Properties

Label 2400.4.a.bz.1.4
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{21}, \sqrt{141})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 61x^{2} + 154x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-8.39882\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +33.1384 q^{7} +9.00000 q^{9} +63.9543 q^{11} -89.7781 q^{13} -71.4478 q^{17} -44.1541 q^{19} -99.4151 q^{21} +100.000 q^{23} -27.0000 q^{27} +33.4151 q^{29} +120.415 q^{31} -191.863 q^{33} -13.5172 q^{37} +269.334 q^{39} +130.616 q^{41} +410.767 q^{43} +216.490 q^{47} +755.151 q^{49} +214.343 q^{51} +279.768 q^{53} +132.462 q^{57} -133.529 q^{59} -297.321 q^{61} +298.245 q^{63} -501.044 q^{67} -300.000 q^{69} +289.538 q^{71} -756.211 q^{73} +2119.34 q^{77} -120.415 q^{79} +81.0000 q^{81} +65.6603 q^{83} -100.245 q^{87} +513.321 q^{89} -2975.10 q^{91} -361.245 q^{93} +828.207 q^{97} +575.589 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} + 60 q^{7} + 36 q^{9} - 180 q^{21} + 400 q^{23} - 108 q^{27} - 84 q^{29} + 1248 q^{41} + 192 q^{43} - 440 q^{47} + 844 q^{49} + 552 q^{61} + 540 q^{63} - 408 q^{67} - 1200 q^{69} + 324 q^{81}+ \cdots + 312 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 33.1384 1.78930 0.894652 0.446765i \(-0.147424\pi\)
0.894652 + 0.446765i \(0.147424\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 63.9543 1.75299 0.876497 0.481407i \(-0.159874\pi\)
0.876497 + 0.481407i \(0.159874\pi\)
\(12\) 0 0
\(13\) −89.7781 −1.91538 −0.957691 0.287798i \(-0.907077\pi\)
−0.957691 + 0.287798i \(0.907077\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −71.4478 −1.01933 −0.509666 0.860372i \(-0.670231\pi\)
−0.509666 + 0.860372i \(0.670231\pi\)
\(18\) 0 0
\(19\) −44.1541 −0.533140 −0.266570 0.963816i \(-0.585890\pi\)
−0.266570 + 0.963816i \(0.585890\pi\)
\(20\) 0 0
\(21\) −99.4151 −1.03305
\(22\) 0 0
\(23\) 100.000 0.906584 0.453292 0.891362i \(-0.350249\pi\)
0.453292 + 0.891362i \(0.350249\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 33.4151 0.213966 0.106983 0.994261i \(-0.465881\pi\)
0.106983 + 0.994261i \(0.465881\pi\)
\(30\) 0 0
\(31\) 120.415 0.697651 0.348825 0.937188i \(-0.386581\pi\)
0.348825 + 0.937188i \(0.386581\pi\)
\(32\) 0 0
\(33\) −191.863 −1.01209
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −13.5172 −0.0600600 −0.0300300 0.999549i \(-0.509560\pi\)
−0.0300300 + 0.999549i \(0.509560\pi\)
\(38\) 0 0
\(39\) 269.334 1.10585
\(40\) 0 0
\(41\) 130.616 0.497533 0.248767 0.968563i \(-0.419975\pi\)
0.248767 + 0.968563i \(0.419975\pi\)
\(42\) 0 0
\(43\) 410.767 1.45678 0.728388 0.685164i \(-0.240270\pi\)
0.728388 + 0.685164i \(0.240270\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 216.490 0.671880 0.335940 0.941883i \(-0.390946\pi\)
0.335940 + 0.941883i \(0.390946\pi\)
\(48\) 0 0
\(49\) 755.151 2.20161
\(50\) 0 0
\(51\) 214.343 0.588512
\(52\) 0 0
\(53\) 279.768 0.725076 0.362538 0.931969i \(-0.381910\pi\)
0.362538 + 0.931969i \(0.381910\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 132.462 0.307808
\(58\) 0 0
\(59\) −133.529 −0.294643 −0.147322 0.989089i \(-0.547065\pi\)
−0.147322 + 0.989089i \(0.547065\pi\)
\(60\) 0 0
\(61\) −297.321 −0.624066 −0.312033 0.950071i \(-0.601010\pi\)
−0.312033 + 0.950071i \(0.601010\pi\)
\(62\) 0 0
\(63\) 298.245 0.596434
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −501.044 −0.913616 −0.456808 0.889565i \(-0.651007\pi\)
−0.456808 + 0.889565i \(0.651007\pi\)
\(68\) 0 0
\(69\) −300.000 −0.523417
\(70\) 0 0
\(71\) 289.538 0.483970 0.241985 0.970280i \(-0.422202\pi\)
0.241985 + 0.970280i \(0.422202\pi\)
\(72\) 0 0
\(73\) −756.211 −1.21244 −0.606218 0.795299i \(-0.707314\pi\)
−0.606218 + 0.795299i \(0.707314\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2119.34 3.13664
\(78\) 0 0
\(79\) −120.415 −0.171491 −0.0857453 0.996317i \(-0.527327\pi\)
−0.0857453 + 0.996317i \(0.527327\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 65.6603 0.0868332 0.0434166 0.999057i \(-0.486176\pi\)
0.0434166 + 0.999057i \(0.486176\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −100.245 −0.123534
