Properties

Label 2400.4.a.bw.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.23109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 37x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.268842\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +27.1562 q^{7} +9.00000 q^{9} -32.2315 q^{11} -42.0808 q^{13} -88.5547 q^{17} +36.6247 q^{19} +81.4685 q^{21} +140.646 q^{23} +27.0000 q^{27} -164.115 q^{29} -80.7863 q^{31} -96.6946 q^{33} -126.522 q^{37} -126.242 q^{39} +285.562 q^{41} +249.271 q^{43} -481.479 q^{47} +394.457 q^{49} -265.664 q^{51} -560.418 q^{53} +109.874 q^{57} +308.486 q^{59} -680.542 q^{61} +244.406 q^{63} -501.172 q^{67} +421.939 q^{69} -259.521 q^{71} -732.857 q^{73} -875.285 q^{77} +1033.49 q^{79} +81.0000 q^{81} -855.387 q^{83} -492.345 q^{87} -1128.33 q^{89} -1142.75 q^{91} -242.359 q^{93} -593.287 q^{97} -290.084 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 32 q^{7} + 27 q^{9} - 48 q^{11} - 76 q^{13} - 16 q^{17} - 88 q^{19} + 96 q^{21} + 20 q^{23} + 81 q^{27} + 58 q^{29} + 56 q^{31} - 144 q^{33} - 436 q^{37} - 228 q^{39} + 362 q^{41} + 148 q^{43}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 27.1562 1.46630 0.733148 0.680070i \(-0.238050\pi\)
0.733148 + 0.680070i \(0.238050\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −32.2315 −0.883470 −0.441735 0.897146i \(-0.645637\pi\)
−0.441735 + 0.897146i \(0.645637\pi\)
\(12\) 0 0
\(13\) −42.0808 −0.897778 −0.448889 0.893588i \(-0.648180\pi\)
−0.448889 + 0.893588i \(0.648180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −88.5547 −1.26339 −0.631696 0.775216i \(-0.717641\pi\)
−0.631696 + 0.775216i \(0.717641\pi\)
\(18\) 0 0
\(19\) 36.6247 0.442225 0.221112 0.975248i \(-0.429031\pi\)
0.221112 + 0.975248i \(0.429031\pi\)
\(20\) 0 0
\(21\) 81.4685 0.846566
\(22\) 0 0
\(23\) 140.646 1.27508 0.637539 0.770418i \(-0.279952\pi\)
0.637539 + 0.770418i \(0.279952\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −164.115 −1.05087 −0.525437 0.850832i \(-0.676098\pi\)
−0.525437 + 0.850832i \(0.676098\pi\)
\(30\) 0 0
\(31\) −80.7863 −0.468053 −0.234026 0.972230i \(-0.575190\pi\)
−0.234026 + 0.972230i \(0.575190\pi\)
\(32\) 0 0
\(33\) −96.6946 −0.510072
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −126.522 −0.562165 −0.281083 0.959684i \(-0.590693\pi\)
−0.281083 + 0.959684i \(0.590693\pi\)
\(38\) 0 0
\(39\) −126.242 −0.518332
\(40\) 0 0
\(41\) 285.562 1.08774 0.543869 0.839170i \(-0.316959\pi\)
0.543869 + 0.839170i \(0.316959\pi\)
\(42\) 0 0
\(43\) 249.271 0.884034 0.442017 0.897007i \(-0.354263\pi\)
0.442017 + 0.897007i \(0.354263\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −481.479 −1.49428 −0.747138 0.664669i \(-0.768572\pi\)
−0.747138 + 0.664669i \(0.768572\pi\)
\(48\) 0 0
\(49\) 394.457 1.15002
\(50\) 0 0
\(51\) −265.664 −0.729420
\(52\) 0 0
\(53\) −560.418 −1.45244 −0.726220 0.687462i \(-0.758725\pi\)
−0.726220 + 0.687462i \(0.758725\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 109.874 0.255319
\(58\) 0 0
\(59\) 308.486 0.680703 0.340351 0.940298i \(-0.389454\pi\)
0.340351 + 0.940298i \(0.389454\pi\)
\(60\) 0 0
\(61\) −680.542 −1.42843 −0.714217 0.699924i \(-0.753217\pi\)
