Properties

Label 2400.4.a.cb.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1965645.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 43x^{2} + 100x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.383633\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +11.4568 q^{7} +9.00000 q^{9} -16.0092 q^{11} +73.9390 q^{13} -103.922 q^{17} -27.9470 q^{19} +34.3705 q^{21} -112.741 q^{23} +27.0000 q^{27} -241.111 q^{29} +303.899 q^{31} -48.0277 q^{33} -177.584 q^{37} +221.817 q^{39} +4.91366 q^{41} -171.309 q^{43} -373.482 q^{47} -211.741 q^{49} -311.765 q^{51} +45.4391 q^{53} -83.8411 q^{57} -711.166 q^{59} +567.928 q^{61} +103.111 q^{63} -390.568 q^{67} -338.223 q^{69} -687.567 q^{71} +431.420 q^{73} -183.415 q^{77} +1086.42 q^{79} +81.0000 q^{81} -720.446 q^{83} -723.334 q^{87} -633.410 q^{89} +847.106 q^{91} +911.696 q^{93} -219.505 q^{97} -144.083 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} - 12 q^{7} + 36 q^{9} - 36 q^{21} - 104 q^{23} + 108 q^{27} - 444 q^{29} - 96 q^{41} + 240 q^{43} - 800 q^{47} - 500 q^{49} - 504 q^{61} - 108 q^{63} - 984 q^{67} - 312 q^{69} + 324 q^{81}+ \cdots + 936 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 11.4568 0.618611 0.309305 0.950963i \(-0.399903\pi\)
0.309305 + 0.950963i \(0.399903\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −16.0092 −0.438815 −0.219407 0.975633i \(-0.570412\pi\)
−0.219407 + 0.975633i \(0.570412\pi\)
\(12\) 0 0
\(13\) 73.9390 1.57746 0.788730 0.614740i \(-0.210739\pi\)
0.788730 + 0.614740i \(0.210739\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −103.922 −1.48263 −0.741315 0.671157i \(-0.765798\pi\)
−0.741315 + 0.671157i \(0.765798\pi\)
\(18\) 0 0
\(19\) −27.9470 −0.337447 −0.168723 0.985663i \(-0.553964\pi\)
−0.168723 + 0.985663i \(0.553964\pi\)
\(20\) 0 0
\(21\) 34.3705 0.357155
\(22\) 0 0
\(23\) −112.741 −1.02209 −0.511046 0.859553i \(-0.670742\pi\)
−0.511046 + 0.859553i \(0.670742\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −241.111 −1.54391 −0.771953 0.635679i \(-0.780720\pi\)
−0.771953 + 0.635679i \(0.780720\pi\)
\(30\) 0 0
\(31\) 303.899 1.76070 0.880352 0.474321i \(-0.157306\pi\)
0.880352 + 0.474321i \(0.157306\pi\)
\(32\) 0 0
\(33\) −48.0277 −0.253350
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −177.584 −0.789045 −0.394523 0.918886i \(-0.629090\pi\)
−0.394523 + 0.918886i \(0.629090\pi\)
\(38\) 0 0
\(39\) 221.817 0.910747
\(40\) 0 0
\(41\) 4.91366 0.0187167 0.00935836 0.999956i \(-0.497021\pi\)
0.00935836 + 0.999956i \(0.497021\pi\)
\(42\) 0 0
\(43\) −171.309 −0.607545 −0.303772 0.952745i \(-0.598246\pi\)
−0.303772 + 0.952745i \(0.598246\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −373.482 −1.15911 −0.579553 0.814935i \(-0.696773\pi\)
−0.579553 + 0.814935i \(0.696773\pi\)
\(48\) 0 0
\(49\) −211.741 −0.617321
\(50\) 0 0
\(51\) −311.765 −0.855997
\(52\) 0 0
\(53\) 45.4391 0.117765 0.0588824 0.998265i \(-0.481246\pi\)
0.0588824 + 0.998265i \(0.481246\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −83.8411 −0.194825
\(58\) 0 0
\(59\) −711.166 −1.56925 −0.784627 0.619968i \(-0.787145\pi\)
−0.784627 + 0.619968i \(0.787145\pi\)
\(60\) 0 0
\(61\) 567.928 1.19206 0.596031 0.802962i \(-0.296744\pi\)
0.596031 + 0.802962i \(0.296744\pi\)
\(62\) 0 0
\(63\) 103.111 0.206204
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −390.568 −0.712172 −0.356086 0.934453i \(-0.615889\pi\)
−0.356086 + 0.934453i \(0.615889\pi\)
\(68\) 0 0
\(69\) −338.223 −0.590105
\(70\) 0 0
\(71\) −687.567 −1.14928 −0.574642 0.818405i \(-0.694859\pi\)
−0.574642 + 0.818405i \(0.694859\pi\)
\(72\) 0 0
\(73\) 431.420 0.691696 0.345848 0.938290i \(-0.387591\pi\)
0.345848 + 0.938290i \(0.387591\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −183.415 −0.271455
\(78\) 0 0
\(79\) 1086.42 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −720.446 −0.952762 −0.476381 0.879239i \(-0.658052\pi\)
−0.476381 + 0.879239i \(0.658052\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −723.334 −0.891375
\(88\) 0 0
\(89\) −633.410 −0.754397 −0.377198 0.926132i \(-0.623113\pi\)