\(88\) 0 0
\(89\) 513.321 0.611369 0.305685 0.952133i \(-0.401115\pi\)
0.305685 + 0.952133i \(0.401115\pi\)
\(90\) 0 0
\(91\) −2975.10 −3.42720
\(92\) 0 0
\(93\) −361.245 −0.402789
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 828.207 0.866924 0.433462 0.901172i \(-0.357292\pi\)
0.433462 + 0.901172i \(0.357292\pi\)
\(98\) 0 0
\(99\) 575.589 0.584332
\(100\) 0 0
\(101\) −1469.72 −1.44794 −0.723972 0.689830i \(-0.757685\pi\)
−0.723972 + 0.689830i \(0.757685\pi\)
\(102\) 0 0
\(103\) −100.522 −0.0961623 −0.0480812 0.998843i \(-0.515311\pi\)
−0.0480812 + 0.998843i \(0.515311\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −710.340 −0.641786 −0.320893 0.947115i \(-0.603983\pi\)
−0.320893 + 0.947115i \(0.603983\pi\)
\(108\) 0 0
\(109\) 1363.47 1.19814 0.599068 0.800698i \(-0.295538\pi\)
0.599068 + 0.800698i \(0.295538\pi\)
\(110\) 0 0
\(111\) 40.5517 0.0346757
\(112\) 0 0
\(113\) 727.303 0.605477 0.302739 0.953074i \(-0.402099\pi\)
0.302739 + 0.953074i \(0.402099\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −808.003 −0.638461
\(118\) 0 0
\(119\) −2367.66 −1.82389
\(120\) 0 0
\(121\) 2759.15 2.07299
\(122\) 0 0
\(123\) −391.849 −0.287251
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −369.327 −0.258051 −0.129026 0.991641i \(-0.541185\pi\)
−0.129026 + 0.991641i \(0.541185\pi\)
\(128\) 0 0
\(129\) −1232.30 −0.841070
\(130\) 0 0
\(131\) 2000.80 1.33443 0.667216 0.744864i \(-0.267486\pi\)
0.667216 + 0.744864i \(0.267486\pi\)
\(132\) 0 0
\(133\) −1463.20 −0.953949
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2436.46 −1.51942 −0.759711 0.650261i \(-0.774660\pi\)
−0.759711 + 0.650261i \(0.774660\pi\)
\(138\) 0 0
\(139\) 1020.33 0.622613 0.311306 0.950310i \(-0.399233\pi\)
0.311306 + 0.950310i \(0.399233\pi\)
\(140\) 0 0
\(141\) −649.471 −0.387910
\(142\) 0 0
\(143\) −5741.70 −3.35766
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2265.45 −1.27110
\(148\) 0 0
\(149\) −2833.10 −1.55770 −0.778848 0.627213i \(-0.784195\pi\)
−0.778848 + 0.627213i \(0.784195\pi\)
\(150\) 0 0
\(151\) 1104.60 0.595306 0.297653 0.954674i \(-0.403796\pi\)
0.297653 + 0.954674i \(0.403796\pi\)
\(152\) 0 0
\(153\) −643.030 −0.339777
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3213.65 −1.63361 −0.816807 0.576911i \(-0.804258\pi\)
−0.816807 + 0.576911i \(0.804258\pi\)
\(158\) 0 0
\(159\) −839.303 −0.418623
\(160\) 0 0
\(161\) 3313.84 1.62215
\(162\) 0 0
\(163\) −1878.28 −0.902564 −0.451282 0.892381i \(-0.649033\pi\)
−0.451282 + 0.892381i \(0.649033\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1220.60 0.565587 0.282794 0.959181i \(-0.408739\pi\)
0.282794 + 0.959181i \(0.408739\pi\)
\(168\) 0 0
\(169\) 5863.11 2.66869
\(170\) 0 0
\(171\) −397.387 −0.177713
\(172\) 0 0
\(173\) 2090.84 0.918863 0.459431 0.888213i \(-0.348053\pi\)
0.459431 + 0.888213i \(0.348053\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 400.586 0.170112
\(178\) 0 0
\(179\) 2447.70 1.02207 0.511033 0.859561i \(-0.329263\pi\)
0.511033 + 0.859561i \(0.329263\pi\)
\(180\) 0 0
\(181\) 4324.07 1.77572 0.887862 0.460111i \(-0.152190\pi\)
0.887862 + 0.460111i \(0.152190\pi\)
\(182\) 0 0
\(183\) 891.962 0.360304
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4569.39 −1.78688
\(188\) 0 0
\(189\) −894.736 −0.344352
\(190\) 0 0
\(191\) 3395.20 1.28622 0.643110 0.765774i \(-0.277644\pi\)
0.643110 + 0.765774i \(0.277644\pi\)
\(192\) 0 0
\(193\) 3824.17 1.42627 0.713135 0.701027i \(-0.247275\pi\)
0.713135 + 0.701027i \(0.247275\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2219.26 −0.802619 −0.401309 0.915943i \(-0.631445\pi\)
−0.401309 + 0.915943i \(0.631445\pi\)
\(198\) 0 0
\(199\) 1939.50 0.690890 0.345445 0.938439i \(-0.387728\pi\)
0.345445 + 0.938439i \(0.387728\pi\)
\(200\) 0 0
\(201\) 1503.13 0.527476
\(202\) 0 0
\(203\) 1107.32 0.382851
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 900.000 0.302195
\(208\) 0 0
\(209\) −2823.85 −0.934591
\(210\) 0 0
\(211\) 2128.22 0.694372 0.347186 0.937796i \(-0.387137\pi\)
0.347186 + 0.937796i \(0.387137\pi\)
\(212\) 0 0
\(213\) −868.614 −0.279420