−0.714217 + 0.699924i \(0.753217\pi\)
\(62\) 0 0
\(63\) 244.406 0.488765
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −501.172 −0.913849 −0.456924 0.889506i \(-0.651049\pi\)
−0.456924 + 0.889506i \(0.651049\pi\)
\(68\) 0 0
\(69\) 421.939 0.736167
\(70\) 0 0
\(71\) −259.521 −0.433796 −0.216898 0.976194i \(-0.569594\pi\)
−0.216898 + 0.976194i \(0.569594\pi\)
\(72\) 0 0
\(73\) −732.857 −1.17499 −0.587496 0.809227i \(-0.699886\pi\)
−0.587496 + 0.809227i \(0.699886\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −875.285 −1.29543
\(78\) 0 0
\(79\) 1033.49 1.47185 0.735927 0.677061i \(-0.236747\pi\)
0.735927 + 0.677061i \(0.236747\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −855.387 −1.13122 −0.565608 0.824674i \(-0.691359\pi\)
−0.565608 + 0.824674i \(0.691359\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −492.345 −0.606723
\(88\) 0 0
\(89\) −1128.33 −1.34386 −0.671928 0.740617i \(-0.734533\pi\)
−0.671928 + 0.740617i \(0.734533\pi\)
\(90\) 0 0
\(91\) −1142.75 −1.31641
\(92\) 0 0
\(93\) −242.359 −0.270230
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −593.287 −0.621022 −0.310511 0.950570i \(-0.600500\pi\)
−0.310511 + 0.950570i \(0.600500\pi\)
\(98\) 0 0
\(99\) −290.084 −0.294490
\(100\) 0 0
\(101\) −149.980 −0.147758 −0.0738789 0.997267i \(-0.523538\pi\)
−0.0738789 + 0.997267i \(0.523538\pi\)
\(102\) 0 0
\(103\) 1497.86 1.43290 0.716450 0.697638i \(-0.245766\pi\)
0.716450 + 0.697638i \(0.245766\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −358.126 −0.323564 −0.161782 0.986827i \(-0.551724\pi\)
−0.161782 + 0.986827i \(0.551724\pi\)
\(108\) 0 0
\(109\) −483.140 −0.424555 −0.212277 0.977209i \(-0.568088\pi\)
−0.212277 + 0.977209i \(0.568088\pi\)
\(110\) 0 0
\(111\) −379.566 −0.324566
\(112\) 0 0
\(113\) 1717.42 1.42975 0.714873 0.699254i \(-0.246484\pi\)
0.714873 + 0.699254i \(0.246484\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −378.727 −0.299259
\(118\) 0 0
\(119\) −2404.81 −1.85251
\(120\) 0 0
\(121\) −292.128 −0.219480
\(122\) 0 0
\(123\) 856.685 0.628006
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.7036 0.00817738 0.00408869 0.999992i \(-0.498699\pi\)
0.00408869 + 0.999992i \(0.498699\pi\)
\(128\) 0 0
\(129\) 747.813 0.510398
\(130\) 0 0
\(131\) −2766.92 −1.84540 −0.922699 0.385521i \(-0.874022\pi\)
−0.922699 + 0.385521i \(0.874022\pi\)
\(132\) 0 0
\(133\) 994.586 0.648432
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −352.620 −0.219900 −0.109950 0.993937i \(-0.535069\pi\)
−0.109950 + 0.993937i \(0.535069\pi\)
\(138\) 0 0
\(139\) 2898.12 1.76846 0.884228 0.467055i \(-0.154685\pi\)
0.884228 + 0.467055i \(0.154685\pi\)
\(140\) 0 0
\(141\) −1444.44 −0.862720
\(142\) 0 0
\(143\) 1356.33 0.793160
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1183.37 0.663965
\(148\) 0 0
\(149\) 233.290 0.128267 0.0641337 0.997941i \(-0.479572\pi\)
0.0641337 + 0.997941i \(0.479572\pi\)
\(150\) 0 0
\(151\) 3092.49 1.66664 0.833322 0.552788i \(-0.186436\pi\)
0.833322 + 0.552788i \(0.186436\pi\)
\(152\) 0 0
\(153\) −796.993 −0.421131
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2482.32 1.26185 0.630925 0.775843i \(-0.282675\pi\)
