Properties

Label 2400.4.a.o
Level $2400$
Weight $4$
Character orbit 2400.a
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 16 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 16 q^{7} + 9 q^{9} + 24 q^{11} + 14 q^{13} + 18 q^{17} + 36 q^{19} - 48 q^{21} - 104 q^{23} + 27 q^{27} - 250 q^{29} - 28 q^{31} + 72 q^{33} + 54 q^{37} + 42 q^{39} + 354 q^{41} - 228 q^{43} - 408 q^{47} - 87 q^{49} + 54 q^{51} - 262 q^{53} + 108 q^{57} - 64 q^{59} + 374 q^{61} - 144 q^{63} - 300 q^{67} - 312 q^{69} + 1016 q^{71} - 274 q^{73} - 384 q^{77} + 788 q^{79} + 81 q^{81} + 396 q^{83} - 750 q^{87} + 786 q^{89} - 224 q^{91} - 84 q^{93} + 1086 q^{97} + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 −16.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.4.a.o 1
4.b odd 2 1 2400.4.a.h 1
5.b even 2 1 480.4.a.f 1
15.d odd 2 1 1440.4.a.h 1
20.d odd 2 1 480.4.a.i yes 1
40.e odd 2 1 960.4.a.c 1
40.f even 2 1 960.4.a.z 1
60.h even 2 1 1440.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.a.f 1 5.b even 2 1
480.4.a.i yes 1 20.d odd 2 1
960.4.a.c 1 40.e odd 2 1
960.4.a.z 1 40.f even 2 1
1440.4.a.c 1 60.h even 2 1
1440.4.a.h 1 15.d odd 2 1
2400.4.a.h 1 4.b odd 2 1
2400.4.a.o 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2400))\):

\( T_{7} + 16 \) Copy content Toggle raw display
\( T_{11} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 16 \) Copy content Toggle raw display
$11$ \( T - 24 \) Copy content Toggle raw display
$13$ \( T - 14 \) Copy content Toggle raw display
$17$ \( T - 18 \) Copy content Toggle raw display
$19$ \( T - 36 \) Copy content Toggle raw display
$23$ \( T + 104 \) Copy content Toggle raw display
$29$ \( T + 250 \) Copy content Toggle raw display
$31$ \( T + 28 \) Copy content Toggle raw display
$37$ \( T - 54 \) Copy content Toggle raw display
$41$ \( T - 354 \) Copy content Toggle raw display
$43$ \( T + 228 \) Copy content Toggle raw display
$47$ \( T + 408 \) Copy content Toggle raw display
$53$ \( T + 262 \) Copy content Toggle raw display
$59$ \( T + 64 \) Copy content Toggle raw display
$61$ \( T - 374 \) Copy content Toggle raw display
$67$ \( T + 300 \) Copy content Toggle raw display
$71$ \( T - 1016 \) Copy content Toggle raw display
$73$ \( T + 274 \) Copy content Toggle raw display
$79$ \( T - 788 \) Copy content Toggle raw display
$83$ \( T - 396 \) Copy content Toggle raw display
$89$ \( T - 786 \) Copy content Toggle raw display
$97$ \( T - 1086 \) Copy content Toggle raw display
show more
show less