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3990.36 1.24831
\(218\) 0 0
\(219\) 2268.63 0.700000
\(220\) 0 0
\(221\) 6414.45 1.95241
\(222\) 0 0
\(223\) 4872.63 1.46321 0.731605 0.681729i \(-0.238772\pi\)
0.731605 + 0.681729i \(0.238772\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2440.90 0.713694 0.356847 0.934163i \(-0.383852\pi\)
0.356847 + 0.934163i \(0.383852\pi\)
\(228\) 0 0
\(229\) −2029.06 −0.585518 −0.292759 0.956186i \(-0.594573\pi\)
−0.292759 + 0.956186i \(0.594573\pi\)
\(230\) 0 0
\(231\) −6358.02 −1.81094
\(232\) 0 0
\(233\) −1626.41 −0.457295 −0.228647 0.973509i \(-0.573430\pi\)
−0.228647 + 0.973509i \(0.573430\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 361.245 0.0990101
\(238\) 0 0
\(239\) −3808.38 −1.03073 −0.515363 0.856972i \(-0.672343\pi\)
−0.515363 + 0.856972i \(0.672343\pi\)
\(240\) 0 0
\(241\) 1607.74 0.429724 0.214862 0.976644i \(-0.431070\pi\)
0.214862 + 0.976644i \(0.431070\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3964.08 1.02117
\(248\) 0 0
\(249\) −196.981 −0.0501332
\(250\) 0 0
\(251\) −1478.50 −0.371801 −0.185901 0.982569i \(-0.559520\pi\)
−0.185901 + 0.982569i \(0.559520\pi\)
\(252\) 0 0
\(253\) 6395.43 1.58924
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −427.043 −0.103651 −0.0518253 0.998656i \(-0.516504\pi\)
−0.0518253 + 0.998656i \(0.516504\pi\)
\(258\) 0 0
\(259\) −447.939 −0.107466
\(260\) 0 0
\(261\) 300.736 0.0713221
\(262\) 0 0
\(263\) −2779.62 −0.651707 −0.325853 0.945420i \(-0.605652\pi\)
−0.325853 + 0.945420i \(0.605652\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1539.96 −0.352974
\(268\) 0 0
\(269\) 6832.04 1.54854 0.774270 0.632856i \(-0.218118\pi\)
0.774270 + 0.632856i \(0.218118\pi\)
\(270\) 0 0
\(271\) 6321.13 1.41691 0.708453 0.705758i \(-0.249394\pi\)
0.708453 + 0.705758i \(0.249394\pi\)
\(272\) 0 0
\(273\) 8925.30 1.97869
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2445.91 −0.530544 −0.265272 0.964174i \(-0.585462\pi\)
−0.265272 + 0.964174i \(0.585462\pi\)
\(278\) 0 0
\(279\) 1083.74 0.232550
\(280\) 0 0
\(281\) 2387.91 0.506943 0.253471 0.967343i \(-0.418428\pi\)
0.253471 + 0.967343i \(0.418428\pi\)
\(282\) 0 0
\(283\) 7117.27 1.49497 0.747487 0.664276i \(-0.231260\pi\)
0.747487 + 0.664276i \(0.231260\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4328.41 0.890238
\(288\) 0 0
\(289\) 191.792 0.0390376
\(290\) 0 0
\(291\) −2484.62 −0.500519
\(292\) 0 0
\(293\) −6952.40 −1.38622 −0.693112 0.720830i \(-0.743761\pi\)
−0.693112 + 0.720830i \(0.743761\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1726.77 −0.337364
\(298\) 0 0
\(299\) −8977.81 −1.73646
\(300\) 0 0
\(301\) 13612.1 2.60662
\(302\) 0 0
\(303\) 4409.15 0.835970
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2817.76 0.523837 0.261919 0.965090i \(-0.415645\pi\)
0.261919 + 0.965090i \(0.415645\pi\)
\(308\) 0 0
\(309\) 301.566 0.0555193
\(310\) 0 0
\(311\) −7775.68 −1.41774 −0.708872 0.705337i \(-0.750795\pi\)
−0.708872 + 0.705337i \(0.750795\pi\)
\(312\) 0 0
\(313\) −8222.87 −1.48493 −0.742466 0.669883i \(-0.766344\pi\)
−0.742466 + 0.669883i \(0.766344\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4264.76 0.755624 0.377812 0.925882i \(-0.376676\pi\)
0.377812 + 0.925882i \(0.376676\pi\)
\(318\) 0 0
\(319\) 2137.04 0.375082
\(320\) 0 0
\(321\) 2131.02 0.370535
\(322\) 0 0
\(323\) 3154.72 0.543446
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4090.41 −0.691744
\(328\) 0 0
\(329\) 7174.14 1.20220
\(330\) 0 0
\(331\) −7766.86 −1.28974 −0.644872 0.764291i \(-0.723089\pi\)
−0.644872 + 0.764291i \(0.723089\pi\)
\(332\) 0 0
\(333\) −121.655 −0.0200200
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2364.55 −0.382212 −0.191106 0.981569i \(-0.561207\pi\)
−0.191106 + 0.981569i \(0.561207\pi\)
\(338\) 0 0
\(339\) −2181.91 −0.349572
\(340\) 0 0
\(341\) 7701.06 1.22298
\(342\) 0 0
\(343\) 13658.0 2.15004
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4929.89 0.762680 0.381340 0.924435i \(-0.375463\pi\)
0.381340 + 0.924435i \(0.375463\pi\)
\(348\) 0 0