−0.377198 + 0.926132i \(0.623113\pi\)
\(90\) 0 0
\(91\) 847.106 0.975834
\(92\) 0 0
\(93\) 911.696 1.01654
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −219.505 −0.229766 −0.114883 0.993379i \(-0.536649\pi\)
−0.114883 + 0.993379i \(0.536649\pi\)
\(98\) 0 0
\(99\) −144.083 −0.146272
\(100\) 0 0
\(101\) −131.925 −0.129970 −0.0649851 0.997886i \(-0.520700\pi\)
−0.0649851 + 0.997886i \(0.520700\pi\)
\(102\) 0 0
\(103\) 812.349 0.777117 0.388559 0.921424i \(-0.372973\pi\)
0.388559 + 0.921424i \(0.372973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1730.82 1.56378 0.781891 0.623415i \(-0.214255\pi\)
0.781891 + 0.623415i \(0.214255\pi\)
\(108\) 0 0
\(109\) −226.295 −0.198854 −0.0994272 0.995045i \(-0.531701\pi\)
−0.0994272 + 0.995045i \(0.531701\pi\)
\(110\) 0 0
\(111\) −532.753 −0.455555
\(112\) 0 0
\(113\) 650.648 0.541662 0.270831 0.962627i \(-0.412702\pi\)
0.270831 + 0.962627i \(0.412702\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 665.451 0.525820
\(118\) 0 0
\(119\) −1190.61 −0.917171
\(120\) 0 0
\(121\) −1074.70 −0.807442
\(122\) 0 0
\(123\) 14.7410 0.0108061
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2255.61 −1.57601 −0.788003 0.615671i \(-0.788885\pi\)
−0.788003 + 0.615671i \(0.788885\pi\)
\(128\) 0 0
\(129\) −513.928 −0.350766
\(130\) 0 0
\(131\) 2028.19 1.35270 0.676352 0.736579i \(-0.263560\pi\)
0.676352 + 0.736579i \(0.263560\pi\)
\(132\) 0 0
\(133\) −320.184 −0.208748
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 215.710 0.134521 0.0672603 0.997735i \(-0.478574\pi\)
0.0672603 + 0.997735i \(0.478574\pi\)
\(138\) 0 0
\(139\) 532.652 0.325028 0.162514 0.986706i \(-0.448040\pi\)
0.162514 + 0.986706i \(0.448040\pi\)
\(140\) 0 0
\(141\) −1120.45 −0.669210
\(142\) 0 0
\(143\) −1183.70 −0.692212
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −635.223 −0.356410
\(148\) 0 0
\(149\) −469.011 −0.257872 −0.128936 0.991653i \(-0.541156\pi\)
−0.128936 + 0.991653i \(0.541156\pi\)
\(150\) 0 0
\(151\) −3108.96 −1.67552 −0.837759 0.546040i \(-0.816135\pi\)
−0.837759 + 0.546040i \(0.816135\pi\)
\(152\) 0 0
\(153\) −935.295 −0.494210
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −14.5264 −0.00738427 −0.00369214 0.999993i \(-0.501175\pi\)
−0.00369214 + 0.999993i \(0.501175\pi\)
\(158\) 0 0
\(159\) 136.317 0.0679916
\(160\) 0 0
\(161\) −1291.65 −0.632277
\(162\) 0 0
\(163\) 432.050 0.207612 0.103806 0.994598i \(-0.466898\pi\)
0.103806 + 0.994598i \(0.466898\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −463.849 −0.214932 −0.107466 0.994209i \(-0.534274\pi\)
−0.107466 + 0.994209i \(0.534274\pi\)
\(168\) 0 0
\(169\) 3269.97 1.48838
\(170\) 0 0
\(171\) −251.523 −0.112482
\(172\) 0 0
\(173\) −2565.85 −1.12762 −0.563809 0.825905i \(-0.690664\pi\)
−0.563809 + 0.825905i \(0.690664\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2133.50 −0.906009
\(178\) 0 0
\(179\) 194.598 0.0812568 0.0406284 0.999174i \(-0.487064\pi\)
0.0406284 + 0.999174i \(0.487064\pi\)
\(180\) 0 0
\(181\) −3437.26 −1.41154 −0.705772 0.708439i \(-0.749400\pi\)
−0.705772 + 0.708439i \(0.749400\pi\)
\(182\) 0 0
\(183\) 1703.78 0.688237
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1663.70 0.650600
\(188\) 0 0
\(189\) 309.334 0.119052
\(190\) 0 0
\(191\) 4117.81 1.55997 0.779985 0.625798i \(-0.215226\pi\)
0.779985 + 0.625798i \(0.215226\pi\)
\(192\) 0 0
\(193\) −1199.51 −0.447371 −0.223686 0.974661i \(-0.571809\pi\)
−0.223686 + 0.974661i \(0.571809\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2167.35 −0.783845 −0.391922 0.919998i \(-0.628190\pi\)
−0.391922 + 0.919998i \(0.628190\pi\)
\(198\) 0 0
\(199\) −1816.36 −0.647025 −0.323513 0.946224i \(-0.604864\pi\)
−0.323513 + 0.946224i \(0.604864\pi\)
\(200\) 0 0
\(201\) −1171.70 −0.411173
\(202\) 0 0
\(203\) −2762.37 −0.955077
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1014.67 −0.340697
\(208\) 0 0
\(209\) 447.410 0.148077
\(210\) 0 0
\(211\) −536.372 −0.175002 −0.0875009 0.996164i \(-0.527888\pi\)
−0.0875009 + 0.996164i \(0.527888\pi\)
\(212\) 0 0
\(213\) −2062.70 −0.663540
