Properties

Label 2400.4.a.bz.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{21}, \sqrt{141})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 61x^{2} + 154x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.60753\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -3.13836 q^{7} +9.00000 q^{9} -54.7891 q^{11} -66.0294 q^{13} -47.6991 q^{17} -139.149 q^{19} +9.41507 q^{21} +100.000 q^{23} -27.0000 q^{27} -75.4151 q^{29} -212.067 q^{31} +164.367 q^{33} -417.245 q^{37} +198.088 q^{39} +493.384 q^{41} -314.767 q^{43} -436.490 q^{47} -333.151 q^{49} +143.097 q^{51} -123.960 q^{53} +417.447 q^{57} +32.7121 q^{59} +573.321 q^{61} -28.2452 q^{63} +297.044 q^{67} -300.000 q^{69} +242.041 q^{71} +811.202 q^{73} +171.948 q^{77} +212.067 q^{79} +81.0000 q^{81} -369.660 q^{83} +226.245 q^{87} -357.321 q^{89} +207.224 q^{91} +636.200 q^{93} +638.217 q^{97} -493.102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} + 60 q^{7} + 36 q^{9} - 180 q^{21} + 400 q^{23} - 108 q^{27} - 84 q^{29} + 1248 q^{41} + 192 q^{43} - 440 q^{47} + 844 q^{49} + 552 q^{61} + 540 q^{63} - 408 q^{67} - 1200 q^{69} + 324 q^{81}+ \cdots + 312 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.13836 −0.169455 −0.0847277 0.996404i \(-0.527002\pi\)
−0.0847277 + 0.996404i \(0.527002\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −54.7891 −1.50178 −0.750888 0.660429i \(-0.770374\pi\)
−0.750888 + 0.660429i \(0.770374\pi\)
\(12\) 0 0
\(13\) −66.0294 −1.40871 −0.704357 0.709846i \(-0.748764\pi\)
−0.704357 + 0.709846i \(0.748764\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −47.6991 −0.680514 −0.340257 0.940332i \(-0.610514\pi\)
−0.340257 + 0.940332i \(0.610514\pi\)
\(18\) 0 0
\(19\) −139.149 −1.68015 −0.840077 0.542466i \(-0.817491\pi\)
−0.840077 + 0.542466i \(0.817491\pi\)
\(20\) 0 0
\(21\) 9.41507 0.0978351
\(22\) 0 0
\(23\) 100.000 0.906584 0.453292 0.891362i \(-0.350249\pi\)
0.453292 + 0.891362i \(0.350249\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −75.4151 −0.482904 −0.241452 0.970413i \(-0.577624\pi\)
−0.241452 + 0.970413i \(0.577624\pi\)
\(30\) 0 0
\(31\) −212.067 −1.22865 −0.614327 0.789052i \(-0.710572\pi\)
−0.614327 + 0.789052i \(0.710572\pi\)
\(32\) 0 0
\(33\) 164.367 0.867051
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −417.245 −1.85391 −0.926955 0.375174i \(-0.877583\pi\)
−0.926955 + 0.375174i \(0.877583\pi\)
\(38\) 0 0
\(39\) 198.088 0.813321
\(40\) 0 0
\(41\) 493.384 1.87936 0.939678 0.342061i \(-0.111125\pi\)
0.939678 + 0.342061i \(0.111125\pi\)
\(42\) 0 0
\(43\) −314.767 −1.11631 −0.558157 0.829735i \(-0.688491\pi\)
−0.558157 + 0.829735i \(0.688491\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −436.490 −1.35465 −0.677326 0.735683i \(-0.736861\pi\)
−0.677326 + 0.735683i \(0.736861\pi\)
\(48\) 0 0
\(49\) −333.151 −0.971285
\(50\) 0 0
\(51\) 143.097 0.392895
\(52\) 0 0
\(53\) −123.960 −0.321268 −0.160634 0.987014i \(-0.551354\pi\)
−0.160634 + 0.987014i \(0.551354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 417.447 0.970038
\(58\) 0 0
\(59\) 32.7121 0.0721822 0.0360911 0.999349i \(-0.488509\pi\)
0.0360911 + 0.999349i \(0.488509\pi\)
\(60\) 0 0
\(61\) 573.321 1.20338 0.601690 0.798730i \(-0.294494\pi\)
0.601690 + 0.798730i \(0.294494\pi\)
\(62\) 0 0
\(63\) −28.2452 −0.0564851
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 297.044 0.541637 0.270819 0.962630i \(-0.412706\pi\)
0.270819 + 0.962630i \(0.412706\pi\)
\(68\) 0 0
\(69\) −300.000 −0.523417
\(70\) 0 0
\(71\) 242.041 0.404577 0.202288 0.979326i \(-0.435162\pi\)
0.202288 + 0.979326i \(0.435162\pi\)
\(72\) 0 0
\(73\) 811.202 1.30060 0.650301 0.759676i \(-0.274643\pi\)
0.650301 + 0.759676i \(0.274643\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 171.948 0.254484
\(78\) 0 0
\(79\) 212.067 0.302017 0.151009 0.988532i \(-0.451748\pi\)
0.151009 + 0.988532i \(0.451748\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −369.660 −0.488861 −0.244431 0.969667i \(-0.578601\pi\)
−0.244431 + 0.969667i \(0.578601\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 226.245 0.278805