\(349\) −772.263 −0.118448 −0.0592239 0.998245i \(-0.518863\pi\)
−0.0592239 + 0.998245i \(0.518863\pi\)
\(350\) 0 0
\(351\) 2424.01 0.368616
\(352\) 0 0
\(353\) −6732.15 −1.01506 −0.507530 0.861634i \(-0.669441\pi\)
−0.507530 + 0.861634i \(0.669441\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 7102.99 1.05303
\(358\) 0 0
\(359\) 8062.68 1.18533 0.592663 0.805450i \(-0.298077\pi\)
0.592663 + 0.805450i \(0.298077\pi\)
\(360\) 0 0
\(361\) −4909.41 −0.715762
\(362\) 0 0
\(363\) −8277.45 −1.19684
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11662.4 1.65878 0.829392 0.558668i \(-0.188687\pi\)
0.829392 + 0.558668i \(0.188687\pi\)
\(368\) 0 0
\(369\) 1175.55 0.165844
\(370\) 0 0
\(371\) 9271.04 1.29738
\(372\) 0 0
\(373\) 6728.52 0.934020 0.467010 0.884252i \(-0.345331\pi\)
0.467010 + 0.884252i \(0.345331\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2999.94 −0.409827
\(378\) 0 0
\(379\) 281.815 0.0381949 0.0190974 0.999818i \(-0.493921\pi\)
0.0190974 + 0.999818i \(0.493921\pi\)
\(380\) 0 0
\(381\) 1107.98 0.148986
\(382\) 0 0
\(383\) −2705.09 −0.360898 −0.180449 0.983584i \(-0.557755\pi\)
−0.180449 + 0.983584i \(0.557755\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3696.90 0.485592
\(388\) 0 0
\(389\) 2182.49 0.284465 0.142232 0.989833i \(-0.454572\pi\)
0.142232 + 0.989833i \(0.454572\pi\)
\(390\) 0 0
\(391\) −7144.78 −0.924110
\(392\) 0 0
\(393\) −6002.39 −0.770435
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4374.92 0.553075 0.276537 0.961003i \(-0.410813\pi\)
0.276537 + 0.961003i \(0.410813\pi\)
\(398\) 0 0
\(399\) 4389.59 0.550763
\(400\) 0 0
\(401\) 4012.53 0.499691 0.249846 0.968286i \(-0.419620\pi\)
0.249846 + 0.968286i \(0.419620\pi\)
\(402\) 0 0
\(403\) −10810.6 −1.33627
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −864.486 −0.105285
\(408\) 0 0
\(409\) 5255.70 0.635397 0.317699 0.948192i \(-0.397090\pi\)
0.317699 + 0.948192i \(0.397090\pi\)
\(410\) 0 0
\(411\) 7309.38 0.877239
\(412\) 0 0
\(413\) −4424.92 −0.527206
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3060.99 −0.359466
\(418\) 0 0
\(419\) −14338.0 −1.67173 −0.835865 0.548935i \(-0.815033\pi\)
−0.835865 + 0.548935i \(0.815033\pi\)
\(420\) 0 0
\(421\) −4074.34 −0.471665 −0.235833 0.971794i \(-0.575782\pi\)
−0.235833 + 0.971794i \(0.575782\pi\)
\(422\) 0 0
\(423\) 1948.41 0.223960
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −9852.72 −1.11664
\(428\) 0 0
\(429\) 17225.1 1.93854
\(430\) 0 0
\(431\) 7266.75 0.812128 0.406064 0.913845i \(-0.366901\pi\)
0.406064 + 0.913845i \(0.366901\pi\)
\(432\) 0 0
\(433\) −13061.5 −1.44964 −0.724821 0.688937i \(-0.758078\pi\)
−0.724821 + 0.688937i \(0.758078\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4415.41 −0.483336
\(438\) 0 0
\(439\) 7231.30 0.786176 0.393088 0.919501i \(-0.371407\pi\)
0.393088 + 0.919501i \(0.371407\pi\)
\(440\) 0 0
\(441\) 6796.36 0.733869
\(442\) 0 0
\(443\) −4034.19 −0.432664 −0.216332 0.976320i \(-0.569409\pi\)
−0.216332 + 0.976320i \(0.569409\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8499.30 0.899336
\(448\) 0 0
\(449\) 1568.58 0.164868 0.0824341 0.996597i \(-0.473731\pi\)
0.0824341 + 0.996597i \(0.473731\pi\)
\(450\) 0 0
\(451\) 8353.48 0.872173
\(452\) 0 0
\(453\) −3313.81 −0.343700
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1116.77 0.114311 0.0571555 0.998365i \(-0.481797\pi\)
0.0571555 + 0.998365i \(0.481797\pi\)
\(458\) 0 0
\(459\) 1929.09 0.196171
\(460\) 0 0
\(461\) −830.355 −0.0838905 −0.0419452 0.999120i \(-0.513355\pi\)
−0.0419452 + 0.999120i \(0.513355\pi\)
\(462\) 0 0
\(463\) 6056.60 0.607935 0.303968 0.952682i \(-0.401689\pi\)
0.303968 + 0.952682i \(0.401689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11572.8 −1.14673 −0.573365 0.819300i \(-0.694362\pi\)
−0.573365 + 0.819300i \(0.694362\pi\)
\(468\) 0 0
\(469\) −16603.8 −1.63474
\(470\) 0 0
\(471\) 9640.96 0.943168
\(472\) 0 0
\(473\) 26270.3 2.55372
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2517.91 0.241692
\(478\) 0 0
\(479\) 4892.51 0.466690 0.233345 0.972394i \(-0.425033\pi\)
0.233345 + 0.972394i \(0.425033\pi\)