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3481.72 1.08919
\(218\) 0 0
\(219\) 1294.26 0.399351
\(220\) 0 0
\(221\) −7683.86 −2.33879
\(222\) 0 0
\(223\) 5669.44 1.70248 0.851242 0.524773i \(-0.175850\pi\)
0.851242 + 0.524773i \(0.175850\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2681.34 0.783994 0.391997 0.919966i \(-0.371784\pi\)
0.391997 + 0.919966i \(0.371784\pi\)
\(228\) 0 0
\(229\) −4182.30 −1.20687 −0.603436 0.797411i \(-0.706202\pi\)
−0.603436 + 0.797411i \(0.706202\pi\)
\(230\) 0 0
\(231\) −550.245 −0.156725
\(232\) 0 0
\(233\) −1625.28 −0.456976 −0.228488 0.973547i \(-0.573378\pi\)
−0.228488 + 0.973547i \(0.573378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3259.25 0.893294
\(238\) 0 0
\(239\) 4102.63 1.11036 0.555182 0.831729i \(-0.312648\pi\)
0.555182 + 0.831729i \(0.312648\pi\)
\(240\) 0 0
\(241\) −5815.34 −1.55435 −0.777176 0.629283i \(-0.783349\pi\)
−0.777176 + 0.629283i \(0.783349\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2066.37 −0.532309
\(248\) 0 0
\(249\) −2161.34 −0.550077
\(250\) 0 0
\(251\) −60.5934 −0.0152375 −0.00761877 0.999971i \(-0.502425\pi\)
−0.00761877 + 0.999971i \(0.502425\pi\)
\(252\) 0 0
\(253\) 1804.90 0.448509
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7615.89 1.84851 0.924253 0.381780i \(-0.124689\pi\)
0.924253 + 0.381780i \(0.124689\pi\)
\(258\) 0 0
\(259\) −2034.55 −0.488112
\(260\) 0 0
\(261\) −2170.00 −0.514635
\(262\) 0 0
\(263\) −6838.09 −1.60325 −0.801625 0.597827i \(-0.796031\pi\)
−0.801625 + 0.597827i \(0.796031\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1900.23 −0.435551
\(268\) 0 0
\(269\) −1783.58 −0.404263 −0.202131 0.979358i \(-0.564787\pi\)
−0.202131 + 0.979358i \(0.564787\pi\)
\(270\) 0 0
\(271\) −3660.86 −0.820595 −0.410298 0.911952i \(-0.634575\pi\)
−0.410298 + 0.911952i \(0.634575\pi\)
\(272\) 0 0
\(273\) 2541.32 0.563398
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1767.95 0.383487 0.191743 0.981445i \(-0.438586\pi\)
0.191743 + 0.981445i \(0.438586\pi\)
\(278\) 0 0
\(279\) 2735.09 0.586901
\(280\) 0 0
\(281\) −7877.06 −1.67226 −0.836132 0.548528i \(-0.815188\pi\)
−0.836132 + 0.548528i \(0.815188\pi\)
\(282\) 0 0
\(283\) 1186.41 0.249204 0.124602 0.992207i \(-0.460235\pi\)
0.124602 + 0.992207i \(0.460235\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 56.2950 0.0115784
\(288\) 0 0
\(289\) 5886.72 1.19819
\(290\) 0 0
\(291\) −658.514 −0.132656
\(292\) 0 0
\(293\) 5000.35 0.997010 0.498505 0.866887i \(-0.333883\pi\)
0.498505 + 0.866887i \(0.333883\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −432.249 −0.0844499
\(298\) 0 0
\(299\) −8335.95 −1.61231
\(300\) 0 0
\(301\) −1962.66 −0.375834
\(302\) 0 0
\(303\) −395.774 −0.0750383
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3101.08 0.576508 0.288254 0.957554i \(-0.406925\pi\)
0.288254 + 0.957554i \(0.406925\pi\)
\(308\) 0 0
\(309\) 2437.05 0.448669
\(310\) 0 0
\(311\) 3781.74 0.689528 0.344764 0.938689i \(-0.387959\pi\)
0.344764 + 0.938689i \(0.387959\pi\)
\(312\) 0 0
\(313\) −5791.67 −1.04589 −0.522946 0.852366i \(-0.675167\pi\)
−0.522946 + 0.852366i \(0.675167\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3540.27 0.627261 0.313630 0.949545i \(-0.398455\pi\)
0.313630 + 0.949545i \(0.398455\pi\)
\(318\) 0 0
\(319\) 3860.01 0.677489
\(320\) 0 0
\(321\) 5192.46 0.902850
\(322\) 0 0
\(323\) 2904.30 0.500309
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −678.885 −0.114809
\(328\) 0 0
\(329\) −4278.92 −0.717035
\(330\) 0 0
\(331\) −5480.73 −0.910116 −0.455058 0.890462i \(-0.650381\pi\)
−0.455058 + 0.890462i \(0.650381\pi\)
\(332\) 0 0
\(333\) −1598.26 −0.263015
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6231.03 −1.00720 −0.503599 0.863937i \(-0.667991\pi\)
−0.503599 + 0.863937i \(0.667991\pi\)
\(338\) 0 0
\(339\) 1951.94 0.312729
\(340\) 0 0
\(341\) −4865.18 −0.772623
\(342\) 0 0
\(343\) −6355.57 −1.00049
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11243.1 1.73937 0.869686 0.493605i \(-0.164321\pi\)
0.869686 + 0.493605i \(0.164321\pi\)
\(348\) 0 0
\(349\) −12464.4 −1.91176 −0.955880 0.293758i \(-0.905094\pi\)