\(88\) 0 0
\(89\) −357.321 −0.425572 −0.212786 0.977099i \(-0.568254\pi\)
−0.212786 + 0.977099i \(0.568254\pi\)
\(90\) 0 0
\(91\) 207.224 0.238714
\(92\) 0 0
\(93\) 636.200 0.709364
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 638.217 0.668053 0.334027 0.942564i \(-0.391592\pi\)
0.334027 + 0.942564i \(0.391592\pi\)
\(98\) 0 0
\(99\) −493.102 −0.500592
\(100\) 0 0
\(101\) 815.717 0.803632 0.401816 0.915720i \(-0.368379\pi\)
0.401816 + 0.915720i \(0.368379\pi\)
\(102\) 0 0
\(103\) 298.522 0.285575 0.142788 0.989753i \(-0.454393\pi\)
0.142788 + 0.989753i \(0.454393\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1145.66 −1.03509 −0.517547 0.855654i \(-0.673155\pi\)
−0.517547 + 0.855654i \(0.673155\pi\)
\(108\) 0 0
\(109\) −595.471 −0.523264 −0.261632 0.965168i \(-0.584261\pi\)
−0.261632 + 0.965168i \(0.584261\pi\)
\(110\) 0 0
\(111\) 1251.73 1.07035
\(112\) 0 0
\(113\) −1671.31 −1.39136 −0.695681 0.718351i \(-0.744897\pi\)
−0.695681 + 0.718351i \(0.744897\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −594.265 −0.469571
\(118\) 0 0
\(119\) 149.697 0.115317
\(120\) 0 0
\(121\) 1670.85 1.25533
\(122\) 0 0
\(123\) −1480.15 −1.08505
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1856.67 −1.29727 −0.648634 0.761100i \(-0.724659\pi\)
−0.648634 + 0.761100i \(0.724659\pi\)
\(128\) 0 0
\(129\) 944.301 0.644505
\(130\) 0 0
\(131\) 409.636 0.273207 0.136603 0.990626i \(-0.456381\pi\)
0.136603 + 0.990626i \(0.456381\pi\)
\(132\) 0 0
\(133\) 436.699 0.284711
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2650.20 −1.65271 −0.826357 0.563147i \(-0.809590\pi\)
−0.826357 + 0.563147i \(0.809590\pi\)
\(138\) 0 0
\(139\) −452.090 −0.275869 −0.137934 0.990441i \(-0.544046\pi\)
−0.137934 + 0.990441i \(0.544046\pi\)
\(140\) 0 0
\(141\) 1309.47 0.782109
\(142\) 0 0
\(143\) 3617.70 2.11557
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 999.452 0.560772
\(148\) 0 0
\(149\) −184.900 −0.101662 −0.0508308 0.998707i \(-0.516187\pi\)
−0.0508308 + 0.998707i \(0.516187\pi\)
\(150\) 0 0
\(151\) −2552.70 −1.37573 −0.687866 0.725838i \(-0.741452\pi\)
−0.687866 + 0.725838i \(0.741452\pi\)
\(152\) 0 0
\(153\) −429.292 −0.226838
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 894.870 0.454894 0.227447 0.973790i \(-0.426962\pi\)
0.227447 + 0.973790i \(0.426962\pi\)
\(158\) 0 0
\(159\) 371.880 0.185484
\(160\) 0 0
\(161\) −313.836 −0.153626
\(162\) 0 0
\(163\) −1805.72 −0.867700 −0.433850 0.900985i \(-0.642845\pi\)
−0.433850 + 0.900985i \(0.642845\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3132.60 −1.45155 −0.725773 0.687935i \(-0.758518\pi\)
−0.725773 + 0.687935i \(0.758518\pi\)
\(168\) 0 0
\(169\) 2162.89 0.984473
\(170\) 0 0
\(171\) −1252.34 −0.560052
\(172\) 0 0
\(173\) −450.274 −0.197882 −0.0989412 0.995093i \(-0.531546\pi\)
−0.0989412 + 0.995093i \(0.531546\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −98.1362 −0.0416744
\(178\) 0 0
\(179\) 2803.93 1.17081 0.585407 0.810740i \(-0.300935\pi\)
0.585407 + 0.810740i \(0.300935\pi\)
\(180\) 0 0
\(181\) −1988.07 −0.816422 −0.408211 0.912888i \(-0.633847\pi\)
−0.408211 + 0.912888i \(0.633847\pi\)
\(182\) 0 0
\(183\) −1719.96 −0.694772
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2613.39 1.02198
\(188\) 0 0
\(189\) 84.7356 0.0326117
\(190\) 0 0
\(191\) −2826.96 −1.07095 −0.535475 0.844551i \(-0.679867\pi\)
−0.535475 + 0.844551i \(0.679867\pi\)
\(192\) 0 0
\(193\) −213.103 −0.0794793 −0.0397397 0.999210i \(-0.512653\pi\)
−0.0397397 + 0.999210i \(0.512653\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2411.73 0.872227 0.436113 0.899892i \(-0.356355\pi\)
0.436113 + 0.899892i \(0.356355\pi\)
\(198\) 0 0
\(199\) −2287.77 −0.814954 −0.407477 0.913216i \(-0.633591\pi\)
−0.407477 + 0.913216i \(0.633591\pi\)
\(200\) 0 0
\(201\) −891.132 −0.312714
\(202\) 0 0
\(203\) 236.679 0.0818307
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 900.000 0.302195
\(208\) 0 0
\(209\) 7623.85 2.52322
\(210\) 0 0
\(211\) 5405.54 1.76366 0.881831 0.471566i \(-0.156311\pi\)
0.881831 + 0.471566i \(0.156311\pi\)
\(212\) 0 0