\(480\) 0 0
\(481\) 1213.55 0.115038
\(482\) 0 0
\(483\) −9941.51 −0.936551
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2124.68 0.197697 0.0988483 0.995103i \(-0.468484\pi\)
0.0988483 + 0.995103i \(0.468484\pi\)
\(488\) 0 0
\(489\) 5634.83 0.521096
\(490\) 0 0
\(491\) −2438.59 −0.224139 −0.112069 0.993700i \(-0.535748\pi\)
−0.112069 + 0.993700i \(0.535748\pi\)
\(492\) 0 0
\(493\) −2387.43 −0.218103
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9594.82 0.865968
\(498\) 0 0
\(499\) 142.030 0.0127417 0.00637086 0.999980i \(-0.497972\pi\)
0.00637086 + 0.999980i \(0.497972\pi\)
\(500\) 0 0
\(501\) −3661.81 −0.326542
\(502\) 0 0
\(503\) −3249.40 −0.288039 −0.144019 0.989575i \(-0.546003\pi\)
−0.144019 + 0.989575i \(0.546003\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −17589.3 −1.54077
\(508\) 0 0
\(509\) 22022.2 1.91771 0.958856 0.283893i \(-0.0916261\pi\)
0.958856 + 0.283893i \(0.0916261\pi\)
\(510\) 0 0
\(511\) −25059.6 −2.16942
\(512\) 0 0
\(513\) 1192.16 0.102603
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 13845.5 1.17780
\(518\) 0 0
\(519\) −6272.51 −0.530506
\(520\) 0 0
\(521\) 15560.5 1.30848 0.654241 0.756286i \(-0.272988\pi\)
0.654241 + 0.756286i \(0.272988\pi\)
\(522\) 0 0
\(523\) −4931.76 −0.412334 −0.206167 0.978517i \(-0.566099\pi\)
−0.206167 + 0.978517i \(0.566099\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8603.39 −0.711138
\(528\) 0 0
\(529\) −2167.00 −0.178105
\(530\) 0 0
\(531\) −1201.76 −0.0982145
\(532\) 0 0
\(533\) −11726.5 −0.952966
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7343.10 −0.590090
\(538\) 0 0
\(539\) 48295.1 3.85940
\(540\) 0 0
\(541\) 6468.68 0.514067 0.257033 0.966403i \(-0.417255\pi\)
0.257033 + 0.966403i \(0.417255\pi\)
\(542\) 0 0
\(543\) −12972.2 −1.02521
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9309.53 0.727691 0.363845 0.931459i \(-0.381464\pi\)
0.363845 + 0.931459i \(0.381464\pi\)
\(548\) 0 0
\(549\) −2675.89 −0.208022
\(550\) 0 0
\(551\) −1475.41 −0.114074
\(552\) 0 0
\(553\) −3990.36 −0.306848
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11829.4 0.899867 0.449933 0.893062i \(-0.351448\pi\)
0.449933 + 0.893062i \(0.351448\pi\)
\(558\) 0 0
\(559\) −36877.9 −2.79028
\(560\) 0 0
\(561\) 13708.2 1.03166
\(562\) 0 0
\(563\) −26222.4 −1.96295 −0.981477 0.191581i \(-0.938639\pi\)
−0.981477 + 0.191581i \(0.938639\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2684.21 0.198811
\(568\) 0 0
\(569\) 4444.50 0.327457 0.163729 0.986505i \(-0.447648\pi\)
0.163729 + 0.986505i \(0.447648\pi\)
\(570\) 0 0
\(571\) 21409.4 1.56910 0.784551 0.620064i \(-0.212893\pi\)
0.784551 + 0.620064i \(0.212893\pi\)
\(572\) 0 0
\(573\) −10185.6 −0.742599
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17414.4 1.25645 0.628223 0.778033i \(-0.283783\pi\)
0.628223 + 0.778033i \(0.283783\pi\)
\(578\) 0 0
\(579\) −11472.5 −0.823457
\(580\) 0 0
\(581\) 2175.87 0.155371
\(582\) 0 0
\(583\) 17892.3 1.27105
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23489.4 −1.65163 −0.825817 0.563938i \(-0.809286\pi\)
−0.825817 + 0.563938i \(0.809286\pi\)
\(588\) 0 0
\(589\) −5316.82 −0.371945
\(590\) 0 0
\(591\) 6657.79 0.463392
\(592\) 0 0
\(593\) 6536.04 0.452619 0.226310 0.974055i \(-0.427334\pi\)
0.226310 + 0.974055i \(0.427334\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5818.49 −0.398886
\(598\) 0 0
\(599\) −4507.99 −0.307498 −0.153749 0.988110i \(-0.549135\pi\)
−0.153749 + 0.988110i \(0.549135\pi\)
\(600\) 0 0
\(601\) 19945.3 1.35372 0.676859 0.736113i \(-0.263341\pi\)
0.676859 + 0.736113i \(0.263341\pi\)
\(602\) 0 0
\(603\) −4509.39 −0.304539
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17948.0 1.20014 0.600071 0.799947i \(-0.295139\pi\)
0.600071 + 0.799947i \(0.295139\pi\)
\(608\) 0 0
\(609\) −3321.96 −0.221039
\(610\) 0 0
\(611\) −19436.1 −1.28691
\(612\) 0 0
\(613\) 16936.5 1.11592 0.557959 0.829868i \(-0.311585\pi\)
0.557959 + 0.829868i \(0.311585\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16338.2 1.06605 0.533024 0.846100i \(-0.321056\pi\)
