 0.928959
\(58\) 0 0
\(59\) 447.225 0.986843 0.493421 0.869790i \(-0.335746\pi\)
0.493421 + 0.869790i \(0.335746\pi\)
\(60\) 0 0
\(61\) 158.837 0.333394 0.166697 0.986008i \(-0.446690\pi\)
0.166697 + 0.986008i \(0.446690\pi\)
\(62\) 0 0
\(63\) 61.2562 0.122501
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −455.475 −0.830524 −0.415262 0.909702i \(-0.636310\pi\)
−0.415262 + 0.909702i \(0.636310\pi\)
\(68\) 0 0
\(69\) 200.419 0.349675
\(70\) 0 0
\(71\) 630.450 1.05381 0.526906 0.849924i \(-0.323352\pi\)
0.526906 + 0.849924i \(0.323352\pi\)
\(72\) 0 0
\(73\) −58.8375 −0.0943343 −0.0471672 0.998887i \(-0.515019\pi\)
−0.0471672 + 0.998887i \(0.515019\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 266.975 0.395125
\(78\) 0 0
\(79\) 1257.32 1.79063 0.895313 0.445438i \(-0.146952\pi\)
0.895313 + 0.445438i \(0.146952\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 229.800 0.303901 0.151951 0.988388i \(-0.451444\pi\)
0.151951 + 0.988388i \(0.451444\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −299.025 −0.368492
\(88\) 0 0
\(89\) −1178.19 −1.40323 −0.701616 0.712555i \(-0.747538\pi\)
−0.701616 + 0.712555i \(0.747538\pi\)
\(90\) 0 0
\(91\) −533.737 −0.614845
\(92\) 0 0
\(93\) −966.094 −1.07720
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1692.05 −1.77115 −0.885575 0.464496i \(-0.846236\pi\)
−0.885575 + 0.464496i \(0.846236\pi\)
\(98\) 0 0
\(99\) 353.025 0.358387
\(100\) 0 0
\(101\) −791.675 −0.779947 −0.389973 0.920826i \(-0.627516\pi\)
−0.389973 + 0.920826i \(0.627516\pi\)
\(102\) 0 0
\(103\) −362.494 −0.346773 −0.173386 0.984854i \(-0.555471\pi\)
−0.173386 + 0.984854i \(0.555471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2114.36 1.91031 0.955155 0.296107i \(-0.0956885\pi\)
0.955155 + 0.296107i \(0.0956885\pi\)
\(108\) 0 0
\(109\) −2149.72 −1.88905 −0.944524 0.328442i \(-0.893477\pi\)
−0.944524 + 0.328442i \(0.893477\pi\)
\(110\) 0 0
\(111\) 326.231 0.278959
\(112\) 0 0
\(113\) −577.119 −0.480449 −0.240225 0.970717i \(-0.577221\pi\)
−0.240225 + 0.970717i \(0.577221\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −705.769 −0.557678
\(118\) 0 0
\(119\) 648.338 0.499437
\(120\) 0 0
\(121\) 207.600 0.155973
\(122\) 0 0
\(123\) −834.562 −0.611788
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −55.5188 −0.0387913 −0.0193956 0.999812i \(-0.506174\pi\)
−0.0193956 + 0.999812i \(0.506174\pi\)
\(128\) 0 0
\(129\) 1145.02 0.781503
\(130\) 0 0
\(131\) 1577.06 1.05182 0.525911 0.850540i \(-0.323725\pi\)
0.525911 + 0.850540i \(0.323725\pi\)
\(132\) 0 0
\(133\) −906.975 −0.591314
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1133.12 0.706634 0.353317 0.935504i \(-0.385054\pi\)
0.353317 + 0.935504i \(0.385054\pi\)
\(138\) 0 0
\(139\) −425.194 −0.259457 −0.129728 0.991550i \(-0.541411\pi\)
−0.129728 + 0.991550i \(0.541411\pi\)
\(140\) 0 0
\(141\) 634.556 0.379002
\(142\) 0 0
\(143\) −3075.97 −1.79878
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 890.025 0.499374
\(148\) 0 0
\(149\) −136.975 −0.0753116 −0.0376558 0.999291i \(-0.511989\pi\)
−0.0376558 + 0.999291i \(0.511989\pi\)
\(150\) 0 0
\(151\) 493.631 0.266034 0.133017 0.991114i \(-0.457534\pi\)
0.133017 + 0.991114i \(0.457534\pi\)
\(152\) 0 0
\(153\) 857.306 0.453001
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 597.394 0.303677 0.151838 0.988405i \(-0.451481\pi\)
0.151838 + 0.988405i \(0.451481\pi\)
\(158\) 0 0
\(159\) −1235.59 −0.616280
\(160\) 0 0
\(161\) −454.700 −0.222580
\(162\) 0 0
\(163\) 2272.35 1.09193 0.545964 0.837809i \(-0.316164\pi\)
0.545964 + 0.837809i \(0.316164\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2092.82 0.969744 0.484872 0.874585i \(-0.338866\pi\)