\(213\) −726.122 −0.233582
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 665.541 0.208202
\(218\) 0 0
\(219\) −2433.61 −0.750903
\(220\) 0 0
\(221\) 3149.55 0.958649
\(222\) 0 0
\(223\) 773.366 0.232235 0.116117 0.993235i \(-0.462955\pi\)
0.116117 + 0.993235i \(0.462955\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4088.90 −1.19555 −0.597776 0.801663i \(-0.703949\pi\)
−0.597776 + 0.801663i \(0.703949\pi\)
\(228\) 0 0
\(229\) 5589.06 1.61282 0.806409 0.591359i \(-0.201408\pi\)
0.806409 + 0.591359i \(0.201408\pi\)
\(230\) 0 0
\(231\) −515.844 −0.146926
\(232\) 0 0
\(233\) 2387.12 0.671181 0.335591 0.942008i \(-0.391064\pi\)
0.335591 + 0.942008i \(0.391064\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −636.200 −0.174370
\(238\) 0 0
\(239\) 893.861 0.241921 0.120960 0.992657i \(-0.461403\pi\)
0.120960 + 0.992657i \(0.461403\pi\)
\(240\) 0 0
\(241\) 6396.26 1.70962 0.854812 0.518937i \(-0.173672\pi\)
0.854812 + 0.518937i \(0.173672\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9187.92 2.36686
\(248\) 0 0
\(249\) 1108.98 0.282244
\(250\) 0 0
\(251\) −5349.54 −1.34526 −0.672629 0.739980i \(-0.734835\pi\)
−0.672629 + 0.739980i \(0.734835\pi\)
\(252\) 0 0
\(253\) −5478.91 −1.36149
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3918.97 0.951200 0.475600 0.879662i \(-0.342231\pi\)
0.475600 + 0.879662i \(0.342231\pi\)
\(258\) 0 0
\(259\) 1309.46 0.314155
\(260\) 0 0
\(261\) −678.736 −0.160968
\(262\) 0 0
\(263\) 267.622 0.0627463 0.0313732 0.999508i \(-0.490012\pi\)
0.0313732 + 0.999508i \(0.490012\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1071.96 0.245704
\(268\) 0 0
\(269\) 265.957 0.0602814 0.0301407 0.999546i \(-0.490404\pi\)
0.0301407 + 0.999546i \(0.490404\pi\)
\(270\) 0 0
\(271\) 4658.72 1.04427 0.522135 0.852863i \(-0.325136\pi\)
0.522135 + 0.852863i \(0.325136\pi\)
\(272\) 0 0
\(273\) −621.672 −0.137822
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2565.06 0.556388 0.278194 0.960525i \(-0.410264\pi\)
0.278194 + 0.960525i \(0.410264\pi\)
\(278\) 0 0
\(279\) −1908.60 −0.409551
\(280\) 0 0
\(281\) 3984.09 0.845803 0.422902 0.906176i \(-0.361012\pi\)
0.422902 + 0.906176i \(0.361012\pi\)
\(282\) 0 0
\(283\) −1081.27 −0.227119 −0.113560 0.993531i \(-0.536225\pi\)
−0.113560 + 0.993531i \(0.536225\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1548.41 −0.318467
\(288\) 0 0
\(289\) −2637.79 −0.536900
\(290\) 0 0
\(291\) −1914.65 −0.385701
\(292\) 0 0
\(293\) 8318.01 1.65851 0.829254 0.558871i \(-0.188765\pi\)
0.829254 + 0.558871i \(0.188765\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1479.31 0.289017
\(298\) 0 0
\(299\) −6602.94 −1.27712
\(300\) 0 0
\(301\) 987.852 0.189166
\(302\) 0 0
\(303\) −2447.15 −0.463977
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6033.76 −1.12171 −0.560855 0.827914i \(-0.689527\pi\)
−0.560855 + 0.827914i \(0.689527\pi\)
\(308\) 0 0
\(309\) −895.566 −0.164877
\(310\) 0 0
\(311\) 5191.10 0.946497 0.473248 0.880929i \(-0.343081\pi\)
0.473248 + 0.880929i \(0.343081\pi\)
\(312\) 0 0
\(313\) 469.150 0.0847218 0.0423609 0.999102i \(-0.486512\pi\)
0.0423609 + 0.999102i \(0.486512\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −461.225 −0.0817192 −0.0408596 0.999165i \(-0.513010\pi\)
−0.0408596 + 0.999165i \(0.513010\pi\)
\(318\) 0 0
\(319\) 4131.93 0.725215
\(320\) 0 0
\(321\) 3436.98 0.597612
\(322\) 0 0
\(323\) 6637.28 1.14337
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1786.41 0.302107
\(328\) 0 0
\(329\) 1369.86 0.229553
\(330\) 0 0
\(331\) 3917.49 0.650529 0.325264 0.945623i \(-0.394547\pi\)
0.325264 + 0.945623i \(0.394547\pi\)
\(332\) 0 0
\(333\) −3755.20 −0.617970
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −10961.6 −1.77186 −0.885928 0.463824i \(-0.846477\pi\)
−0.885928 + 0.463824i \(0.846477\pi\)
\(338\) 0 0
\(339\) 5013.94 0.803304
\(340\) 0 0
\(341\) 11618.9 1.84516
\(342\) 0 0
\(343\) 2122.00 0.334045
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2905.89 −0.449556 −0.224778 0.974410i \(-0.572166\pi\)
−0.224778 + 0.974410i \(0.572166\pi\)
\(348\) 0 0