0.533024 + 0.846100i \(0.321056\pi\)
\(618\) 0 0
\(619\) −21081.7 −1.36890 −0.684448 0.729062i \(-0.739957\pi\)
−0.684448 + 0.729062i \(0.739957\pi\)
\(620\) 0 0
\(621\) −2700.00 −0.174472
\(622\) 0 0
\(623\) 17010.6 1.09393
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8471.54 0.539587
\(628\) 0 0
\(629\) 965.778 0.0612211
\(630\) 0 0
\(631\) −4472.88 −0.282191 −0.141095 0.989996i \(-0.545062\pi\)
−0.141095 + 0.989996i \(0.545062\pi\)
\(632\) 0 0
\(633\) −6384.65 −0.400896
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −67796.0 −4.21692
\(638\) 0 0
\(639\) 2605.84 0.161323
\(640\) 0 0
\(641\) −4906.44 −0.302329 −0.151164 0.988509i \(-0.548302\pi\)
−0.151164 + 0.988509i \(0.548302\pi\)
\(642\) 0 0
\(643\) 18740.6 1.14939 0.574695 0.818368i \(-0.305121\pi\)
0.574695 + 0.818368i \(0.305121\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19178.1 1.16533 0.582665 0.812713i \(-0.302010\pi\)
0.582665 + 0.812713i \(0.302010\pi\)
\(648\) 0 0
\(649\) −8539.73 −0.516508
\(650\) 0 0
\(651\) −11971.1 −0.720712
\(652\) 0 0
\(653\) 25638.9 1.53649 0.768246 0.640155i \(-0.221130\pi\)
0.768246 + 0.640155i \(0.221130\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6805.90 −0.404145
\(658\) 0 0
\(659\) −17516.7 −1.03544 −0.517719 0.855551i \(-0.673219\pi\)
−0.517719 + 0.855551i \(0.673219\pi\)
\(660\) 0 0
\(661\) −15764.4 −0.927632 −0.463816 0.885932i \(-0.653520\pi\)
−0.463816 + 0.885932i \(0.653520\pi\)
\(662\) 0 0
\(663\) −19243.4 −1.12722
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3341.51 0.193979
\(668\) 0 0
\(669\) −14617.9 −0.844784
\(670\) 0 0
\(671\) −19014.9 −1.09398
\(672\) 0 0
\(673\) 2242.93 0.128467 0.0642337 0.997935i \(-0.479540\pi\)
0.0642337 + 0.997935i \(0.479540\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30022.8 −1.70439 −0.852194 0.523226i \(-0.824728\pi\)
−0.852194 + 0.523226i \(0.824728\pi\)
\(678\) 0 0
\(679\) 27445.4 1.55119
\(680\) 0 0
\(681\) −7322.71 −0.412051
\(682\) 0 0
\(683\) 31713.5 1.77670 0.888348 0.459171i \(-0.151853\pi\)
0.888348 + 0.459171i \(0.151853\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6087.17 0.338049
\(688\) 0 0
\(689\) −25117.0 −1.38880
\(690\) 0 0
\(691\) 11938.0 0.657224 0.328612 0.944465i \(-0.393419\pi\)
0.328612 + 0.944465i \(0.393419\pi\)
\(692\) 0 0
\(693\) 19074.1 1.04555
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9332.26 −0.507151
\(698\) 0 0
\(699\) 4879.23 0.264019
\(700\) 0 0
\(701\) 24502.7 1.32019 0.660095 0.751182i \(-0.270516\pi\)
0.660095 + 0.751182i \(0.270516\pi\)
\(702\) 0 0
\(703\) 596.842 0.0320204
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −48704.0 −2.59081
\(708\) 0 0
\(709\) −752.907 −0.0398815 −0.0199408 0.999801i \(-0.506348\pi\)
−0.0199408 + 0.999801i \(0.506348\pi\)
\(710\) 0 0
\(711\) −1083.74 −0.0571635
\(712\) 0 0
\(713\) 12041.5 0.632479
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11425.1 0.595090
\(718\) 0 0
\(719\) 26968.1 1.39881 0.699403 0.714727i \(-0.253449\pi\)
0.699403 + 0.714727i \(0.253449\pi\)
\(720\) 0 0
\(721\) −3331.13 −0.172064
\(722\) 0 0
\(723\) −4823.21 −0.248101
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4430.65 −0.226030 −0.113015 0.993593i \(-0.536051\pi\)
−0.113015 + 0.993593i \(0.536051\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −29348.4 −1.48494
\(732\) 0 0
\(733\) −23967.1 −1.20770 −0.603850 0.797098i \(-0.706367\pi\)
−0.603850 + 0.797098i \(0.706367\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32043.9 −1.60156
\(738\) 0 0
\(739\) 14607.9 0.727143 0.363572 0.931566i \(-0.381557\pi\)
0.363572 + 0.931566i \(0.381557\pi\)
\(740\) 0 0
\(741\) −11892.2 −0.589571
\(742\) 0 0
\(743\) 21349.8 1.05417 0.527084 0.849813i \(-0.323285\pi\)
0.527084 + 0.849813i \(0.323285\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 590.943 0.0289444
\(748\) 0 0
\(749\) −23539.5 −1.14835
\(750\) 0 0
\(751\) 34286.8 1.66597 0.832985 0.553295i \(-0.186630\pi\)
0.832985 + 0.553295i \(0.186630\pi\)
\(752\) 0 0
\(753\) 4435.50 0.214660
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 33290.8 1.59838 0.799190 0.601078i \(-0.205262\pi\)