0.484872 + 0.874585i \(0.338866\pi\)
\(168\) 0 0
\(169\) 3952.50 1.79904
\(170\) 0 0
\(171\) −1199.31 −0.536335
\(172\) 0 0
\(173\) −58.7498 −0.0258189 −0.0129094 0.999917i \(-0.504109\pi\)
−0.0129094 + 0.999917i \(0.504109\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1341.67 −0.569754
\(178\) 0 0
\(179\) −2348.96 −0.980836 −0.490418 0.871487i \(-0.663156\pi\)
−0.490418 + 0.871487i \(0.663156\pi\)
\(180\) 0 0
\(181\) 2103.12 0.863669 0.431834 0.901953i \(-0.357867\pi\)
0.431834 + 0.901953i \(0.357867\pi\)
\(182\) 0 0
\(183\) −476.512 −0.192485
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3736.43 1.46115
\(188\) 0 0
\(189\) −183.769 −0.0707260
\(190\) 0 0
\(191\) −3203.17 −1.21347 −0.606737 0.794903i \(-0.707522\pi\)
−0.606737 + 0.794903i \(0.707522\pi\)
\(192\) 0 0
\(193\) −471.113 −0.175707 −0.0878534 0.996133i \(-0.528001\pi\)
−0.0878534 + 0.996133i \(0.528001\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1535.21 0.555225 0.277613 0.960693i \(-0.410457\pi\)
0.277613 + 0.960693i \(0.410457\pi\)
\(198\) 0 0
\(199\) 4361.98 1.55383 0.776916 0.629604i \(-0.216783\pi\)
0.776916 + 0.629604i \(0.216783\pi\)
\(200\) 0 0
\(201\) 1366.42 0.479503
\(202\) 0 0
\(203\) 678.413 0.234558
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −601.256 −0.201885
\(208\) 0 0
\(209\) −5226.98 −1.72994
\(210\) 0 0
\(211\) −385.444 −0.125758 −0.0628792 0.998021i \(-0.520028\pi\)
−0.0628792 + 0.998021i \(0.520028\pi\)
\(212\) 0 0
\(213\) −1891.35 −0.608419
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2191.82 0.685672
\(218\) 0 0
\(219\) 176.512 0.0544640
\(220\) 0 0
\(221\) −7469.87 −2.27366
\(222\) 0 0
\(223\) 922.744 0.277092 0.138546 0.990356i \(-0.455757\pi\)
0.138546 + 0.990356i \(0.455757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1390.35 0.406523 0.203262 0.979124i \(-0.434846\pi\)
0.203262 + 0.979124i \(0.434846\pi\)
\(228\) 0 0
\(229\) 750.837 0.216667 0.108333 0.994115i \(-0.465449\pi\)
0.108333 + 0.994115i \(0.465449\pi\)
\(230\) 0 0
\(231\) −800.925 −0.228126
\(232\) 0 0
\(233\) 4457.39 1.25328 0.626639 0.779310i \(-0.284430\pi\)
0.626639 + 0.779310i \(0.284430\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3771.96 −1.03382
\(238\) 0 0
\(239\) 6388.69 1.72908 0.864539 0.502565i \(-0.167610\pi\)
0.864539 + 0.502565i \(0.167610\pi\)
\(240\) 0 0
\(241\) 5719.02 1.52861 0.764305 0.644855i \(-0.223082\pi\)
0.764305 + 0.644855i \(0.223082\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10449.8 2.69192
\(248\) 0 0
\(249\) −689.400 −0.175458
\(250\) 0 0
\(251\) −3449.44 −0.867436 −0.433718 0.901049i \(-0.642799\pi\)
−0.433718 + 0.901049i \(0.642799\pi\)
\(252\) 0 0
\(253\) −2620.47 −0.651177
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1012.83 0.245831 0.122916 0.992417i \(-0.460776\pi\)
0.122916 + 0.992417i \(0.460776\pi\)
\(258\) 0 0
\(259\) −740.137 −0.177567
\(260\) 0 0
\(261\) 897.075 0.212749
\(262\) 0 0
\(263\) 6716.31 1.57470 0.787348 0.616509i \(-0.211453\pi\)
0.787348 + 0.616509i \(0.211453\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3534.56 0.810156
\(268\) 0 0
\(269\) 1299.67 0.294582 0.147291 0.989093i \(-0.452945\pi\)
0.147291 + 0.989093i \(0.452945\pi\)
\(270\) 0 0
\(271\) 1690.11 0.378844 0.189422 0.981896i \(-0.439339\pi\)
0.189422 + 0.981896i \(0.439339\pi\)
\(272\) 0 0
\(273\) 1601.21 0.354981
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6230.89 1.35155 0.675773 0.737110i \(-0.263810\pi\)
0.675773 + 0.737110i \(0.263810\pi\)
\(278\) 0 0
\(279\) 2898.28 0.621920
\(280\) 0 0
\(281\) −4759.76 −1.01048 −0.505238 0.862980i \(-0.668595\pi\)