\(349\) 4016.26 0.616005 0.308002 0.951386i \(-0.400340\pi\)
0.308002 + 0.951386i \(0.400340\pi\)
\(350\) 0 0
\(351\) 1782.80 0.271107
\(352\) 0 0
\(353\) −4238.54 −0.639078 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −449.091 −0.0665782
\(358\) 0 0
\(359\) 10817.5 1.59033 0.795163 0.606395i \(-0.207385\pi\)
0.795163 + 0.606395i \(0.207385\pi\)
\(360\) 0 0
\(361\) 12503.4 1.82292
\(362\) 0 0
\(363\) −5012.55 −0.724767
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8143.58 1.15829 0.579144 0.815226i \(-0.303387\pi\)
0.579144 + 0.815226i \(0.303387\pi\)
\(368\) 0 0
\(369\) 4440.45 0.626452
\(370\) 0 0
\(371\) 389.031 0.0544406
\(372\) 0 0
\(373\) 2097.52 0.291168 0.145584 0.989346i \(-0.453494\pi\)
0.145584 + 0.989346i \(0.453494\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4979.62 0.680274
\(378\) 0 0
\(379\) 4319.09 0.585374 0.292687 0.956208i \(-0.405451\pi\)
0.292687 + 0.956208i \(0.405451\pi\)
\(380\) 0 0
\(381\) 5570.02 0.748978
\(382\) 0 0
\(383\) 2301.09 0.306998 0.153499 0.988149i \(-0.450946\pi\)
0.153499 + 0.988149i \(0.450946\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2832.90 −0.372105
\(388\) 0 0
\(389\) −7648.49 −0.996900 −0.498450 0.866918i \(-0.666097\pi\)
−0.498450 + 0.866918i \(0.666097\pi\)
\(390\) 0 0
\(391\) −4769.91 −0.616944
\(392\) 0 0
\(393\) −1228.91 −0.157736
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11038.0 −1.39542 −0.697708 0.716382i \(-0.745797\pi\)
−0.697708 + 0.716382i \(0.745797\pi\)
\(398\) 0 0
\(399\) −1310.10 −0.164378
\(400\) 0 0
\(401\) 5971.47 0.743644 0.371822 0.928304i \(-0.378733\pi\)
0.371822 + 0.928304i \(0.378733\pi\)
\(402\) 0 0
\(403\) 14002.6 1.73082
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 22860.5 2.78416
\(408\) 0 0
\(409\) −4103.70 −0.496124 −0.248062 0.968744i \(-0.579794\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(410\) 0 0
\(411\) 7950.60 0.954195
\(412\) 0 0
\(413\) −102.662 −0.0122317
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1356.27 0.159273
\(418\) 0 0
\(419\) −4624.74 −0.539221 −0.269610 0.962969i \(-0.586895\pi\)
−0.269610 + 0.962969i \(0.586895\pi\)
\(420\) 0 0
\(421\) 7026.34 0.813403 0.406702 0.913561i \(-0.366679\pi\)
0.406702 + 0.913561i \(0.366679\pi\)
\(422\) 0 0
\(423\) −3928.41 −0.451551
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1799.28 −0.203919
\(428\) 0 0
\(429\) −10853.1 −1.22143
\(430\) 0 0
\(431\) −997.789 −0.111512 −0.0557562 0.998444i \(-0.517757\pi\)
−0.0557562 + 0.998444i \(0.517757\pi\)
\(432\) 0 0
\(433\) 285.270 0.0316609 0.0158305 0.999875i \(-0.494961\pi\)
0.0158305 + 0.999875i \(0.494961\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13914.9 −1.52320
\(438\) 0 0
\(439\) −15424.9 −1.67698 −0.838488 0.544920i \(-0.816560\pi\)
−0.838488 + 0.544920i \(0.816560\pi\)
\(440\) 0 0
\(441\) −2998.36 −0.323762
\(442\) 0 0
\(443\) −17093.8 −1.83330 −0.916649 0.399692i \(-0.869117\pi\)
−0.916649 + 0.399692i \(0.869117\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 554.700 0.0586944
\(448\) 0 0
\(449\) −680.578 −0.0715333 −0.0357667 0.999360i \(-0.511387\pi\)
−0.0357667 + 0.999360i \(0.511387\pi\)
\(450\) 0 0
\(451\) −27032.1 −2.82237
\(452\) 0 0
\(453\) 7658.09 0.794279
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11091.2 1.13528 0.567642 0.823275i \(-0.307856\pi\)
0.567642 + 0.823275i \(0.307856\pi\)
\(458\) 0 0
\(459\) 1287.88 0.130965
\(460\) 0 0
\(461\) 14732.4 1.48840 0.744202 0.667955i \(-0.232830\pi\)
0.744202 + 0.667955i \(0.232830\pi\)
\(462\) 0 0
\(463\) 10881.4 1.09223 0.546114 0.837711i \(-0.316107\pi\)
0.546114 + 0.837711i \(0.316107\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17667.2 −1.75063 −0.875313 0.483556i \(-0.839345\pi\)
−0.875313 + 0.483556i \(0.839345\pi\)
\(468\) 0 0
\(469\) −932.230 −0.0917833
\(470\) 0 0
\(471\) −2684.61 −0.262633
\(472\) 0 0
\(473\) 17245.8 1.67646
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1115.64 −0.107089
\(478\) 0 0
\(479\) −17668.7 −1.68540 −0.842698 0.538386i \(-0.819034\pi\)
−0.842698 + 0.538386i \(0.819034\pi\)
\(480\) 0 0
