Properties

Label 2400.4.a.cb
Level $2400$
Weight $4$
Character orbit 2400.a
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1965645.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 43x^{2} + 100x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( - \beta_{2} - 3) q^{7} + 9 q^{9} + ( - \beta_{3} - \beta_1) q^{11} + (2 \beta_{3} - \beta_1) q^{13} + ( - 3 \beta_{3} + \beta_1) q^{17} + 2 \beta_1 q^{19} + ( - 3 \beta_{2} - 9) q^{21}+ \cdots + ( - 9 \beta_{3} - 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} - 12 q^{7} + 36 q^{9} - 36 q^{21} - 104 q^{23} + 108 q^{27} - 444 q^{29} - 96 q^{41} + 240 q^{43} - 800 q^{47} - 500 q^{49} - 504 q^{61} - 108 q^{63} - 984 q^{67} - 312 q^{69} + 324 q^{81}+ \cdots + 936 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 43x^{2} + 100x - 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 5\nu^{2} - 33\nu - 58 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 96\nu - 109 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{3} - 152\nu + 208 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{3} - 2\beta_{2} + 8\beta _1 + 174 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 12\beta_{3} + 19\beta_{2} - 85 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.65409
2.07432
0.383633
−7.11205
0 3.00000 0 0 0 −17.4568 0 9.00000 0
1.2 0 3.00000 0 0 0 −17.4568 0 9.00000 0
1.3 0 3.00000 0 0 0 11.4568 0 9.00000 0
1.4 0 3.00000 0 0 0 11.4568 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.4.a.cb 4
4.b odd 2 1 2400.4.a.by 4
5.b even 2 1 2400.4.a.by 4
5.c odd 4 2 480.4.f.g 8
15.e even 4 2 1440.4.f.l 8
20.d odd 2 1 inner 2400.4.a.cb 4
20.e even 4 2 480.4.f.g 8
40.i odd 4 2 960.4.f.t 8
40.k even 4 2 960.4.f.t 8
60.l odd 4 2 1440.4.f.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.f.g 8 5.c odd 4 2
480.4.f.g 8 20.e even 4 2
960.4.f.t 8 40.i odd 4 2
960.4.f.t 8 40.k even 4 2
1440.4.f.l 8 15.e even 4 2
1440.4.f.l 8 60.l odd 4 2
2400.4.a.by 4 4.b odd 2 1
2400.4.a.by 4 5.b even 2 1
2400.4.a.cb 4 1.a even 1 1 trivial
2400.4.a.cb 4 20.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2400))\):

\( T_{7}^{2} + 6T_{7} - 200 \) Copy content Toggle raw display
\( T_{11}^{4} - 1380T_{11}^{2} + 288000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T - 200)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 1380 T^{2} + 288000 \) Copy content Toggle raw display
$13$ \( T^{4} - 5556 T^{2} + 486720 \) Copy content Toggle raw display
$17$ \( T^{4} - 11364 T^{2} + 6094080 \) Copy content Toggle raw display
$19$ \( T^{4} - 2256 T^{2} + 1152000 \) Copy content Toggle raw display
$23$ \( (T^{2} + 52 T - 6848)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 222 T - 4608)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 5709496320 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 3976200000 \) Copy content Toggle raw display
$41$ \( (T^{2} + 48 T - 260)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 120 T - 49904)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 400 T + 9904)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 1096384320 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 33019188480 \) Copy content Toggle raw display
$61$ \( (T^{2} + 252 T - 465660)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 492 T + 39616)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 36172615680 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 12556062720 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 806669844480 \) Copy content Toggle raw display
$83$ \( (T^{2} + 400 T - 230864)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 468 T - 697644)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 8206110720 \) Copy content Toggle raw display
show more
show less