−0.505238 + 0.862980i \(0.668595\pi\)
\(282\) 0 0
\(283\) −2665.95 −0.559980 −0.279990 0.960003i \(-0.590331\pi\)
−0.279990 + 0.960003i \(0.590331\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1893.41 0.389424
\(288\) 0 0
\(289\) 4160.75 0.846886
\(290\) 0 0
\(291\) 5076.15 1.02257
\(292\) 0 0
\(293\) −517.063 −0.103096 −0.0515480 0.998671i \(-0.516416\pi\)
−0.0515480 + 0.998671i \(0.516416\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1059.07 −0.206915
\(298\) 0 0
\(299\) 5238.86 1.01328
\(300\) 0 0
\(301\) −2597.77 −0.497453
\(302\) 0 0
\(303\) 2375.02 0.450302
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 123.038 0.0228734 0.0114367 0.999935i \(-0.496360\pi\)
0.0114367 + 0.999935i \(0.496360\pi\)
\(308\) 0 0
\(309\) 1087.48 0.200209
\(310\) 0 0
\(311\) 699.938 0.127620 0.0638100 0.997962i \(-0.479675\pi\)
0.0638100 + 0.997962i \(0.479675\pi\)
\(312\) 0 0
\(313\) −1268.89 −0.229143 −0.114571 0.993415i \(-0.536550\pi\)
−0.114571 + 0.993415i \(0.536550\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2507.21 −0.444224 −0.222112 0.975021i \(-0.571295\pi\)
−0.222112 + 0.975021i \(0.571295\pi\)
\(318\) 0 0
\(319\) 3909.75 0.686219
\(320\) 0 0
\(321\) −6343.09 −1.10292
\(322\) 0 0
\(323\) −12693.5 −2.18664
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6449.17 1.09064
\(328\) 0 0
\(329\) −1439.65 −0.241248
\(330\) 0 0
\(331\) 4639.26 0.770382 0.385191 0.922837i \(-0.374136\pi\)
0.385191 + 0.922837i \(0.374136\pi\)
\(332\) 0 0
\(333\) −978.694 −0.161057
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5643.79 −0.912275 −0.456137 0.889909i \(-0.650767\pi\)
−0.456137 + 0.889909i \(0.650767\pi\)
\(338\) 0 0
\(339\) 1731.36 0.277387
\(340\) 0 0
\(341\) 12631.7 2.00599
\(342\) 0 0
\(343\) −4353.79 −0.685371
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11753.5 1.81833 0.909167 0.416433i \(-0.136720\pi\)
0.909167 + 0.416433i \(0.136720\pi\)
\(348\) 0 0
\(349\) 476.812 0.0731322 0.0365661 0.999331i \(-0.488358\pi\)
0.0365661 + 0.999331i \(0.488358\pi\)
\(350\) 0 0
\(351\) 2117.31 0.321976
\(352\) 0 0
\(353\) 11743.4 1.77064 0.885321 0.464981i \(-0.153939\pi\)
0.885321 + 0.464981i \(0.153939\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1945.01 −0.288350
\(358\) 0 0
\(359\) 4552.87 0.669336 0.334668 0.942336i \(-0.391376\pi\)
0.334668 + 0.942336i \(0.391376\pi\)
\(360\) 0 0
\(361\) 10898.2 1.58889
\(362\) 0 0
\(363\) −622.800 −0.0900511
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −792.056 −0.112657 −0.0563283 0.998412i \(-0.517939\pi\)
−0.0563283 + 0.998412i \(0.517939\pi\)
\(368\) 0 0
\(369\) 2503.69 0.353216
\(370\) 0 0
\(371\) 2803.24 0.392283
\(372\) 0 0
\(373\) 10232.0 1.42036 0.710179 0.704021i \(-0.248614\pi\)
0.710179 + 0.704021i \(0.248614\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7816.39 −1.06781
\(378\) 0 0
\(379\) 2064.39 0.279791 0.139895 0.990166i \(-0.455323\pi\)
0.139895 + 0.990166i \(0.455323\pi\)
\(380\) 0 0
\(381\) 166.556 0.0223962
\(382\) 0 0
\(383\) 2202.51 0.293845 0.146923 0.989148i \(-0.453063\pi\)
0.146923 + 0.989148i \(0.453063\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3435.07 −0.451201
\(388\) 0 0
\(389\) 1898.55 0.247456 0.123728 0.992316i \(-0.460515\pi\)
0.123728 + 0.992316i \(0.460515\pi\)
\(390\) 0 0
\(391\) −6363.71 −0.823086
\(392\) 0 0
\(393\) −4731.19 −0.607269
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5070.61 0.641024 0.320512 0.947244i \(-0.396145\pi\)
0.320512 + 0.947244i \(0.396145\pi\)
\(398\) 0 0
\(399\) 2720.93 0.341395
\(400\) 0 0
\(401\) −4768.98 −0.593893 −0.296947 0.954894i \(-0.595968\pi\)