\(481\) 27550.4 2.61163
\(482\) 0 0
\(483\) 941.507 0.0886958
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12173.3 1.13270 0.566351 0.824164i \(-0.308355\pi\)
0.566351 + 0.824164i \(0.308355\pi\)
\(488\) 0 0
\(489\) 5417.17 0.500967
\(490\) 0 0
\(491\) −1749.88 −0.160837 −0.0804186 0.996761i \(-0.525626\pi\)
−0.0804186 + 0.996761i \(0.525626\pi\)
\(492\) 0 0
\(493\) 3597.23 0.328623
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −759.610 −0.0685577
\(498\) 0 0
\(499\) −6887.58 −0.617897 −0.308948 0.951079i \(-0.599977\pi\)
−0.308948 + 0.951079i \(0.599977\pi\)
\(500\) 0 0
\(501\) 9397.81 0.838050
\(502\) 0 0
\(503\) −19138.6 −1.69652 −0.848258 0.529582i \(-0.822349\pi\)
−0.848258 + 0.529582i \(0.822349\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6488.66 −0.568386
\(508\) 0 0
\(509\) 4935.83 0.429817 0.214909 0.976634i \(-0.431055\pi\)
0.214909 + 0.976634i \(0.431055\pi\)
\(510\) 0 0
\(511\) −2545.84 −0.220394
\(512\) 0 0
\(513\) 3757.02 0.323346
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 23914.9 2.03439
\(518\) 0 0
\(519\) 1350.82 0.114247
\(520\) 0 0
\(521\) −5552.52 −0.466911 −0.233455 0.972368i \(-0.575003\pi\)
−0.233455 + 0.972368i \(0.575003\pi\)
\(522\) 0 0
\(523\) 15455.8 1.29222 0.646112 0.763243i \(-0.276394\pi\)
0.646112 + 0.763243i \(0.276394\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10115.4 0.836117
\(528\) 0 0
\(529\) −2167.00 −0.178105
\(530\) 0 0
\(531\) 294.409 0.0240607
\(532\) 0 0
\(533\) −32577.8 −2.64747
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8411.79 −0.675970
\(538\) 0 0
\(539\) 18253.0 1.45865
\(540\) 0 0
\(541\) −4196.68 −0.333511 −0.166755 0.985998i \(-0.553329\pi\)
−0.166755 + 0.985998i \(0.553329\pi\)
\(542\) 0 0
\(543\) 5964.22 0.471361
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15213.5 −1.18918 −0.594592 0.804028i \(-0.702686\pi\)
−0.594592 + 0.804028i \(0.702686\pi\)
\(548\) 0 0
\(549\) 5159.89 0.401127
\(550\) 0 0
\(551\) 10493.9 0.811354
\(552\) 0 0
\(553\) −665.541 −0.0511784
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −638.705 −0.0485867 −0.0242933 0.999705i \(-0.507734\pi\)
−0.0242933 + 0.999705i \(0.507734\pi\)
\(558\) 0 0
\(559\) 20783.9 1.57257
\(560\) 0 0
\(561\) −7840.18 −0.590041
\(562\) 0 0
\(563\) −8809.59 −0.659467 −0.329733 0.944074i \(-0.606959\pi\)
−0.329733 + 0.944074i \(0.606959\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −254.207 −0.0188284
\(568\) 0 0
\(569\) −3028.50 −0.223131 −0.111565 0.993757i \(-0.535586\pi\)
−0.111565 + 0.993757i \(0.535586\pi\)
\(570\) 0 0
\(571\) 12574.9 0.921619 0.460810 0.887499i \(-0.347559\pi\)
0.460810 + 0.887499i \(0.347559\pi\)
\(572\) 0 0
\(573\) 8480.87 0.618313
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8139.23 −0.587245 −0.293623 0.955921i \(-0.594861\pi\)
−0.293623 + 0.955921i \(0.594861\pi\)
\(578\) 0 0
\(579\) 639.310 0.0458874
\(580\) 0 0
\(581\) 1160.13 0.0828402
\(582\) 0 0
\(583\) 6791.66 0.482473
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2158.65 −0.151783 −0.0758917 0.997116i \(-0.524180\pi\)
−0.0758917 + 0.997116i \(0.524180\pi\)
\(588\) 0 0
\(589\) 29508.8 2.06433
\(590\) 0 0
\(591\) −7235.19 −0.503580
\(592\) 0 0
\(593\) −20751.2 −1.43701 −0.718507 0.695520i \(-0.755174\pi\)
−0.718507 + 0.695520i \(0.755174\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6863.31 0.470514
\(598\) 0 0
\(599\) −12392.6 −0.845319 −0.422659 0.906289i \(-0.638903\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(600\) 0 0
\(601\) −18145.3 −1.23155 −0.615775 0.787922i \(-0.711157\pi\)
−0.615775 + 0.787922i \(0.711157\pi\)
\(602\) 0 0
\(603\) 2673.39 0.180546
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4054.01 0.271083 0.135541 0.990772i \(-0.456723\pi\)
0.135541 + 0.990772i \(0.456723\pi\)
\(608\) 0 0
\(609\) −710.038 −0.0472450
\(610\) 0 0
\(611\) 28821.2 1.90832
\(612\) 0 0
\(613\) 11118.1 0.732551 0.366276 0.930506i \(-0.380633\pi\)
0.366276 + 0.930506i \(0.380633\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3632.66 0.237027 0.118513 0.992952i \(-0.462187\pi\)