−0.955880 + 0.293758i \(0.905094\pi\)
\(350\) 0 0
\(351\) 1996.35 0.303582
\(352\) 0 0
\(353\) 6940.19 1.04643 0.523214 0.852202i \(-0.324733\pi\)
0.523214 + 0.852202i \(0.324733\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3571.84 −0.529529
\(358\) 0 0
\(359\) −11994.6 −1.76337 −0.881686 0.471836i \(-0.843591\pi\)
−0.881686 + 0.471836i \(0.843591\pi\)
\(360\) 0 0
\(361\) −6077.96 −0.886130
\(362\) 0 0
\(363\) −3224.11 −0.466177
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 292.939 0.0416656 0.0208328 0.999783i \(-0.493368\pi\)
0.0208328 + 0.999783i \(0.493368\pi\)
\(368\) 0 0
\(369\) 44.2230 0.00623891
\(370\) 0 0
\(371\) 520.588 0.0728506
\(372\) 0 0
\(373\) 3680.41 0.510897 0.255448 0.966823i \(-0.417777\pi\)
0.255448 + 0.966823i \(0.417777\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17827.5 −2.43545
\(378\) 0 0
\(379\) 5684.86 0.770479 0.385239 0.922817i \(-0.374119\pi\)
0.385239 + 0.922817i \(0.374119\pi\)
\(380\) 0 0
\(381\) −6766.82 −0.909908
\(382\) 0 0
\(383\) −6737.64 −0.898896 −0.449448 0.893306i \(-0.648379\pi\)
−0.449448 + 0.893306i \(0.648379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1541.78 −0.202515
\(388\) 0 0
\(389\) −2460.91 −0.320753 −0.160377 0.987056i \(-0.551271\pi\)
−0.160377 + 0.987056i \(0.551271\pi\)
\(390\) 0 0
\(391\) 11716.2 1.51538
\(392\) 0 0
\(393\) 6084.58 0.780984
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −15437.4 −1.95158 −0.975792 0.218700i \(-0.929818\pi\)
−0.975792 + 0.218700i \(0.929818\pi\)
\(398\) 0 0
\(399\) −960.553 −0.120521
\(400\) 0 0
\(401\) 8128.55 1.01227 0.506135 0.862454i \(-0.331074\pi\)
0.506135 + 0.862454i \(0.331074\pi\)
\(402\) 0 0
\(403\) 22470.0 2.77744
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2842.98 0.346244
\(408\) 0 0
\(409\) −12735.2 −1.53965 −0.769824 0.638257i \(-0.779656\pi\)
−0.769824 + 0.638257i \(0.779656\pi\)
\(410\) 0 0
\(411\) 647.129 0.0776655
\(412\) 0 0
\(413\) −8147.71 −0.970757
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1597.96 0.187655
\(418\) 0 0
\(419\) 11559.0 1.34772 0.673861 0.738858i \(-0.264635\pi\)
0.673861 + 0.738858i \(0.264635\pi\)
\(420\) 0 0
\(421\) −5096.66 −0.590014 −0.295007 0.955495i \(-0.595322\pi\)
−0.295007 + 0.955495i \(0.595322\pi\)
\(422\) 0 0
\(423\) −3361.34 −0.386368
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6506.66 0.737422
\(428\) 0 0
\(429\) −3551.11 −0.399649
\(430\) 0 0
\(431\) −13427.8 −1.50069 −0.750344 0.661048i \(-0.770112\pi\)
−0.750344 + 0.661048i \(0.770112\pi\)
\(432\) 0 0
\(433\) −7029.48 −0.780174 −0.390087 0.920778i \(-0.627555\pi\)
−0.390087 + 0.920778i \(0.627555\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3150.78 0.344902
\(438\) 0 0
\(439\) −2124.38 −0.230959 −0.115479 0.993310i \(-0.536840\pi\)
−0.115479 + 0.993310i \(0.536840\pi\)
\(440\) 0 0
\(441\) −1905.67 −0.205774
\(442\) 0 0
\(443\) 8144.17 0.873457 0.436728 0.899593i \(-0.356137\pi\)
0.436728 + 0.899593i \(0.356137\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1407.03 −0.148882
\(448\) 0 0
\(449\) −4584.57 −0.481869 −0.240934 0.970541i \(-0.577454\pi\)
−0.240934 + 0.970541i \(0.577454\pi\)
\(450\) 0 0
\(451\) −78.6639 −0.00821317
\(452\) 0 0
\(453\) −9326.87 −0.967361
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14742.6 1.50904 0.754519 0.656279i \(-0.227870\pi\)
0.754519 + 0.656279i \(0.227870\pi\)
\(458\) 0 0
\(459\) −2805.89 −0.285332
\(460\) 0 0
\(461\) −163.931 −0.0165619 −0.00828096 0.999966i \(-0.502636\pi\)
−0.00828096 + 0.999966i \(0.502636\pi\)
\(462\) 0 0
\(463\) 9995.68 1.00332 0.501662 0.865064i \(-0.332722\pi\)
0.501662 + 0.865064i \(0.332722\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10863.0 −1.07640 −0.538201 0.842816i \(-0.680896\pi\)
−0.538201 + 0.842816i \(0.680896\pi\)
\(468\) 0 0
\(469\) −4474.68 −0.440557
\(470\) 0 0
\(471\) −43.5791 −0.00426331
\(472\) 0 0
\(473\) 2742.53 0.266600
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 408.952 0.0392550
\(478\) 0 0
\(479\) −2014.55 −0.192165 −0.0960825 0.995373i \(-0.530631\pi\)