−0.296947 + 0.954894i \(0.595968\pi\)
\(402\) 0 0
\(403\) −25253.3 −3.12148
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4265.47 −0.519488
\(408\) 0 0
\(409\) −7003.60 −0.846713 −0.423357 0.905963i \(-0.639148\pi\)
−0.423357 + 0.905963i \(0.639148\pi\)
\(410\) 0 0
\(411\) −3399.36 −0.407975
\(412\) 0 0
\(413\) 3043.92 0.362668
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1275.58 0.149797
\(418\) 0 0
\(419\) 6643.09 0.774549 0.387275 0.921964i \(-0.373417\pi\)
0.387275 + 0.921964i \(0.373417\pi\)
\(420\) 0 0
\(421\) −13952.5 −1.61521 −0.807603 0.589727i \(-0.799235\pi\)
−0.807603 + 0.589727i \(0.799235\pi\)
\(422\) 0 0
\(423\) −1903.67 −0.218817
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1081.09 0.122523
\(428\) 0 0
\(429\) 9227.92 1.03853
\(430\) 0 0
\(431\) 1549.27 0.173146 0.0865730 0.996246i \(-0.472408\pi\)
0.0865730 + 0.996246i \(0.472408\pi\)
\(432\) 0 0
\(433\) −7022.39 −0.779387 −0.389693 0.920945i \(-0.627419\pi\)
−0.389693 + 0.920945i \(0.627419\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8902.35 0.974501
\(438\) 0 0
\(439\) 3107.31 0.337822 0.168911 0.985631i \(-0.445975\pi\)
0.168911 + 0.985631i \(0.445975\pi\)
\(440\) 0 0
\(441\) −2670.07 −0.288314
\(442\) 0 0
\(443\) −15463.8 −1.65848 −0.829241 0.558892i \(-0.811227\pi\)
−0.829241 + 0.558892i \(0.811227\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 410.925 0.0434812
\(448\) 0 0
\(449\) 14043.0 1.47601 0.738005 0.674795i \(-0.235768\pi\)
0.738005 + 0.674795i \(0.235768\pi\)
\(450\) 0 0
\(451\) 10911.9 1.13929
\(452\) 0 0
\(453\) −1480.89 −0.153595
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13860.5 1.41875 0.709375 0.704831i \(-0.248977\pi\)
0.709375 + 0.704831i \(0.248977\pi\)
\(458\) 0 0
\(459\) −2571.92 −0.261540
\(460\) 0 0
\(461\) −7593.75 −0.767193 −0.383597 0.923501i \(-0.625315\pi\)
−0.383597 + 0.923501i \(0.625315\pi\)
\(462\) 0 0
\(463\) 6630.96 0.665587 0.332793 0.943000i \(-0.392009\pi\)
0.332793 + 0.943000i \(0.392009\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6699.79 −0.663874 −0.331937 0.943302i \(-0.607702\pi\)
−0.331937 + 0.943302i \(0.607702\pi\)
\(468\) 0 0
\(469\) −3100.08 −0.305220
\(470\) 0 0
\(471\) −1792.18 −0.175328
\(472\) 0 0
\(473\) −14971.2 −1.45534
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3706.76 0.355809
\(478\) 0 0
\(479\) 19984.2 1.90627 0.953133 0.302552i \(-0.0978385\pi\)
0.953133 + 0.302552i \(0.0978385\pi\)
\(480\) 0 0
\(481\) 8527.55 0.808363
\(482\) 0 0
\(483\) 1364.10 0.128507
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20569.1 1.91392 0.956958 0.290227i \(-0.0937309\pi\)
0.956958 + 0.290227i \(0.0937309\pi\)
\(488\) 0 0
\(489\) −6817.05 −0.630425
\(490\) 0 0
\(491\) 19131.8 1.75847 0.879233 0.476391i \(-0.158055\pi\)
0.879233 + 0.476391i \(0.158055\pi\)
\(492\) 0 0
\(493\) 9494.66 0.867380
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4291.00 0.387279
\(498\) 0 0
\(499\) 16396.9 1.47100 0.735498 0.677526i \(-0.236948\pi\)
0.735498 + 0.677526i \(0.236948\pi\)
\(500\) 0 0
\(501\) −6278.46 −0.559882
\(502\) 0 0
\(503\) 7013.16 0.621672 0.310836 0.950464i \(-0.399391\pi\)
0.310836 + 0.950464i \(0.399391\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −11857.5 −1.03868
\(508\) 0 0
\(509\) 12431.8 1.08257 0.541287 0.840838i \(-0.317937\pi\)
0.541287 + 0.840838i \(0.317937\pi\)
\(510\) 0 0
\(511\) −400.463 −0.0346681
\(512\) 0 0
\(513\) 3597.92 0.309653
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −8296.82 −0.705791
\(518\) 0 0
\(519\) 176.249 0.0149065
\(520\) 0 0
\(521\) −6707.07 −0.563997 −0.281998 0.959415i \(-0.590997\pi\)
−0.281998 + 0.959415i \(0.590997\pi\)