0.118513 + 0.992952i \(0.462187\pi\)
\(618\) 0 0
\(619\) 5849.26 0.379809 0.189904 0.981803i \(-0.439182\pi\)
0.189904 + 0.981803i \(0.439182\pi\)
\(620\) 0 0
\(621\) −2700.00 −0.174472
\(622\) 0 0
\(623\) 1121.40 0.0721154
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −22871.5 −1.45678
\(628\) 0 0
\(629\) 19902.2 1.26161
\(630\) 0 0
\(631\) 23408.1 1.47680 0.738400 0.674363i \(-0.235582\pi\)
0.738400 + 0.674363i \(0.235582\pi\)
\(632\) 0 0
\(633\) −16216.6 −1.01825
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 21997.8 1.36826
\(638\) 0 0
\(639\) 2178.37 0.134859
\(640\) 0 0
\(641\) −8461.56 −0.521391 −0.260695 0.965421i \(-0.583952\pi\)
−0.260695 + 0.965421i \(0.583952\pi\)
\(642\) 0 0
\(643\) −3968.61 −0.243401 −0.121700 0.992567i \(-0.538835\pi\)
−0.121700 + 0.992567i \(0.538835\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12865.9 0.781780 0.390890 0.920437i \(-0.372167\pi\)
0.390890 + 0.920437i \(0.372167\pi\)
\(648\) 0 0
\(649\) −1792.27 −0.108402
\(650\) 0 0
\(651\) −1996.62 −0.120205
\(652\) 0 0
\(653\) 17208.1 1.03125 0.515626 0.856814i \(-0.327560\pi\)
0.515626 + 0.856814i \(0.327560\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7300.82 0.433534
\(658\) 0 0
\(659\) 24399.7 1.44230 0.721152 0.692777i \(-0.243613\pi\)
0.721152 + 0.692777i \(0.243613\pi\)
\(660\) 0 0
\(661\) −21423.6 −1.26064 −0.630318 0.776337i \(-0.717076\pi\)
−0.630318 + 0.776337i \(0.717076\pi\)
\(662\) 0 0
\(663\) −9448.64 −0.553476
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7541.51 −0.437794
\(668\) 0 0
\(669\) −2320.10 −0.134081
\(670\) 0 0
\(671\) −31411.7 −1.80721
\(672\) 0 0
\(673\) 25564.1 1.46423 0.732114 0.681182i \(-0.238534\pi\)
0.732114 + 0.681182i \(0.238534\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6060.39 −0.344047 −0.172023 0.985093i \(-0.555030\pi\)
−0.172023 + 0.985093i \(0.555030\pi\)
\(678\) 0 0
\(679\) −2002.95 −0.113205
\(680\) 0 0
\(681\) 12266.7 0.690252
\(682\) 0 0
\(683\) −25313.5 −1.41815 −0.709073 0.705135i \(-0.750886\pi\)
−0.709073 + 0.705135i \(0.750886\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −16767.2 −0.931160
\(688\) 0 0
\(689\) 8185.01 0.452575
\(690\) 0 0
\(691\) −17510.4 −0.964004 −0.482002 0.876170i \(-0.660090\pi\)
−0.482002 + 0.876170i \(0.660090\pi\)
\(692\) 0 0
\(693\) 1547.53 0.0848280
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −23534.0 −1.27893
\(698\) 0 0
\(699\) −7161.35 −0.387507
\(700\) 0 0
\(701\) 11479.3 0.618500 0.309250 0.950981i \(-0.399922\pi\)
0.309250 + 0.950981i \(0.399922\pi\)
\(702\) 0 0
\(703\) 58059.2 3.11485
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2560.01 −0.136180
\(708\) 0 0
\(709\) −5759.09 −0.305060 −0.152530 0.988299i \(-0.548742\pi\)
−0.152530 + 0.988299i \(0.548742\pi\)
\(710\) 0 0
\(711\) 1908.60 0.100672
\(712\) 0 0
\(713\) −21206.7 −1.11388
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2681.58 −0.139673
\(718\) 0 0
\(719\) 10059.1 0.521753 0.260876 0.965372i \(-0.415989\pi\)
0.260876 + 0.965372i \(0.415989\pi\)
\(720\) 0 0
\(721\) −936.868 −0.0483922
\(722\) 0 0
\(723\) −19188.8 −0.987052
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6488.65 0.331019 0.165509 0.986208i \(-0.447073\pi\)
0.165509 + 0.986208i \(0.447073\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 15014.1 0.759668
\(732\) 0 0
\(733\) −24085.8 −1.21368 −0.606842 0.794823i \(-0.707564\pi\)
−0.606842 + 0.794823i \(0.707564\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16274.8 −0.813418
\(738\) 0 0
\(739\) −35834.3 −1.78375 −0.891873 0.452287i \(-0.850608\pi\)
−0.891873 + 0.452287i \(0.850608\pi\)
\(740\) 0 0
\(741\) −27563.8 −1.36651
\(742\) 0 0
\(743\) −28929.8 −1.42844 −0.714219 0.699922i \(-0.753218\pi\)
−0.714219 + 0.699922i \(0.753218\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3326.94 −0.162954
\(748\) 0 0
\(749\) 3595.49 0.175402
\(750\) 0 0
\(751\) 11630.6 0.565121 0.282561 0.959249i \(-0.408816\pi\)
0.282561 + 0.959249i \(0.408816\pi\)
\(752\) 0 0
\(753\) 16048.6 0.776685
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −39403.9 −1.89189 −0.945945 0.324327i \(-0.894862\pi\)