0.799190 + 0.601078i \(0.205262\pi\)
\(758\) 0 0
\(759\) −19186.3 −0.917547
\(760\) 0 0
\(761\) −14994.4 −0.714254 −0.357127 0.934056i \(-0.616244\pi\)
−0.357127 + 0.934056i \(0.616244\pi\)
\(762\) 0 0
\(763\) 45183.2 2.14383
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11988.0 0.564355
\(768\) 0 0
\(769\) 19734.3 0.925407 0.462704 0.886513i \(-0.346879\pi\)
0.462704 + 0.886513i \(0.346879\pi\)
\(770\) 0 0
\(771\) 1281.13 0.0598428
\(772\) 0 0
\(773\) 13919.1 0.647651 0.323825 0.946117i \(-0.395031\pi\)
0.323825 + 0.946117i \(0.395031\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1343.82 0.0620453
\(778\) 0 0
\(779\) −5767.26 −0.265255
\(780\) 0 0
\(781\) 18517.2 0.848396
\(782\) 0 0
\(783\) −902.207 −0.0411778
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −29089.1 −1.31755 −0.658776 0.752339i \(-0.728925\pi\)
−0.658776 + 0.752339i \(0.728925\pi\)
\(788\) 0 0
\(789\) 8338.87 0.376263
\(790\) 0 0
\(791\) 24101.6 1.08338
\(792\) 0 0
\(793\) 26692.9 1.19532
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5048.75 −0.224386 −0.112193 0.993686i \(-0.535788\pi\)
−0.112193 + 0.993686i \(0.535788\pi\)
\(798\) 0 0
\(799\) −15467.8 −0.684869
\(800\) 0 0
\(801\) 4619.89 0.203790
\(802\) 0 0
\(803\) −48362.9 −2.12539
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −20496.1 −0.894049
\(808\) 0 0
\(809\) −25168.3 −1.09378 −0.546891 0.837204i \(-0.684189\pi\)
−0.546891 + 0.837204i \(0.684189\pi\)
\(810\) 0 0
\(811\) −4042.06 −0.175014 −0.0875068 0.996164i \(-0.527890\pi\)
−0.0875068 + 0.996164i \(0.527890\pi\)
\(812\) 0 0
\(813\) −18963.4 −0.818051
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −18137.1 −0.776666
\(818\) 0 0
\(819\) −26775.9 −1.14240
\(820\) 0 0
\(821\) −29594.0 −1.25802 −0.629012 0.777396i \(-0.716540\pi\)
−0.629012 + 0.777396i \(0.716540\pi\)
\(822\) 0 0
\(823\) 20336.2 0.861331 0.430665 0.902512i \(-0.358279\pi\)
0.430665 + 0.902512i \(0.358279\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23156.1 −0.973661 −0.486831 0.873496i \(-0.661847\pi\)
−0.486831 + 0.873496i \(0.661847\pi\)
\(828\) 0 0
\(829\) 19876.3 0.832729 0.416365 0.909198i \(-0.363304\pi\)
0.416365 + 0.909198i \(0.363304\pi\)
\(830\) 0 0
\(831\) 7337.74 0.306310
\(832\) 0 0
\(833\) −53953.9 −2.24417
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3251.21 −0.134263
\(838\) 0 0
\(839\) 5649.88 0.232486 0.116243 0.993221i \(-0.462915\pi\)
0.116243 + 0.993221i \(0.462915\pi\)
\(840\) 0 0
\(841\) −23272.4 −0.954218
\(842\) 0 0
\(843\) −7163.74 −0.292684
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 91433.7 3.70921
\(848\) 0 0
\(849\) −21351.8 −0.863124
\(850\) 0 0
\(851\) −1351.72 −0.0544495
\(852\) 0 0
\(853\) −12974.3 −0.520788 −0.260394 0.965502i \(-0.583852\pi\)
−0.260394 + 0.965502i \(0.583852\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5604.38 0.223386 0.111693 0.993743i \(-0.464373\pi\)
0.111693 + 0.993743i \(0.464373\pi\)
\(858\) 0 0
\(859\) 31863.4 1.26562 0.632809 0.774308i \(-0.281902\pi\)
0.632809 + 0.774308i \(0.281902\pi\)
\(860\) 0 0
\(861\) −12985.2 −0.513979
\(862\) 0 0
\(863\) −23695.6 −0.934656 −0.467328 0.884084i \(-0.654783\pi\)
−0.467328 + 0.884084i \(0.654783\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −575.376 −0.0225384
\(868\) 0 0
\(869\) −7701.06 −0.300622
\(870\) 0 0
\(871\) 44982.8 1.74992
\(872\) 0 0
\(873\) 7453.86 0.288975
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 49065.3 1.88919 0.944593 0.328243i \(-0.106456\pi\)
0.944593 + 0.328243i \(0.106456\pi\)
\(878\) 0 0
\(879\) 20857.2 0.800336
\(880\) 0 0
\(881\) −14711.2 −0.562581 −0.281291 0.959623i \(-0.590763\pi\)
−0.281291 + 0.959623i \(0.590763\pi\)
\(882\) 0 0
\(883\) 21638.5 0.824681 0.412340 0.911030i \(-0.364711\pi\)
0.412340 + 0.911030i \(0.364711\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14331.7 0.542515 0.271258 0.962507i \(-0.412560\pi\)
0.271258 + 0.962507i \(0.412560\pi\)
\(888\) 0 0
\(889\) −12238.9 −0.461732
\(890\) 0 0
\(891\) 5180.30 0.194777
\(892\) 0 0
\(893\) −9558.95 −0.358206