−0.0960825 + 0.995373i \(0.530631\pi\)
\(480\) 0 0
\(481\) −13130.4 −1.24469
\(482\) 0 0
\(483\) −3874.96 −0.365045
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9012.28 0.838574 0.419287 0.907854i \(-0.362280\pi\)
0.419287 + 0.907854i \(0.362280\pi\)
\(488\) 0 0
\(489\) 1296.15 0.119865
\(490\) 0 0
\(491\) −1584.21 −0.145610 −0.0728049 0.997346i \(-0.523195\pi\)
−0.0728049 + 0.997346i \(0.523195\pi\)
\(492\) 0 0
\(493\) 25056.7 2.28904
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7877.34 −0.710960
\(498\) 0 0
\(499\) 12988.3 1.16521 0.582603 0.812757i \(-0.302034\pi\)
0.582603 + 0.812757i \(0.302034\pi\)
\(500\) 0 0
\(501\) −1391.55 −0.124091
\(502\) 0 0
\(503\) −5645.47 −0.500435 −0.250218 0.968190i \(-0.580502\pi\)
−0.250218 + 0.968190i \(0.580502\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9809.91 0.859317
\(508\) 0 0
\(509\) 4786.46 0.416809 0.208405 0.978043i \(-0.433173\pi\)
0.208405 + 0.978043i \(0.433173\pi\)
\(510\) 0 0
\(511\) 4942.70 0.427891
\(512\) 0 0
\(513\) −754.570 −0.0649416
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5979.15 0.508632
\(518\) 0 0
\(519\) −7697.54 −0.651030
\(520\) 0 0
\(521\) −8508.80 −0.715503 −0.357752 0.933817i \(-0.616457\pi\)
−0.357752 + 0.933817i \(0.616457\pi\)
\(522\) 0 0
\(523\) −2414.60 −0.201879 −0.100940 0.994893i \(-0.532185\pi\)
−0.100940 + 0.994893i \(0.532185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −31581.7 −2.61047
\(528\) 0 0
\(529\) 543.532 0.0446726
\(530\) 0 0
\(531\) −6400.50 −0.523084
\(532\) 0 0
\(533\) 363.311 0.0295249
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 583.795 0.0469137
\(538\) 0 0
\(539\) 3389.81 0.270889
\(540\) 0 0
\(541\) 10550.6 0.838460 0.419230 0.907880i \(-0.362300\pi\)
0.419230 + 0.907880i \(0.362300\pi\)
\(542\) 0 0
\(543\) −10311.8 −0.814955
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12254.3 0.957870 0.478935 0.877850i \(-0.341023\pi\)
0.478935 + 0.877850i \(0.341023\pi\)
\(548\) 0 0
\(549\) 5111.35 0.397354
\(550\) 0 0
\(551\) 6738.35 0.520986
\(552\) 0 0
\(553\) 12446.9 0.957134
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20611.8 1.56795 0.783976 0.620791i \(-0.213189\pi\)
0.783976 + 0.620791i \(0.213189\pi\)
\(558\) 0 0
\(559\) −12666.4 −0.958378
\(560\) 0 0
\(561\) 4991.11 0.375624
\(562\) 0 0
\(563\) 14083.1 1.05423 0.527117 0.849793i \(-0.323273\pi\)
0.527117 + 0.849793i \(0.323273\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 928.003 0.0687345
\(568\) 0 0
\(569\) −13836.4 −1.01943 −0.509713 0.860344i \(-0.670248\pi\)
−0.509713 + 0.860344i \(0.670248\pi\)
\(570\) 0 0
\(571\) 23484.8 1.72121 0.860604 0.509274i \(-0.170086\pi\)
0.860604 + 0.509274i \(0.170086\pi\)
\(572\) 0 0
\(573\) 12353.4 0.900650
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10828.7 0.781288 0.390644 0.920542i \(-0.372252\pi\)
0.390644 + 0.920542i \(0.372252\pi\)
\(578\) 0 0
\(579\) −3598.53 −0.258290
\(580\) 0 0
\(581\) −8254.03 −0.589389
\(582\) 0 0
\(583\) −727.444 −0.0516769
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6065.64 0.426500 0.213250 0.976998i \(-0.431595\pi\)
0.213250 + 0.976998i \(0.431595\pi\)
\(588\) 0 0
\(589\) −8493.06 −0.594144
\(590\) 0 0
\(591\) −6502.05 −0.452553
\(592\) 0 0
\(593\) 2166.82 0.150052 0.0750260 0.997182i \(-0.476096\pi\)
0.0750260 + 0.997182i \(0.476096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5449.07 −0.373560
\(598\) 0 0
\(599\) 26728.3 1.82319 0.911594 0.411093i \(-0.134853\pi\)
0.911594 + 0.411093i \(0.134853\pi\)
\(600\) 0 0
\(601\) −14709.0 −0.998324 −0.499162 0.866509i \(-0.666359\pi\)
−0.499162 + 0.866509i \(0.666359\pi\)
\(602\) 0 0
\(603\) −3515.11 −0.237391
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9621.82 −0.643390 −0.321695 0.946843i \(-0.604253\pi\)
−0.321695 + 0.946843i \(0.604253\pi\)
\(608\) 0 0
\(609\) −8287.12 −0.551414
\(610\) 0 0
\(611\) −27614.9 −1.82844
\(612\) 0 0
\(613\) −21971.7 −1.44768 −0.723842 0.689966i \(-0.757625\pi\)
−0.723842 + 0.689966i \(0.757625\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 516.493 0.0337005 0.0168503 0.999858i \(-0.494636\pi\)