−0.945945 + 0.324327i \(0.894862\pi\)
\(758\) 0 0
\(759\) 16436.7 0.786055
\(760\) 0 0
\(761\) −32189.6 −1.53334 −0.766670 0.642042i \(-0.778088\pi\)
−0.766670 + 0.642042i \(0.778088\pi\)
\(762\) 0 0
\(763\) 1868.80 0.0886699
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2159.96 −0.101684
\(768\) 0 0
\(769\) −14438.3 −0.677061 −0.338530 0.940955i \(-0.609930\pi\)
−0.338530 + 0.940955i \(0.609930\pi\)
\(770\) 0 0
\(771\) −11756.9 −0.549176
\(772\) 0 0
\(773\) 7958.15 0.370291 0.185145 0.982711i \(-0.440724\pi\)
0.185145 + 0.982711i \(0.440724\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3928.39 −0.181377
\(778\) 0 0
\(779\) −68653.8 −3.15761
\(780\) 0 0
\(781\) −13261.2 −0.607584
\(782\) 0 0
\(783\) 2036.21 0.0929350
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −14650.9 −0.663595 −0.331798 0.943351i \(-0.607655\pi\)
−0.331798 + 0.943351i \(0.607655\pi\)
\(788\) 0 0
\(789\) −802.866 −0.0362266
\(790\) 0 0
\(791\) 5245.18 0.235774
\(792\) 0 0
\(793\) −37856.0 −1.69522
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36677.7 1.63010 0.815050 0.579390i \(-0.196709\pi\)
0.815050 + 0.579390i \(0.196709\pi\)
\(798\) 0 0
\(799\) 20820.2 0.921860
\(800\) 0 0
\(801\) −3215.89 −0.141857
\(802\) 0 0
\(803\) −44445.1 −1.95322
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −797.872 −0.0348035
\(808\) 0 0
\(809\) −11455.7 −0.497850 −0.248925 0.968523i \(-0.580077\pi\)
−0.248925 + 0.968523i \(0.580077\pi\)
\(810\) 0 0
\(811\) −7414.38 −0.321028 −0.160514 0.987034i \(-0.551315\pi\)
−0.160514 + 0.987034i \(0.551315\pi\)
\(812\) 0 0
\(813\) −13976.2 −0.602910
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 43799.5 1.87558
\(818\) 0 0
\(819\) 1865.02 0.0795713
\(820\) 0 0
\(821\) −20416.0 −0.867872 −0.433936 0.900944i \(-0.642876\pi\)
−0.433936 + 0.900944i \(0.642876\pi\)
\(822\) 0 0
\(823\) 12681.8 0.537132 0.268566 0.963261i \(-0.413450\pi\)
0.268566 + 0.963261i \(0.413450\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12540.1 0.527284 0.263642 0.964621i \(-0.415076\pi\)
0.263642 + 0.964621i \(0.415076\pi\)
\(828\) 0 0
\(829\) 6163.70 0.258232 0.129116 0.991630i \(-0.458786\pi\)
0.129116 + 0.991630i \(0.458786\pi\)
\(830\) 0 0
\(831\) −7695.18 −0.321231
\(832\) 0 0
\(833\) 15891.0 0.660973
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5725.80 0.236455
\(838\) 0 0
\(839\) −9169.30 −0.377306 −0.188653 0.982044i \(-0.560412\pi\)
−0.188653 + 0.982044i \(0.560412\pi\)
\(840\) 0 0
\(841\) −18701.6 −0.766803
\(842\) 0 0
\(843\) −11952.3 −0.488325
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5243.72 −0.212723
\(848\) 0 0
\(849\) 3243.81 0.131127
\(850\) 0 0
\(851\) −41724.5 −1.68073
\(852\) 0 0
\(853\) −20597.6 −0.826787 −0.413394 0.910552i \(-0.635657\pi\)
−0.413394 + 0.910552i \(0.635657\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19022.4 0.758217 0.379109 0.925352i \(-0.376231\pi\)
0.379109 + 0.925352i \(0.376231\pi\)
\(858\) 0 0
\(859\) 32860.9 1.30524 0.652618 0.757687i \(-0.273670\pi\)
0.652618 + 0.757687i \(0.273670\pi\)
\(860\) 0 0
\(861\) 4645.24 0.183867
\(862\) 0 0
\(863\) 2423.62 0.0955978 0.0477989 0.998857i \(-0.484779\pi\)
0.0477989 + 0.998857i \(0.484779\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 7913.38 0.309980
\(868\) 0 0
\(869\) −11618.9 −0.453562
\(870\) 0 0
\(871\) −19613.6 −0.763011
\(872\) 0 0
\(873\) 5743.96 0.222684
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23961.9 −0.922619 −0.461309 0.887239i \(-0.652620\pi\)
−0.461309 + 0.887239i \(0.652620\pi\)
\(878\) 0 0
\(879\) −24954.0 −0.957541
\(880\) 0 0
\(881\) −38508.8 −1.47264 −0.736318 0.676635i \(-0.763437\pi\)
−0.736318 + 0.676635i \(0.763437\pi\)
\(882\) 0 0
\(883\) 50877.5 1.93903 0.969516 0.245029i \(-0.0787975\pi\)
0.969516 + 0.245029i \(0.0787975\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6563.69 −0.248464 −0.124232 0.992253i \(-0.539647\pi\)
−0.124232 + 0.992253i \(0.539647\pi\)
\(888\) 0 0
\(889\) 5826.90 0.219829
\(890\) 0 0
\(891\) −4437.92 −0.166864
\(892\) 0 0
\(893\) 60737.2 2.27603