0.630925 + 0.775843i \(0.282675\pi\)
\(158\) 0 0
\(159\) −1681.25 −0.838567
\(160\) 0 0
\(161\) 3819.42 1.86964
\(162\) 0 0
\(163\) −1938.77 −0.931633 −0.465817 0.884881i \(-0.654239\pi\)
−0.465817 + 0.884881i \(0.654239\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1449.63 0.671712 0.335856 0.941913i \(-0.390974\pi\)
0.335856 + 0.941913i \(0.390974\pi\)
\(168\) 0 0
\(169\) −426.206 −0.193995
\(170\) 0 0
\(171\) 329.622 0.147408
\(172\) 0 0
\(173\) 3114.34 1.36866 0.684331 0.729171i \(-0.260094\pi\)
0.684331 + 0.729171i \(0.260094\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 925.458 0.393004
\(178\) 0 0
\(179\) −1023.88 −0.427532 −0.213766 0.976885i \(-0.568573\pi\)
−0.213766 + 0.976885i \(0.568573\pi\)
\(180\) 0 0
\(181\) 939.635 0.385870 0.192935 0.981212i \(-0.438199\pi\)
0.192935 + 0.981212i \(0.438199\pi\)
\(182\) 0 0
\(183\) −2041.63 −0.824707
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2854.25 1.11617
\(188\) 0 0
\(189\) 733.217 0.282189
\(190\) 0 0
\(191\) −2864.56 −1.08519 −0.542597 0.839993i \(-0.682559\pi\)
−0.542597 + 0.839993i \(0.682559\pi\)
\(192\) 0 0
\(193\) 1287.85 0.480320 0.240160 0.970733i \(-0.422800\pi\)
0.240160 + 0.970733i \(0.422800\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4357.21 −1.57583 −0.787915 0.615784i \(-0.788840\pi\)
−0.787915 + 0.615784i \(0.788840\pi\)
\(198\) 0 0
\(199\) −3416.54 −1.21704 −0.608522 0.793537i \(-0.708237\pi\)
−0.608522 + 0.793537i \(0.708237\pi\)
\(200\) 0 0
\(201\) −1503.51 −0.527611
\(202\) 0 0
\(203\) −4456.73 −1.54089
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1265.82 0.425026
\(208\) 0 0
\(209\) −1180.47 −0.390693
\(210\) 0 0
\(211\) −4359.57 −1.42240 −0.711198 0.702992i \(-0.751847\pi\)
−0.711198 + 0.702992i \(0.751847\pi\)
\(212\) 0 0
\(213\) −778.564 −0.250452
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2193.85 −0.686304
\(218\) 0 0
\(219\) −2198.57 −0.678382
\(220\) 0 0
\(221\) 3726.45 1.13425
\(222\) 0 0
\(223\) −5532.56 −1.66138 −0.830689 0.556737i \(-0.812053\pi\)
−0.830689 + 0.556737i \(0.812053\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.4368 0.00480595 0.00240298 0.999997i \(-0.499235\pi\)
0.00240298 + 0.999997i \(0.499235\pi\)
\(228\) 0 0
\(229\) 5427.86 1.56630 0.783151 0.621832i \(-0.213611\pi\)
0.783151 + 0.621832i \(0.213611\pi\)
\(230\) 0 0
\(231\) −2625.85 −0.747916
\(232\) 0 0
\(233\) −3217.35 −0.904616 −0.452308 0.891862i \(-0.649399\pi\)
−0.452308 + 0.891862i \(0.649399\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3100.46 0.849776
\(238\) 0 0
\(239\) −3382.68 −0.915512 −0.457756 0.889078i \(-0.651347\pi\)
−0.457756 + 0.889078i \(0.651347\pi\)
\(240\) 0 0
\(241\) −5799.70 −1.55017 −0.775086 0.631856i \(-0.782293\pi\)
−0.775086 + 0.631856i \(0.782293\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1541.20 −0.397020
\(248\) 0 0
\(249\) −2566.16 −0.653108
\(250\) 0 0
\(251\) 1728.60 0.434695 0.217347 0.976094i \(-0.430260\pi\)
0.217347 + 0.976094i \(0.430260\pi\)
\(252\) 0 0
\(253\) −4533.25 −1.12649
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −165.237 −0.0401059 −0.0200530 0.999799i \(-0.506383\pi\)