\(522\) 0 0
\(523\) 16645.5 1.39169 0.695846 0.718191i \(-0.255030\pi\)
0.695846 + 0.718191i \(0.255030\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30675.5 2.53557
\(528\) 0 0
\(529\) −7703.93 −0.633182
\(530\) 0 0
\(531\) 4025.02 0.328948
\(532\) 0 0
\(533\) −21815.1 −1.77283
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7046.89 0.566286
\(538\) 0 0
\(539\) −11637.1 −0.929952
\(540\) 0 0
\(541\) 15644.5 1.24327 0.621636 0.783306i \(-0.286468\pi\)
0.621636 + 0.783306i \(0.286468\pi\)
\(542\) 0 0
\(543\) −6309.37 −0.498639
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11548.0 0.902667 0.451334 0.892355i \(-0.350948\pi\)
0.451334 + 0.892355i \(0.350948\pi\)
\(548\) 0 0
\(549\) 1429.54 0.111131
\(550\) 0 0
\(551\) −13282.3 −1.02694
\(552\) 0 0
\(553\) 8557.62 0.658060
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25455.4 −1.93641 −0.968206 0.250156i \(-0.919518\pi\)
−0.968206 + 0.250156i \(0.919518\pi\)
\(558\) 0 0
\(559\) 29930.5 2.26462
\(560\) 0 0
\(561\) −11209.3 −0.843594
\(562\) 0 0
\(563\) 9573.34 0.716639 0.358320 0.933599i \(-0.383350\pi\)
0.358320 + 0.933599i \(0.383350\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 551.306 0.0408337
\(568\) 0 0
\(569\) 13986.4 1.03048 0.515238 0.857047i \(-0.327704\pi\)
0.515238 + 0.857047i \(0.327704\pi\)
\(570\) 0 0
\(571\) −7881.02 −0.577601 −0.288801 0.957389i \(-0.593256\pi\)
−0.288801 + 0.957389i \(0.593256\pi\)
\(572\) 0 0
\(573\) 9609.52 0.700600
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9304.52 −0.671321 −0.335661 0.941983i \(-0.608960\pi\)
−0.335661 + 0.941983i \(0.608960\pi\)
\(578\) 0 0
\(579\) 1413.34 0.101444
\(580\) 0 0
\(581\) 1564.08 0.111685
\(582\) 0 0
\(583\) 16155.3 1.14766
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3335.66 −0.234544 −0.117272 0.993100i \(-0.537415\pi\)
−0.117272 + 0.993100i \(0.537415\pi\)
\(588\) 0 0
\(589\) −42912.7 −3.00201
\(590\) 0 0
\(591\) −4605.64 −0.320559
\(592\) 0 0
\(593\) 14241.4 0.986210 0.493105 0.869970i \(-0.335862\pi\)
0.493105 + 0.869970i \(0.335862\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13085.9 −0.897105
\(598\) 0 0
\(599\) −13333.6 −0.909508 −0.454754 0.890617i \(-0.650273\pi\)
−0.454754 + 0.890617i \(0.650273\pi\)
\(600\) 0 0
\(601\) 13080.5 0.887795 0.443897 0.896078i \(-0.353595\pi\)
0.443897 + 0.896078i \(0.353595\pi\)
\(602\) 0 0
\(603\) −4099.27 −0.276841
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20502.2 −1.37094 −0.685469 0.728102i \(-0.740403\pi\)
−0.685469 + 0.728102i \(0.740403\pi\)
\(608\) 0 0
\(609\) −2035.24 −0.135422
\(610\) 0 0
\(611\) 16587.0 1.09826
\(612\) 0 0
\(613\) 11003.5 0.725004 0.362502 0.931983i \(-0.381923\pi\)
0.362502 + 0.931983i \(0.381923\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13387.8 −0.873538 −0.436769 0.899574i \(-0.643877\pi\)
−0.436769 + 0.899574i \(0.643877\pi\)
\(618\) 0 0
\(619\) −25240.6 −1.63894 −0.819471 0.573121i \(-0.805733\pi\)
−0.819471 + 0.573121i \(0.805733\pi\)
\(620\) 0 0
\(621\) 1803.77 0.116558
\(622\) 0 0
\(623\) −8019.04 −0.515692
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 15680.9 0.998781
\(628\) 0 0
\(629\) −10358.5 −0.656632
\(630\) 0 0
\(631\) −23458.3 −1.47997 −0.739985 0.672623i \(-0.765168\pi\)
−0.739985 + 0.672623i \(0.765168\pi\)
\(632\) 0 0
\(633\) 1156.33 0.0726067
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 23264.9 1.44708
\(638\) 0 0
\(639\) 5674.05 0.351271
\(640\) 0 0
\(641\) 1962.14 0.120904 0.0604522 0.998171i \(-0.480746\pi\)
0.0604522 + 0.998171i \(0.480746\pi\)
\(642\) 0 0
\(643\) −30832.4 −1.89100 −0.945499 0.325624i \(-0.894426\pi\)