0.0168503 + 0.999858i \(0.494636\pi\)
\(618\) 0 0
\(619\) −30127.1 −1.95624 −0.978119 0.208044i \(-0.933290\pi\)
−0.978119 + 0.208044i \(0.933290\pi\)
\(620\) 0 0
\(621\) −3044.01 −0.196702
\(622\) 0 0
\(623\) −7256.87 −0.466678
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1342.23 0.0854920
\(628\) 0 0
\(629\) 18454.9 1.16986
\(630\) 0 0
\(631\) 9949.54 0.627710 0.313855 0.949471i \(-0.398379\pi\)
0.313855 + 0.949471i \(0.398379\pi\)
\(632\) 0 0
\(633\) −1609.12 −0.101037
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15655.9 −0.973799
\(638\) 0 0
\(639\) −6188.10 −0.383095
\(640\) 0 0
\(641\) −30158.4 −1.85832 −0.929162 0.369672i \(-0.879470\pi\)
−0.929162 + 0.369672i \(0.879470\pi\)
\(642\) 0 0
\(643\) 16915.2 1.03743 0.518717 0.854946i \(-0.326410\pi\)
0.518717 + 0.854946i \(0.326410\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14552.4 −0.884259 −0.442130 0.896951i \(-0.645777\pi\)
−0.442130 + 0.896951i \(0.645777\pi\)
\(648\) 0 0
\(649\) 11385.2 0.688611
\(650\) 0 0
\(651\) 10445.1 0.628844
\(652\) 0 0
\(653\) −15894.1 −0.952503 −0.476252 0.879309i \(-0.658005\pi\)
−0.476252 + 0.879309i \(0.658005\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3882.78 0.230565
\(658\) 0 0
\(659\) 20281.8 1.19889 0.599444 0.800416i \(-0.295388\pi\)
0.599444 + 0.800416i \(0.295388\pi\)
\(660\) 0 0
\(661\) −10123.9 −0.595727 −0.297864 0.954608i \(-0.596274\pi\)
−0.297864 + 0.954608i \(0.596274\pi\)
\(662\) 0 0
\(663\) −23051.6 −1.35030
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 27183.1 1.57801
\(668\) 0 0
\(669\) 17008.3 0.982930
\(670\) 0 0
\(671\) −9092.08 −0.523094
\(672\) 0 0
\(673\) −29893.1 −1.71217 −0.856087 0.516832i \(-0.827111\pi\)
−0.856087 + 0.516832i \(0.827111\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6612.39 −0.375383 −0.187692 0.982228i \(-0.560101\pi\)
−0.187692 + 0.982228i \(0.560101\pi\)
\(678\) 0 0
\(679\) −2514.83 −0.142136
\(680\) 0 0
\(681\) 8044.01 0.452639
\(682\) 0 0
\(683\) −19096.8 −1.06986 −0.534932 0.844895i \(-0.679663\pi\)
−0.534932 + 0.844895i \(0.679663\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12546.9 −0.696788
\(688\) 0 0
\(689\) 3359.72 0.185769
\(690\) 0 0
\(691\) −31232.2 −1.71943 −0.859717 0.510771i \(-0.829360\pi\)
−0.859717 + 0.510771i \(0.829360\pi\)
\(692\) 0 0
\(693\) −1650.73 −0.0904851
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −510.636 −0.0277500
\(698\) 0 0
\(699\) −4875.83 −0.263835
\(700\) 0 0
\(701\) 20678.4 1.11414 0.557070 0.830465i \(-0.311925\pi\)
0.557070 + 0.830465i \(0.311925\pi\)
\(702\) 0 0
\(703\) 4962.95 0.266261
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1511.44 −0.0804009
\(708\) 0 0
\(709\) 15125.0 0.801172 0.400586 0.916259i \(-0.368807\pi\)
0.400586 + 0.916259i \(0.368807\pi\)
\(710\) 0 0
\(711\) 9777.74 0.515744
\(712\) 0 0
\(713\) −34261.8 −1.79960
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12307.9 0.641070
\(718\) 0 0
\(719\) −2310.05 −0.119820 −0.0599098 0.998204i \(-0.519081\pi\)
−0.0599098 + 0.998204i \(0.519081\pi\)
\(720\) 0 0
\(721\) 9306.94 0.480733
\(722\) 0 0
\(723\) −17446.0 −0.897406
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −21890.3 −1.11674 −0.558368 0.829594i \(-0.688572\pi\)
−0.558368 + 0.829594i \(0.688572\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 17802.8 0.900764
\(732\) 0 0
\(733\) −31535.0 −1.58905 −0.794525 0.607232i \(-0.792280\pi\)
−0.794525 + 0.607232i \(0.792280\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6252.69 0.312511
\(738\) 0 0
\(739\) −17924.8 −0.892252 −0.446126 0.894970i \(-0.647197\pi\)
−0.446126 + 0.894970i \(0.647197\pi\)
\(740\) 0 0
\(741\) −6199.12 −0.307329
\(742\) 0 0
\(743\) 8987.45 0.443765 0.221883 0.975073i \(-0.428780\pi\)
0.221883 + 0.975073i \(0.428780\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6484.01 −0.317587
\(748\) 0 0
\(749\) 19829.7 0.967372
\(750\) 0 0
\(751\) −23280.1 −1.13116 −0.565580 0.824693i \(-0.691348\pi\)
−0.565580 + 0.824693i \(0.691348\pi\)
\(752\) 0 0
\(753\) −181.780 −0.00879739