−0.0200530 + 0.999799i \(0.506383\pi\)
\(258\) 0 0
\(259\) −3435.86 −0.824300
\(260\) 0 0
\(261\) −1477.03 −0.350292
\(262\) 0 0
\(263\) 5674.62 1.33047 0.665233 0.746636i \(-0.268332\pi\)
0.665233 + 0.746636i \(0.268332\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3385.00 −0.775875
\(268\) 0 0
\(269\) −3783.08 −0.857467 −0.428734 0.903431i \(-0.641040\pi\)
−0.428734 + 0.903431i \(0.641040\pi\)
\(270\) 0 0
\(271\) −7269.83 −1.62956 −0.814780 0.579770i \(-0.803142\pi\)
−0.814780 + 0.579770i \(0.803142\pi\)
\(272\) 0 0
\(273\) −3428.26 −0.760028
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6738.92 1.46174 0.730871 0.682515i \(-0.239114\pi\)
0.730871 + 0.682515i \(0.239114\pi\)
\(278\) 0 0
\(279\) −727.076 −0.156018
\(280\) 0 0
\(281\) −4042.01 −0.858099 −0.429050 0.903281i \(-0.641151\pi\)
−0.429050 + 0.903281i \(0.641151\pi\)
\(282\) 0 0
\(283\) 4403.37 0.924923 0.462462 0.886639i \(-0.346966\pi\)
0.462462 + 0.886639i \(0.346966\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7754.76 1.59494
\(288\) 0 0
\(289\) 2928.94 0.596161
\(290\) 0 0
\(291\) −1779.86 −0.358547
\(292\) 0 0
\(293\) −1089.36 −0.217206 −0.108603 0.994085i \(-0.534638\pi\)
−0.108603 + 0.994085i \(0.534638\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −870.251 −0.170024
\(298\) 0 0
\(299\) −5918.51 −1.14474
\(300\) 0 0
\(301\) 6769.25 1.29626
\(302\) 0 0
\(303\) −449.939 −0.0853080
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3042.71 −0.565656 −0.282828 0.959171i \(-0.591273\pi\)
−0.282828 + 0.959171i \(0.591273\pi\)
\(308\) 0 0
\(309\) 4493.59 0.827286
\(310\) 0 0
\(311\) −3197.34 −0.582972 −0.291486 0.956575i \(-0.594150\pi\)
−0.291486 + 0.956575i \(0.594150\pi\)
\(312\) 0 0
\(313\) 7938.44 1.43357 0.716785 0.697294i \(-0.245613\pi\)
0.716785 + 0.697294i \(0.245613\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2561.12 −0.453775 −0.226887 0.973921i \(-0.572855\pi\)
−0.226887 + 0.973921i \(0.572855\pi\)
\(318\) 0 0
\(319\) 5289.67 0.928417
\(320\) 0 0
\(321\) −1074.38 −0.186810
\(322\) 0 0
\(323\) −3243.29 −0.558704
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1449.42 −0.245117
\(328\) 0 0
\(329\) −13075.1 −2.19105
\(330\) 0 0
\(331\) −3467.97 −0.575882 −0.287941 0.957648i \(-0.592971\pi\)
−0.287941 + 0.957648i \(0.592971\pi\)
\(332\) 0 0
\(333\) −1138.70 −0.187388
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 727.539 0.117601 0.0588005 0.998270i \(-0.481272\pi\)
0.0588005 + 0.998270i \(0.481272\pi\)
\(338\) 0 0
\(339\) 5152.26 0.825465
\(340\) 0 0
\(341\) 2603.87 0.413511
\(342\) 0 0
\(343\) 1397.39 0.219976
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10763.2 −1.66512 −0.832561 0.553933i \(-0.813126\pi\)
−0.832561 + 0.553933i \(0.813126\pi\)
\(348\) 0 0
\(349\) −3664.76 −0.562092 −0.281046 0.959694i \(-0.590681\pi\)
−0.281046 + 0.959694i \(0.590681\pi\)
\(350\) 0 0
\(351\) −1136.18 −0.172777
\(352\) 0 0
\(353\) −1359.24 −0.204943 −0.102472 0.994736i \(-0.532675\pi\)
−0.102472 + 0.994736i \(0.532675\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −7214.42 −1.06955
\(358\) 0 0
\(359\) 7054.37 1.03709 0.518545 0.855050i \(-0.326474\pi\)