−0.945499 + 0.325624i \(0.894426\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19561.1 1.18861 0.594303 0.804241i \(-0.297428\pi\)
0.594303 + 0.804241i \(0.297428\pi\)
\(648\) 0 0
\(649\) 17542.4 1.06102
\(650\) 0 0
\(651\) −6575.47 −0.395873
\(652\) 0 0
\(653\) −32695.6 −1.95939 −0.979693 0.200505i \(-0.935742\pi\)
−0.979693 + 0.200505i \(0.935742\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −529.537 −0.0314448
\(658\) 0 0
\(659\) −29419.3 −1.73902 −0.869509 0.493918i \(-0.835564\pi\)
−0.869509 + 0.493918i \(0.835564\pi\)
\(660\) 0 0
\(661\) 25674.1 1.51075 0.755375 0.655293i \(-0.227455\pi\)
0.755375 + 0.655293i \(0.227455\pi\)
\(662\) 0 0
\(663\) 22409.6 1.31270
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6658.91 −0.386558
\(668\) 0 0
\(669\) −2768.23 −0.159979
\(670\) 0 0
\(671\) 6230.40 0.358453
\(672\) 0 0
\(673\) −19112.3 −1.09469 −0.547343 0.836908i \(-0.684361\pi\)
−0.547343 + 0.836908i \(0.684361\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3091.32 −0.175494 −0.0877469 0.996143i \(-0.527967\pi\)
−0.0877469 + 0.996143i \(0.527967\pi\)
\(678\) 0 0
\(679\) −11516.5 −0.650903
\(680\) 0 0
\(681\) −4171.05 −0.234706
\(682\) 0 0
\(683\) 13351.7 0.748006 0.374003 0.927427i \(-0.377985\pi\)
0.374003 + 0.927427i \(0.377985\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2252.51 −0.125093
\(688\) 0 0
\(689\) −32297.7 −1.78584
\(690\) 0 0
\(691\) −10622.7 −0.584815 −0.292408 0.956294i \(-0.594456\pi\)
−0.292408 + 0.956294i \(0.594456\pi\)
\(692\) 0 0
\(693\) 2402.78 0.131708
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 26499.1 1.44006
\(698\) 0 0
\(699\) −13372.2 −0.723580
\(700\) 0 0
\(701\) 18023.4 0.971092 0.485546 0.874211i \(-0.338621\pi\)
0.485546 + 0.874211i \(0.338621\pi\)
\(702\) 0 0
\(703\) 14490.8 0.777426
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5388.34 −0.286633
\(708\) 0 0
\(709\) 14437.1 0.764732 0.382366 0.924011i \(-0.375109\pi\)
0.382366 + 0.924011i \(0.375109\pi\)
\(710\) 0 0
\(711\) 11315.9 0.596875
\(712\) 0 0
\(713\) −21513.7 −1.13001
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19166.1 −0.998284
\(718\) 0 0
\(719\) 31328.7 1.62498 0.812491 0.582974i \(-0.198111\pi\)
0.812491 + 0.582974i \(0.198111\pi\)
\(720\) 0 0
\(721\) −2467.22 −0.127440
\(722\) 0 0
\(723\) −17157.1 −0.882543
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −19209.6 −0.979978 −0.489989 0.871729i \(-0.662999\pi\)
−0.489989 + 0.871729i \(0.662999\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −36356.9 −1.83955
\(732\) 0 0
\(733\) 14683.0 0.739874 0.369937 0.929057i \(-0.379379\pi\)
0.369937 + 0.929057i \(0.379379\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17866.0 −0.892948
\(738\) 0 0
\(739\) −25001.5 −1.24451 −0.622256 0.782814i \(-0.713784\pi\)
−0.622256 + 0.782814i \(0.713784\pi\)
\(740\) 0 0
\(741\) −31349.4 −1.55418
\(742\) 0 0
\(743\) 5512.07 0.272165 0.136082 0.990698i \(-0.456549\pi\)
0.136082 + 0.990698i \(0.456549\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2068.20 0.101300
\(748\) 0 0
\(749\) 14390.9 0.702044
\(750\) 0 0
\(751\) 9405.13 0.456988 0.228494 0.973545i \(-0.426620\pi\)
0.228494 + 0.973545i \(0.426620\pi\)
\(752\) 0 0
\(753\) 10348.3 0.500815
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37411.5 1.79623 0.898113 0.439765i \(-0.144938\pi\)
0.898113 + 0.439765i \(0.144938\pi\)
\(758\) 0 0
\(759\) 7861.42 0.375957
\(760\) 0 0
\(761\) −23465.7 −1.11778 −0.558891 0.829241i \(-0.688773\pi\)
−0.558891 + 0.829241i \(0.688773\pi\)
\(762\) 0 0
\(763\) −14631.6 −0.694231
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35070.8 −1.65102
\(768\) 0 0