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 607.949 0.0291893 0.0145946 0.999893i \(-0.495354\pi\)
0.0145946 + 0.999893i \(0.495354\pi\)
\(758\) 0 0
\(759\) 5414.69 0.258947
\(760\) 0 0
\(761\) −8024.09 −0.382225 −0.191112 0.981568i \(-0.561210\pi\)
−0.191112 + 0.981568i \(0.561210\pi\)
\(762\) 0 0
\(763\) −2592.62 −0.123013
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −52582.9 −2.47543
\(768\) 0 0
\(769\) 32499.1 1.52399 0.761994 0.647584i \(-0.224220\pi\)
0.761994 + 0.647584i \(0.224220\pi\)
\(770\) 0 0
\(771\) 22847.7 1.06724
\(772\) 0 0
\(773\) 31904.3 1.48450 0.742249 0.670124i \(-0.233759\pi\)
0.742249 + 0.670124i \(0.233759\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6103.66 −0.281811
\(778\) 0 0
\(779\) −137.322 −0.00631589
\(780\) 0 0
\(781\) 11007.4 0.504323
\(782\) 0 0
\(783\) −6510.01 −0.297125
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9472.32 0.429037 0.214518 0.976720i \(-0.431182\pi\)
0.214518 + 0.976720i \(0.431182\pi\)
\(788\) 0 0
\(789\) −20514.3 −0.925637
\(790\) 0 0
\(791\) 7454.36 0.335078
\(792\) 0 0
\(793\) 41992.0 1.88043
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25280.8 −1.12358 −0.561790 0.827280i \(-0.689887\pi\)
−0.561790 + 0.827280i \(0.689887\pi\)
\(798\) 0 0
\(799\) 38812.9 1.71852
\(800\) 0 0
\(801\) −5700.69 −0.251466
\(802\) 0 0
\(803\) −6906.69 −0.303526
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5350.74 −0.233401
\(808\) 0 0
\(809\) −2732.05 −0.118732 −0.0593658 0.998236i \(-0.518908\pi\)
−0.0593658 + 0.998236i \(0.518908\pi\)
\(810\) 0 0
\(811\) 10478.9 0.453715 0.226858 0.973928i \(-0.427155\pi\)
0.226858 + 0.973928i \(0.427155\pi\)
\(812\) 0 0
\(813\) −10982.6 −0.473771
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4787.59 0.205014
\(818\) 0 0
\(819\) 7623.96 0.325278
\(820\) 0 0
\(821\) 23402.2 0.994815 0.497408 0.867517i \(-0.334285\pi\)
0.497408 + 0.867517i \(0.334285\pi\)
\(822\) 0 0
\(823\) 32871.9 1.39228 0.696138 0.717908i \(-0.254900\pi\)
0.696138 + 0.717908i \(0.254900\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10385.7 0.436693 0.218346 0.975871i \(-0.429934\pi\)
0.218346 + 0.975871i \(0.429934\pi\)
\(828\) 0 0
\(829\) 8669.72 0.363223 0.181611 0.983370i \(-0.441869\pi\)
0.181611 + 0.983370i \(0.441869\pi\)
\(830\) 0 0
\(831\) 5303.85 0.221406
\(832\) 0 0
\(833\) 22004.5 0.915258
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8205.26 0.338848
\(838\) 0 0
\(839\) 11290.2 0.464578 0.232289 0.972647i \(-0.425379\pi\)
0.232289 + 0.972647i \(0.425379\pi\)
\(840\) 0 0
\(841\) 33745.8 1.38365
\(842\) 0 0
\(843\) −23631.2 −0.965482
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −12312.7 −0.499492
\(848\) 0 0
\(849\) 3559.23 0.143878
\(850\) 0 0
\(851\) 20021.0 0.806477
\(852\) 0 0
\(853\) 27372.7 1.09874 0.549370 0.835579i \(-0.314868\pi\)
0.549370 + 0.835579i \(0.314868\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32578.4 1.29855 0.649275 0.760554i \(-0.275072\pi\)
0.649275 + 0.760554i \(0.275072\pi\)
\(858\) 0 0
\(859\) 21054.5 0.836287 0.418144 0.908381i \(-0.362681\pi\)
0.418144 + 0.908381i \(0.362681\pi\)
\(860\) 0 0
\(861\) 168.885 0.00668477
\(862\) 0 0
\(863\) 9800.23 0.386563 0.193281 0.981143i \(-0.438087\pi\)
0.193281 + 0.981143i \(0.438087\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17660.2 0.691777
\(868\) 0 0
\(869\) −17392.7 −0.678948
\(870\) 0 0
\(871\) −28878.2 −1.12342
\(872\) 0 0
\(873\) −1975.54 −0.0765888
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25843.1 0.995051 0.497525 0.867449i \(-0.334242\pi\)
0.497525 + 0.867449i \(0.334242\pi\)
\(878\) 0 0
\(879\) 15001.1 0.575624
\(880\) 0 0
\(881\) 45926.2 1.75629 0.878146 0.478393i \(-0.158780\pi\)
0.878146 + 0.478393i \(0.158780\pi\)
\(882\) 0 0
\(883\) 44707.6 1.70389 0.851943 0.523635i \(-0.175424\pi\)
0.851943 + 0.523635i \(0.175424\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −187.047 −0.00708051 −0.00354025 0.999994i \(-0.501127\pi\)
−0.00354025 + 0.999994i \(0.501127\pi\)
\(888\) 0 0
\(889\) −25842.1 −0.974935
\(890\) 0 0
\(891\) −1296.75 −0.0487572
\(892\) 0 0
\(893\) 10437.7 0.391136