0.518545 + 0.855050i \(0.326474\pi\)
\(360\) 0 0
\(361\) −5517.63 −0.804437
\(362\) 0 0
\(363\) −876.384 −0.126717
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10592.4 1.50659 0.753297 0.657680i \(-0.228462\pi\)
0.753297 + 0.657680i \(0.228462\pi\)
\(368\) 0 0
\(369\) 2570.06 0.362579
\(370\) 0 0
\(371\) −15218.8 −2.12971
\(372\) 0 0
\(373\) −5681.19 −0.788635 −0.394318 0.918974i \(-0.629019\pi\)
−0.394318 + 0.918974i \(0.629019\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6906.09 0.943452
\(378\) 0 0
\(379\) −14337.1 −1.94314 −0.971568 0.236762i \(-0.923914\pi\)
−0.971568 + 0.236762i \(0.923914\pi\)
\(380\) 0 0
\(381\) 35.1108 0.00472121
\(382\) 0 0
\(383\) 7779.08 1.03784 0.518920 0.854823i \(-0.326334\pi\)
0.518920 + 0.854823i \(0.326334\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2243.44 0.294678
\(388\) 0 0
\(389\) 9522.97 1.24122 0.620609 0.784120i \(-0.286885\pi\)
0.620609 + 0.784120i \(0.286885\pi\)
\(390\) 0 0
\(391\) −12454.9 −1.61092
\(392\) 0 0
\(393\) −8300.77 −1.06544
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −339.790 −0.0429561 −0.0214781 0.999769i \(-0.506837\pi\)
−0.0214781 + 0.999769i \(0.506837\pi\)
\(398\) 0 0
\(399\) 2983.76 0.374373
\(400\) 0 0
\(401\) 3401.85 0.423642 0.211821 0.977308i \(-0.432061\pi\)
0.211821 + 0.977308i \(0.432061\pi\)
\(402\) 0 0
\(403\) 3399.55 0.420208
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4078.00 0.496656
\(408\) 0 0
\(409\) 1463.68 0.176954 0.0884772 0.996078i \(-0.471800\pi\)
0.0884772 + 0.996078i \(0.471800\pi\)
\(410\) 0 0
\(411\) −1057.86 −0.126959
\(412\) 0 0
\(413\) 8377.30 0.998111
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8694.36 1.02102
\(418\) 0 0
\(419\) 7480.14 0.872145 0.436073 0.899912i \(-0.356369\pi\)
0.436073 + 0.899912i \(0.356369\pi\)
\(420\) 0 0
\(421\) 3071.73 0.355599 0.177799 0.984067i \(-0.443102\pi\)
0.177799 + 0.984067i \(0.443102\pi\)
\(422\) 0 0
\(423\) −4333.31 −0.498092
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −18480.9 −2.09451
\(428\) 0 0
\(429\) 4068.99 0.457931
\(430\) 0 0
\(431\) −15707.4 −1.75545 −0.877724 0.479167i \(-0.840939\pi\)
−0.877724 + 0.479167i \(0.840939\pi\)
\(432\) 0 0
\(433\) 16201.6 1.79815 0.899075 0.437794i \(-0.144240\pi\)
0.899075 + 0.437794i \(0.144240\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5151.13 0.563871
\(438\) 0 0
\(439\) −10776.4 −1.17160 −0.585798 0.810457i \(-0.699219\pi\)
−0.585798 + 0.810457i \(0.699219\pi\)
\(440\) 0 0
\(441\) 3550.12 0.383341
\(442\) 0 0
\(443\) 5597.38 0.600315 0.300158 0.953890i \(-0.402961\pi\)
0.300158 + 0.953890i \(0.402961\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 699.870 0.0740553
\(448\) 0 0
\(449\) 9698.36 1.01936 0.509682 0.860363i \(-0.329763\pi\)
0.509682 + 0.860363i \(0.329763\pi\)
\(450\) 0 0
\(451\) −9204.09 −0.960984
\(452\) 0 0
\(453\) 9277.47 0.962237
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8730.79 0.893674 0.446837 0.894615i \(-0.352550\pi\)
0.446837 + 0.894615i \(0.352550\pi\)
\(458\) 0 0
\(459\) −2390.98 −0.243140
\(460\) 0 0
\(461\) −14055.8 −1.42006 −0.710028 0.704173i \(-0.751318\pi\)