\(769\) −25677.3 −1.20409 −0.602046 0.798461i \(-0.705648\pi\)
−0.602046 + 0.798461i \(0.705648\pi\)
\(770\) 0 0
\(771\) −3038.49 −0.141931
\(772\) 0 0
\(773\) 24591.8 1.14425 0.572125 0.820167i \(-0.306119\pi\)
0.572125 + 0.820167i \(0.306119\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2220.41 0.102518
\(778\) 0 0
\(779\) −37070.2 −1.70498
\(780\) 0 0
\(781\) 24729.4 1.13302
\(782\) 0 0
\(783\) −2691.22 −0.122831
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35055.7 1.58780 0.793902 0.608046i \(-0.208046\pi\)
0.793902 + 0.608046i \(0.208046\pi\)
\(788\) 0 0
\(789\) −20148.9 −0.909151
\(790\) 0 0
\(791\) −3928.01 −0.176566
\(792\) 0 0
\(793\) −12455.8 −0.557780
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15901.1 −0.706709 −0.353354 0.935490i \(-0.614959\pi\)
−0.353354 + 0.935490i \(0.614959\pi\)
\(798\) 0 0
\(799\) −20148.5 −0.892118
\(800\) 0 0
\(801\) −10603.7 −0.467744
\(802\) 0 0
\(803\) −2307.90 −0.101425
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3899.02 −0.170077
\(808\) 0 0
\(809\) 14097.0 0.612640 0.306320 0.951929i \(-0.400902\pi\)
0.306320 + 0.951929i \(0.400902\pi\)
\(810\) 0 0
\(811\) 6846.50 0.296441 0.148220 0.988954i \(-0.452646\pi\)
0.148220 + 0.988954i \(0.452646\pi\)
\(812\) 0 0
\(813\) −5070.32 −0.218725
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 50860.6 2.17795
\(818\) 0 0
\(819\) −4803.64 −0.204948
\(820\) 0 0
\(821\) −3531.25 −0.150111 −0.0750557 0.997179i \(-0.523913\pi\)
−0.0750557 + 0.997179i \(0.523913\pi\)
\(822\) 0 0
\(823\) 20412.7 0.864572 0.432286 0.901736i \(-0.357707\pi\)
0.432286 + 0.901736i \(0.357707\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6429.97 0.270365 0.135183 0.990821i \(-0.456838\pi\)
0.135183 + 0.990821i \(0.456838\pi\)
\(828\) 0 0
\(829\) −15491.8 −0.649039 −0.324520 0.945879i \(-0.605203\pi\)
−0.324520 + 0.945879i \(0.605203\pi\)
\(830\) 0 0
\(831\) −18692.7 −0.780315
\(832\) 0 0
\(833\) −28260.1 −1.17546
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8694.84 −0.359065
\(838\) 0 0
\(839\) 8101.80 0.333379 0.166690 0.986009i \(-0.446692\pi\)
0.166690 + 0.986009i \(0.446692\pi\)
\(840\) 0 0
\(841\) −14453.9 −0.592640
\(842\) 0 0
\(843\) 14279.3 0.583398
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1412.98 0.0573205
\(848\) 0 0
\(849\) 7997.85 0.323304
\(850\) 0 0
\(851\) 7264.76 0.292636
\(852\) 0 0
\(853\) −18343.8 −0.736317 −0.368159 0.929763i \(-0.620012\pi\)
−0.368159 + 0.929763i \(0.620012\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34069.4 −1.35798 −0.678991 0.734147i \(-0.737582\pi\)
−0.678991 + 0.734147i \(0.737582\pi\)
\(858\) 0 0
\(859\) −22555.2 −0.895894 −0.447947 0.894060i \(-0.647845\pi\)
−0.447947 + 0.894060i \(0.647845\pi\)
\(860\) 0 0
\(861\) −5680.24 −0.224834
\(862\) 0 0
\(863\) 26094.0 1.02926 0.514630 0.857413i \(-0.327929\pi\)
0.514630 + 0.857413i \(0.327929\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −12482.3 −0.488950
\(868\) 0 0
\(869\) 49318.3 1.92521
\(870\) 0 0
\(871\) 35717.8 1.38950
\(872\) 0 0
\(873\) −15228.4 −0.590384
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32275.2 1.24271 0.621355 0.783530i \(-0.286583\pi\)
0.621355 + 0.783530i \(0.286583\pi\)
\(878\) 0 0
\(879\) 1551.19 0.0595225
\(880\) 0 0
\(881\) 32969.3 1.26080 0.630399 0.776271i \(-0.282891\pi\)
0.630399 + 0.776271i \(0.282891\pi\)
\(882\) 0 0
\(883\) 19708.7 0.751134 0.375567 0.926795i \(-0.377448\pi\)
0.375567 + 0.926795i \(0.377448\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −29868.2 −1.13064 −0.565319 0.824872i \(-0.691247\pi\)
−0.565319 + 0.824872i \(0.691247\pi\)
\(888\) 0 0
\(889\) −377.875 −0.0142559