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −25007.9 −0.930867
\(898\) 0 0
\(899\) −73273.5 −2.71836
\(900\) 0 0
\(901\) −4722.11 −0.174602
\(902\) 0 0
\(903\) −5887.99 −0.216988
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 48905.8 1.79040 0.895199 0.445667i \(-0.147034\pi\)
0.895199 + 0.445667i \(0.147034\pi\)
\(908\) 0 0
\(909\) −1187.32 −0.0433234
\(910\) 0 0
\(911\) −38028.5 −1.38303 −0.691514 0.722363i \(-0.743056\pi\)
−0.691514 + 0.722363i \(0.743056\pi\)
\(912\) 0 0
\(913\) 11533.8 0.418086
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23236.7 0.836797
\(918\) 0 0
\(919\) −30750.5 −1.10377 −0.551885 0.833920i \(-0.686091\pi\)
−0.551885 + 0.833920i \(0.686091\pi\)
\(920\) 0 0
\(921\) 9303.24 0.332847
\(922\) 0 0
\(923\) −50838.0 −1.81295
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7311.14 0.259039
\(928\) 0 0
\(929\) −19376.5 −0.684309 −0.342155 0.939644i \(-0.611157\pi\)
−0.342155 + 0.939644i \(0.611157\pi\)
\(930\) 0 0
\(931\) 5917.53 0.208313
\(932\) 0 0
\(933\) 11345.2 0.398099
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −38450.9 −1.34059 −0.670296 0.742094i \(-0.733833\pi\)
−0.670296 + 0.742094i \(0.733833\pi\)
\(938\) 0 0
\(939\) −17375.0 −0.603846
\(940\) 0 0
\(941\) 43296.2 1.49991 0.749956 0.661488i \(-0.230075\pi\)
0.749956 + 0.661488i \(0.230075\pi\)
\(942\) 0 0
\(943\) −553.971 −0.0191302
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12241.0 0.420041 0.210020 0.977697i \(-0.432647\pi\)
0.210020 + 0.977697i \(0.432647\pi\)
\(948\) 0 0
\(949\) 31898.7 1.09112
\(950\) 0 0
\(951\) 10620.8 0.362149
\(952\) 0 0
\(953\) −7604.93 −0.258497 −0.129249 0.991612i \(-0.541257\pi\)
−0.129249 + 0.991612i \(0.541257\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 11580.0 0.391148
\(958\) 0 0
\(959\) 2471.35 0.0832159
\(960\) 0 0
\(961\) 62563.4 2.10008
\(962\) 0 0
\(963\) 15577.4 0.521261
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4640.44 −0.154319 −0.0771595 0.997019i \(-0.524585\pi\)
−0.0771595 + 0.997019i \(0.524585\pi\)
\(968\) 0 0
\(969\) 8712.91 0.288853
\(970\) 0 0
\(971\) 8635.15 0.285392 0.142696 0.989767i \(-0.454423\pi\)
0.142696 + 0.989767i \(0.454423\pi\)
\(972\) 0 0
\(973\) 6102.50 0.201066
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9333.88 −0.305647 −0.152824 0.988253i \(-0.548837\pi\)
−0.152824 + 0.988253i \(0.548837\pi\)
\(978\) 0 0
\(979\) 10140.4 0.331040
\(980\) 0 0
\(981\) −2036.66 −0.0662848
\(982\) 0 0
\(983\) −16819.4 −0.545733 −0.272867 0.962052i \(-0.587972\pi\)
−0.272867 + 0.962052i \(0.587972\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −12836.8 −0.413980
\(988\) 0 0
\(989\) 19313.6 0.620967
\(990\) 0 0
\(991\) 33375.0 1.06982 0.534910 0.844909i \(-0.320346\pi\)
0.534910 + 0.844909i \(0.320346\pi\)
\(992\) 0 0
\(993\) −16442.2 −0.525456
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22267.5 0.707341 0.353670 0.935370i \(-0.384933\pi\)
0.353670 + 0.935370i \(0.384933\pi\)
\(998\) 0 0
\(999\) −4794.77 −0.151852
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.cb.1.3 4
4.3 odd 2 2400.4.a.by.1.2 4
5.2 odd 4 480.4.f.g.289.4 yes 8
5.3 odd 4 480.4.f.g.289.7 yes 8
5.4 even 2 2400.4.a.by.1.1 4
15.2 even 4 1440.4.f.l.289.2 8
15.8 even 4 1440.4.f.l.289.3 8
20.3 even 4 480.4.f.g.289.3 8
20.7 even 4 480.4.f.g.289.8 yes 8
20.19 odd 2 inner 2400.4.a.cb.1.4 4
40.3 even 4 960.4.f.t.769.6 8
40.13 odd 4 960.4.f.t.769.2 8
40.27 even 4 960.4.f.t.769.1 8
40.37 odd 4 960.4.f.t.769.5 8
60.23 odd 4 1440.4.f.l.289.4 8
60.47 odd 4 1440.4.f.l.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.g.289.3 8 20.3 even 4
480.4.f.g.289.4 yes 8 5.2 odd 4
480.4.f.g.289.7 yes 8 5.3 odd 4
480.4.f.g.289.8 yes 8 20.7 even 4
960.4.f.t.769.1 8 40.27 even 4
960.4.f.t.769.2 8 40.13 odd 4
960.4.f.t.769.5 8 40.37 odd 4
960.4.f.t.769.6 8 40.3 even 4
1440.4.f.l.289.1 8 60.47 odd 4
1440.4.f.l.289.2 8 15.2 even 4
1440.4.f.l.289.3 8 15.8 even 4
1440.4.f.l.289.4 8 60.23 odd 4
2400.4.a.by.1.1 4 5.4 even 2
2400.4.a.by.1.2 4 4.3 odd 2
2400.4.a.cb.1.3 4 1.1 even 1 trivial
2400.4.a.cb.1.4 4 20.19 odd 2 inner