−0.710028 + 0.704173i \(0.751318\pi\)
\(462\) 0 0
\(463\) −1031.28 −0.103515 −0.0517577 0.998660i \(-0.516482\pi\)
−0.0517577 + 0.998660i \(0.516482\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18394.5 −1.82269 −0.911346 0.411642i \(-0.864955\pi\)
−0.911346 + 0.411642i \(0.864955\pi\)
\(468\) 0 0
\(469\) −13609.9 −1.33997
\(470\) 0 0
\(471\) 7446.96 0.728530
\(472\) 0 0
\(473\) −8034.39 −0.781018
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5043.76 −0.484147
\(478\) 0 0
\(479\) 8341.07 0.795643 0.397822 0.917463i \(-0.369766\pi\)
0.397822 + 0.917463i \(0.369766\pi\)
\(480\) 0 0
\(481\) 5324.15 0.504700
\(482\) 0 0
\(483\) 11458.3 1.07944
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1440.98 0.134080 0.0670401 0.997750i \(-0.478644\pi\)
0.0670401 + 0.997750i \(0.478644\pi\)
\(488\) 0 0
\(489\) −5816.31 −0.537879
\(490\) 0 0
\(491\) 865.844 0.0795824 0.0397912 0.999208i \(-0.487331\pi\)
0.0397912 + 0.999208i \(0.487331\pi\)
\(492\) 0 0
\(493\) 14533.1 1.32767
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7047.60 −0.636073
\(498\) 0 0
\(499\) −274.122 −0.0245920 −0.0122960 0.999924i \(-0.503914\pi\)
−0.0122960 + 0.999924i \(0.503914\pi\)
\(500\) 0 0
\(501\) 4348.89 0.387813
\(502\) 0 0
\(503\) 6215.83 0.550994 0.275497 0.961302i \(-0.411158\pi\)
0.275497 + 0.961302i \(0.411158\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1278.62 −0.112003
\(508\) 0 0
\(509\) −1932.27 −0.168264 −0.0841319 0.996455i \(-0.526812\pi\)
−0.0841319 + 0.996455i \(0.526812\pi\)
\(510\) 0 0
\(511\) −19901.6 −1.72289
\(512\) 0 0
\(513\) 988.866 0.0851062
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15518.8 1.32015
\(518\) 0 0
\(519\) 9343.01 0.790198
\(520\) 0 0
\(521\) 13231.7 1.11265 0.556327 0.830964i \(-0.312210\pi\)
0.556327 + 0.830964i \(0.312210\pi\)
\(522\) 0 0
\(523\) −1832.84 −0.153240 −0.0766201 0.997060i \(-0.524413\pi\)
−0.0766201 + 0.997060i \(0.524413\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7154.01 0.591335
\(528\) 0 0
\(529\) 7614.41 0.625824
\(530\) 0 0
\(531\) 2776.37 0.226901
\(532\) 0 0
\(533\) −12016.7 −0.976547
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3071.63 −0.246835
\(538\) 0 0
\(539\) −12714.0 −1.01601
\(540\) 0 0
\(541\) −837.229 −0.0665347 −0.0332673 0.999446i \(-0.510591\pi\)
−0.0332673 + 0.999446i \(0.510591\pi\)
\(542\) 0 0
\(543\) 2818.90 0.222782
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2432.47 −0.190137 −0.0950685 0.995471i \(-0.530307\pi\)
−0.0950685 + 0.995471i \(0.530307\pi\)
\(548\) 0 0
\(549\) −6124.88 −0.476145
\(550\) 0 0
\(551\) −6010.65 −0.464723
\(552\) 0 0
\(553\) 28065.6 2.15817
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9938.31 0.756014 0.378007 0.925803i \(-0.376610\pi\)
0.378007 + 0.925803i \(0.376610\pi\)
\(558\) 0 0
\(559\) −10489.5 −0.793667
\(560\) 0 0
\(561\) 8562.76 0.644421
\(562\) 0 0
\(563\) −21469.3 −1.60715 −0.803575 0.595204i \(-0.797071\pi\)
−0.803575 + 0.595204i \(0.797071\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2199.65 0.162922
\(568\) 0 0
\(569\) 14161.5 1.04337 0.521686 0.853137i \(-0.325303\pi\)
0.521686 + 0.853137i \(0.325303\pi\)
\(570\) 0 0