\(890\) 0 0
\(891\) 3177.22 0.119462
\(892\) 0 0
\(893\) 28186.2 1.05623
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −15716.6 −0.585018
\(898\) 0 0
\(899\) 32098.5 1.19082
\(900\) 0 0
\(901\) 39232.5 1.45064
\(902\) 0 0
\(903\) 7793.32 0.287204
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25106.4 −0.919124 −0.459562 0.888146i \(-0.651994\pi\)
−0.459562 + 0.888146i \(0.651994\pi\)
\(908\) 0 0
\(909\) −7125.07 −0.259982
\(910\) 0 0
\(911\) −17411.2 −0.633215 −0.316608 0.948557i \(-0.602544\pi\)
−0.316608 + 0.948557i \(0.602544\pi\)
\(912\) 0 0
\(913\) 9013.90 0.326743
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10733.9 0.386547
\(918\) 0 0
\(919\) 38193.1 1.37092 0.685460 0.728111i \(-0.259601\pi\)
0.685460 + 0.728111i \(0.259601\pi\)
\(920\) 0 0
\(921\) −369.113 −0.0132059
\(922\) 0 0
\(923\) −49439.1 −1.76306
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3262.44 −0.115591
\(928\) 0 0
\(929\) −36084.2 −1.27437 −0.637183 0.770713i \(-0.719900\pi\)
−0.637183 + 0.770713i \(0.719900\pi\)
\(930\) 0 0
\(931\) 39533.8 1.39169
\(932\) 0 0
\(933\) −2099.81 −0.0736814
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12854.3 0.448166 0.224083 0.974570i \(-0.428061\pi\)
0.224083 + 0.974570i \(0.428061\pi\)
\(938\) 0 0
\(939\) 3806.66 0.132296
\(940\) 0 0
\(941\) −40368.6 −1.39849 −0.699245 0.714882i \(-0.746480\pi\)
−0.699245 + 0.714882i \(0.746480\pi\)
\(942\) 0 0
\(943\) −18584.7 −0.641781
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18858.1 −0.647103 −0.323551 0.946211i \(-0.604877\pi\)
−0.323551 + 0.946211i \(0.604877\pi\)
\(948\) 0 0
\(949\) 4613.96 0.157825
\(950\) 0 0
\(951\) 7521.64 0.256473
\(952\) 0 0
\(953\) 37267.2 1.26674 0.633370 0.773849i \(-0.281671\pi\)
0.633370 + 0.773849i \(0.281671\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −11729.3 −0.396189
\(958\) 0 0
\(959\) 7712.29 0.259690
\(960\) 0 0
\(961\) 73913.1 2.48106
\(962\) 0 0
\(963\) 19029.3 0.636770
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −33833.4 −1.12514 −0.562569 0.826750i \(-0.690187\pi\)
−0.562569 + 0.826750i \(0.690187\pi\)
\(968\) 0 0
\(969\) 38080.5 1.26246
\(970\) 0 0
\(971\) −42354.0 −1.39980 −0.699899 0.714242i \(-0.746772\pi\)
−0.699899 + 0.714242i \(0.746772\pi\)
\(972\) 0 0
\(973\) −2893.97 −0.0953510
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26051.8 −0.853092 −0.426546 0.904466i \(-0.640270\pi\)
−0.426546 + 0.904466i \(0.640270\pi\)
\(978\) 0 0
\(979\) −46214.4 −1.50870
\(980\) 0 0
\(981\) −19347.5 −0.629683
\(982\) 0 0
\(983\) 34810.4 1.12948 0.564740 0.825269i \(-0.308977\pi\)
0.564740 + 0.825269i \(0.308977\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4318.95 0.139284
\(988\) 0 0
\(989\) 25498.3 0.819816
\(990\) 0 0
\(991\) −15896.1 −0.509542 −0.254771 0.967001i \(-0.582000\pi\)
−0.254771 + 0.967001i \(0.582000\pi\)
\(992\) 0 0
\(993\) −13917.8 −0.444780
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −43981.7 −1.39711 −0.698553 0.715559i \(-0.746172\pi\)
−0.698553 + 0.715559i \(0.746172\pi\)
\(998\) 0 0
\(999\) 2936.08 0.0929865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.x.1.2 2
4.3 odd 2 2400.4.a.bc.1.1 2
5.4 even 2 480.4.a.q.1.1 yes 2
15.14 odd 2 1440.4.a.bg.1.1 2
20.19 odd 2 480.4.a.m.1.2 2
40.19 odd 2 960.4.a.bo.1.2 2
40.29 even 2 960.4.a.bm.1.1 2
60.59 even 2 1440.4.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.m.1.2 2 20.19 odd 2
480.4.a.q.1.1 yes 2 5.4 even 2
960.4.a.bm.1.1 2 40.29 even 2
960.4.a.bo.1.2 2 40.19 odd 2
1440.4.a.z.1.2 2 60.59 even 2
1440.4.a.bg.1.1 2 15.14 odd 2
2400.4.a.x.1.2 2 1.1 even 1 trivial
2400.4.a.bc.1.1 2 4.3 odd 2