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 26933.4 1.00254
\(898\) 0 0
\(899\) 4023.68 0.149274
\(900\) 0 0
\(901\) −19988.8 −0.739093
\(902\) 0 0
\(903\) −40836.4 −1.50493
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −26495.0 −0.969957 −0.484978 0.874526i \(-0.661173\pi\)
−0.484978 + 0.874526i \(0.661173\pi\)
\(908\) 0 0
\(909\) −13227.4 −0.482648
\(910\) 0 0
\(911\) −4927.97 −0.179222 −0.0896108 0.995977i \(-0.528562\pi\)
−0.0896108 + 0.995977i \(0.528562\pi\)
\(912\) 0 0
\(913\) 4199.26 0.152218
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 66303.2 2.38770
\(918\) 0 0
\(919\) 15904.9 0.570896 0.285448 0.958394i \(-0.407858\pi\)
0.285448 + 0.958394i \(0.407858\pi\)
\(920\) 0 0
\(921\) −8453.28 −0.302438
\(922\) 0 0
\(923\) −25994.2 −0.926987
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −904.697 −0.0320541
\(928\) 0 0
\(929\) −8577.94 −0.302942 −0.151471 0.988462i \(-0.548401\pi\)
−0.151471 + 0.988462i \(0.548401\pi\)
\(930\) 0 0
\(931\) −33343.0 −1.17376
\(932\) 0 0
\(933\) 23327.0 0.818535
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12395.3 0.432164 0.216082 0.976375i \(-0.430672\pi\)
0.216082 + 0.976375i \(0.430672\pi\)
\(938\) 0 0
\(939\) 24668.6 0.857326
\(940\) 0 0
\(941\) −266.126 −0.00921939 −0.00460969 0.999989i \(-0.501467\pi\)
−0.00460969 + 0.999989i \(0.501467\pi\)
\(942\) 0 0
\(943\) 13061.6 0.451056
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25584.5 −0.877912 −0.438956 0.898508i \(-0.644652\pi\)
−0.438956 + 0.898508i \(0.644652\pi\)
\(948\) 0 0
\(949\) 67891.2 2.32228
\(950\) 0 0
\(951\) −12794.3 −0.436260
\(952\) 0 0
\(953\) −41960.3 −1.42626 −0.713130 0.701031i \(-0.752723\pi\)
−0.713130 + 0.701031i \(0.752723\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6411.11 −0.216554
\(958\) 0 0
\(959\) −80740.3 −2.71871
\(960\) 0 0
\(961\) −15291.2 −0.513283
\(962\) 0 0
\(963\) −6393.06 −0.213929
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9034.73 0.300452 0.150226 0.988652i \(-0.452000\pi\)
0.150226 + 0.988652i \(0.452000\pi\)
\(968\) 0 0
\(969\) −9464.15 −0.313759
\(970\) 0 0
\(971\) 30649.8 1.01297 0.506487 0.862247i \(-0.330944\pi\)
0.506487 + 0.862247i \(0.330944\pi\)
\(972\) 0 0
\(973\) 33812.0 1.11404
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26503.6 −0.867887 −0.433944 0.900940i \(-0.642878\pi\)
−0.433944 + 0.900940i \(0.642878\pi\)
\(978\) 0 0
\(979\) 32829.1 1.07173
\(980\) 0 0
\(981\) 12271.2 0.399379
\(982\) 0 0
\(983\) 14822.3 0.480934 0.240467 0.970657i \(-0.422699\pi\)
0.240467 + 0.970657i \(0.422699\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −21522.4 −0.694089
\(988\) 0 0
\(989\) 41076.7 1.32069
\(990\) 0 0
\(991\) 16407.1 0.525921 0.262960 0.964807i \(-0.415301\pi\)
0.262960 + 0.964807i \(0.415301\pi\)
\(992\) 0 0
\(993\) 23300.6 0.744634
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −37538.5 −1.19243 −0.596216 0.802824i \(-0.703330\pi\)
−0.596216 + 0.802824i \(0.703330\pi\)
\(998\) 0 0
\(999\) 364.966 0.0115586
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bz.1.4 4
4.3 odd 2 2400.4.a.ca.1.1 4
5.2 odd 4 480.4.f.f.289.8 yes 8
5.3 odd 4 480.4.f.f.289.3 8
5.4 even 2 2400.4.a.ca.1.2 4
15.2 even 4 1440.4.f.m.289.2 8
15.8 even 4 1440.4.f.m.289.3 8
20.3 even 4 480.4.f.f.289.7 yes 8
20.7 even 4 480.4.f.f.289.4 yes 8
20.19 odd 2 inner 2400.4.a.bz.1.3 4
40.3 even 4 960.4.f.u.769.2 8
40.13 odd 4 960.4.f.u.769.6 8
40.27 even 4 960.4.f.u.769.5 8
40.37 odd 4 960.4.f.u.769.1 8
60.23 odd 4 1440.4.f.m.289.4 8
60.47 odd 4 1440.4.f.m.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.f.289.3 8 5.3 odd 4
480.4.f.f.289.4 yes 8 20.7 even 4
480.4.f.f.289.7 yes 8 20.3 even 4
480.4.f.f.289.8 yes 8 5.2 odd 4
960.4.f.u.769.1 8 40.37 odd 4
960.4.f.u.769.2 8 40.3 even 4
960.4.f.u.769.5 8 40.27 even 4
960.4.f.u.769.6 8 40.13 odd 4
1440.4.f.m.289.1 8 60.47 odd 4
1440.4.f.m.289.2 8 15.2 even 4
1440.4.f.m.289.3 8 15.8 even 4
1440.4.f.m.289.4 8 60.23 odd 4
2400.4.a.bz.1.3 4 20.19 odd 2 inner
2400.4.a.bz.1.4 4 1.1 even 1 trivial
2400.4.a.ca.1.1 4 4.3 odd 2
2400.4.a.ca.1.2 4 5.4 even 2