\(571\) 10634.3 0.779390 0.389695 0.920944i \(-0.372580\pi\)
0.389695 + 0.920944i \(0.372580\pi\)
\(572\) 0 0
\(573\) −8593.67 −0.626537
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9661.60 −0.697084 −0.348542 0.937293i \(-0.613323\pi\)
−0.348542 + 0.937293i \(0.613323\pi\)
\(578\) 0 0
\(579\) 3863.56 0.277313
\(580\) 0 0
\(581\) −23229.0 −1.65870
\(582\) 0 0
\(583\) 18063.1 1.28319
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4614.00 0.324430 0.162215 0.986755i \(-0.448136\pi\)
0.162215 + 0.986755i \(0.448136\pi\)
\(588\) 0 0
\(589\) −2958.77 −0.206985
\(590\) 0 0
\(591\) −13071.6 −0.909806
\(592\) 0 0
\(593\) −19062.9 −1.32010 −0.660050 0.751222i \(-0.729465\pi\)
−0.660050 + 0.751222i \(0.729465\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10249.6 −0.702661
\(598\) 0 0
\(599\) −15491.4 −1.05670 −0.528349 0.849027i \(-0.677189\pi\)
−0.528349 + 0.849027i \(0.677189\pi\)
\(600\) 0 0
\(601\) −22419.5 −1.52165 −0.760825 0.648957i \(-0.775205\pi\)
−0.760825 + 0.648957i \(0.775205\pi\)
\(602\) 0 0
\(603\) −4510.54 −0.304616
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 21836.9 1.46019 0.730093 0.683348i \(-0.239477\pi\)
0.730093 + 0.683348i \(0.239477\pi\)
\(608\) 0 0
\(609\) −13370.2 −0.889635
\(610\) 0 0
\(611\) 20261.0 1.34153
\(612\) 0 0
\(613\) 18540.6 1.22161 0.610805 0.791781i \(-0.290846\pi\)
0.610805 + 0.791781i \(0.290846\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10562.3 −0.689178 −0.344589 0.938754i \(-0.611982\pi\)
−0.344589 + 0.938754i \(0.611982\pi\)
\(618\) 0 0
\(619\) −2041.84 −0.132582 −0.0662911 0.997800i \(-0.521117\pi\)
−0.0662911 + 0.997800i \(0.521117\pi\)
\(620\) 0 0
\(621\) 3797.45 0.245389
\(622\) 0 0
\(623\) −30641.2 −1.97049
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3541.41 −0.225567
\(628\) 0 0
\(629\) 11204.1 0.710235
\(630\) 0 0
\(631\) 5344.21 0.337162 0.168581 0.985688i \(-0.446081\pi\)
0.168581 + 0.985688i \(0.446081\pi\)
\(632\) 0 0
\(633\) −13078.7 −0.821220
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −16599.1 −1.03246
\(638\) 0 0
\(639\) −2335.69 −0.144599
\(640\) 0 0
\(641\) 11052.4 0.681036 0.340518 0.940238i \(-0.389398\pi\)
0.340518 + 0.940238i \(0.389398\pi\)
\(642\) 0 0
\(643\) −18549.5 −1.13767 −0.568833 0.822453i \(-0.692605\pi\)
−0.568833 + 0.822453i \(0.692605\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24532.8 1.49070 0.745349 0.666674i \(-0.232283\pi\)
0.745349 + 0.666674i \(0.232283\pi\)
\(648\) 0 0
\(649\) −9942.98 −0.601381
\(650\) 0 0
\(651\) −6581.54 −0.396238
\(652\) 0 0
\(653\) −17293.7 −1.03638 −0.518190 0.855266i \(-0.673394\pi\)
−0.518190 + 0.855266i \(0.673394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6595.72 −0.391664
\(658\) 0 0
\(659\) 3937.73 0.232765 0.116383 0.993204i \(-0.462870\pi\)
0.116383 + 0.993204i \(0.462870\pi\)
\(660\) 0 0
\(661\) 2429.27 0.142946 0.0714732 0.997443i \(-0.477230\pi\)
0.0714732 + 0.997443i \(0.477230\pi\)
\(662\) 0 0
\(663\) 11179.4 0.654857
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −23082.2 −1.33995
\(668\) 0 0
\(669\) −16597.7 −0.959197
\(670\) 0 0
\(671\) 21934.9 1.26198
\(672\) 0 0