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19808.8 0.737344
\(898\) 0 0
\(899\) 15993.0 0.593322
\(900\) 0 0
\(901\) 5912.79 0.218628
\(902\) 0 0
\(903\) −2963.56 −0.109215
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 14135.0 0.517468 0.258734 0.965949i \(-0.416695\pi\)
0.258734 + 0.965949i \(0.416695\pi\)
\(908\) 0 0
\(909\) 7341.45 0.267877
\(910\) 0 0
\(911\) 3241.58 0.117891 0.0589453 0.998261i \(-0.481226\pi\)
0.0589453 + 0.998261i \(0.481226\pi\)
\(912\) 0 0
\(913\) 20253.4 0.734161
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1285.59 −0.0462964
\(918\) 0 0
\(919\) 23267.0 0.835154 0.417577 0.908642i \(-0.362879\pi\)
0.417577 + 0.908642i \(0.362879\pi\)
\(920\) 0 0
\(921\) 18101.3 0.647619
\(922\) 0 0
\(923\) −15981.8 −0.569933
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2686.70 0.0951917
\(928\) 0 0
\(929\) −31142.1 −1.09983 −0.549913 0.835222i \(-0.685339\pi\)
−0.549913 + 0.835222i \(0.685339\pi\)
\(930\) 0 0
\(931\) 46357.5 1.63191
\(932\) 0 0
\(933\) −15573.3 −0.546460
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −15438.1 −0.538252 −0.269126 0.963105i \(-0.586735\pi\)
−0.269126 + 0.963105i \(0.586735\pi\)
\(938\) 0 0
\(939\) −1407.45 −0.0489142
\(940\) 0 0
\(941\) 30968.1 1.07283 0.536414 0.843955i \(-0.319778\pi\)
0.536414 + 0.843955i \(0.319778\pi\)
\(942\) 0 0
\(943\) 49338.4 1.70379
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −33855.5 −1.16173 −0.580865 0.814000i \(-0.697285\pi\)
−0.580865 + 0.814000i \(0.697285\pi\)
\(948\) 0 0
\(949\) −53563.2 −1.83218
\(950\) 0 0
\(951\) 1383.68 0.0471806
\(952\) 0 0
\(953\) 24702.3 0.839649 0.419825 0.907605i \(-0.362092\pi\)
0.419825 + 0.907605i \(0.362092\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −12395.8 −0.418703
\(958\) 0 0
\(959\) 8317.27 0.280061
\(960\) 0 0
\(961\) 15181.2 0.509591
\(962\) 0 0
\(963\) −10310.9 −0.345032
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 49483.3 1.64558 0.822789 0.568346i \(-0.192417\pi\)
0.822789 + 0.568346i \(0.192417\pi\)
\(968\) 0 0
\(969\) −19911.8 −0.660125
\(970\) 0 0
\(971\) −8369.30 −0.276605 −0.138303 0.990390i \(-0.544165\pi\)
−0.138303 + 0.990390i \(0.544165\pi\)
\(972\) 0 0
\(973\) 1418.82 0.0467474
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16742.7 0.548257 0.274129 0.961693i \(-0.411611\pi\)
0.274129 + 0.961693i \(0.411611\pi\)
\(978\) 0 0
\(979\) 19577.3 0.639114
\(980\) 0 0
\(981\) −5359.24 −0.174421
\(982\) 0 0
\(983\) 24181.7 0.784615 0.392307 0.919834i \(-0.371677\pi\)
0.392307 + 0.919834i \(0.371677\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −4109.59 −0.132533
\(988\) 0 0
\(989\) −31476.7 −1.01203
\(990\) 0 0
\(991\) −17268.6 −0.553536 −0.276768 0.960937i \(-0.589263\pi\)
−0.276768 + 0.960937i \(0.589263\pi\)
\(992\) 0 0
\(993\) −11752.5 −0.375583
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −9396.27 −0.298478 −0.149239 0.988801i \(-0.547682\pi\)
−0.149239 + 0.988801i \(0.547682\pi\)
\(998\) 0 0
\(999\) 11265.6 0.356785
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bz.1.1 4
4.3 odd 2 2400.4.a.ca.1.4 4
5.2 odd 4 480.4.f.f.289.5 yes 8
5.3 odd 4 480.4.f.f.289.2 yes 8
5.4 even 2 2400.4.a.ca.1.3 4
15.2 even 4 1440.4.f.m.289.7 8
15.8 even 4 1440.4.f.m.289.6 8
20.3 even 4 480.4.f.f.289.6 yes 8
20.7 even 4 480.4.f.f.289.1 8
20.19 odd 2 inner 2400.4.a.bz.1.2 4
40.3 even 4 960.4.f.u.769.3 8
40.13 odd 4 960.4.f.u.769.7 8
40.27 even 4 960.4.f.u.769.8 8
40.37 odd 4 960.4.f.u.769.4 8
60.23 odd 4 1440.4.f.m.289.5 8
60.47 odd 4 1440.4.f.m.289.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.f.289.1 8 20.7 even 4
480.4.f.f.289.2 yes 8 5.3 odd 4
480.4.f.f.289.5 yes 8 5.2 odd 4
480.4.f.f.289.6 yes 8 20.3 even 4
960.4.f.u.769.3 8 40.3 even 4
960.4.f.u.769.4 8 40.37 odd 4
960.4.f.u.769.7 8 40.13 odd 4
960.4.f.u.769.8 8 40.27 even 4
1440.4.f.m.289.5 8 60.23 odd 4
1440.4.f.m.289.6 8 15.8 even 4
1440.4.f.m.289.7 8 15.2 even 4
1440.4.f.m.289.8 8 60.47 odd 4
2400.4.a.bz.1.1 4 1.1 even 1 trivial
2400.4.a.bz.1.2 4 20.19 odd 2 inner
2400.4.a.ca.1.3 4 5.4 even 2
2400.4.a.ca.1.4 4 4.3 odd 2