\(673\) −15823.0 −0.906287 −0.453144 0.891438i \(-0.649697\pi\)
−0.453144 + 0.891438i \(0.649697\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5762.14 −0.327115 −0.163558 0.986534i \(-0.552297\pi\)
−0.163558 + 0.986534i \(0.552297\pi\)
\(678\) 0 0
\(679\) −16111.4 −0.910602
\(680\) 0 0
\(681\) 49.3105 0.00277472
\(682\) 0 0
\(683\) −3348.28 −0.187582 −0.0937909 0.995592i \(-0.529899\pi\)
−0.0937909 + 0.995592i \(0.529899\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16283.6 0.904305
\(688\) 0 0
\(689\) 23582.8 1.30397
\(690\) 0 0
\(691\) −4671.24 −0.257167 −0.128584 0.991699i \(-0.541043\pi\)
−0.128584 + 0.991699i \(0.541043\pi\)
\(692\) 0 0
\(693\) −7877.56 −0.431809
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −25287.8 −1.37424
\(698\) 0 0
\(699\) −9652.05 −0.522280
\(700\) 0 0
\(701\) −13479.4 −0.726262 −0.363131 0.931738i \(-0.618292\pi\)
−0.363131 + 0.931738i \(0.618292\pi\)
\(702\) 0 0
\(703\) −4633.83 −0.248604
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4072.87 −0.216657
\(708\) 0 0
\(709\) −16781.2 −0.888903 −0.444451 0.895803i \(-0.646601\pi\)
−0.444451 + 0.895803i \(0.646601\pi\)
\(710\) 0 0
\(711\) 9301.39 0.490618
\(712\) 0 0
\(713\) −11362.3 −0.596804
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10148.0 −0.528571
\(718\) 0 0
\(719\) 9221.15 0.478290 0.239145 0.970984i \(-0.423133\pi\)
0.239145 + 0.970984i \(0.423133\pi\)
\(720\) 0 0
\(721\) 40676.2 2.10106
\(722\) 0 0
\(723\) −17399.1 −0.894992
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 26693.8 1.36179 0.680893 0.732383i \(-0.261592\pi\)
0.680893 + 0.732383i \(0.261592\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −22074.1 −1.11688
\(732\) 0 0
\(733\) −7298.53 −0.367773 −0.183886 0.982947i \(-0.558868\pi\)
−0.183886 + 0.982947i \(0.558868\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16153.5 0.807358
\(738\) 0 0
\(739\) 12789.8 0.636644 0.318322 0.947983i \(-0.396881\pi\)
0.318322 + 0.947983i \(0.396881\pi\)
\(740\) 0 0
\(741\) −4623.59 −0.229220
\(742\) 0 0
\(743\) 16034.2 0.791708 0.395854 0.918313i \(-0.370449\pi\)
0.395854 + 0.918313i \(0.370449\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7698.49 −0.377072
\(748\) 0 0
\(749\) −9725.33 −0.474440
\(750\) 0 0
\(751\) 31294.8 1.52059 0.760294 0.649579i \(-0.225055\pi\)
0.760294 + 0.649579i \(0.225055\pi\)
\(752\) 0 0
\(753\) 5185.80 0.250971
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21880.8 1.05056 0.525279 0.850930i \(-0.323961\pi\)
0.525279 + 0.850930i \(0.323961\pi\)
\(758\) 0 0
\(759\) −13599.7 −0.650381
\(760\) 0 0
\(761\) −25262.9 −1.20339 −0.601695 0.798726i \(-0.705508\pi\)
−0.601695 + 0.798726i \(0.705508\pi\)
\(762\) 0 0
\(763\) −13120.2 −0.622522
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12981.3 −0.611120
\(768\) 0 0
\(769\) 11559.9 0.542081 0.271040 0.962568i \(-0.412632\pi\)
0.271040 + 0.962568i \(0.412632\pi\)
\(770\) 0 0
\(771\) −495.712 −0.0231552
\(772\) 0 0
\(773\) −29021.8 −1.35038 −0.675188 0.737646i \(-0.735937\pi\)
−0.675188 + 0.737646i \(0.735937\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −10307.6 −0.475910
\(778\) 0 0
\(779\) 10458.6 0.481025
\(780\) 0 0
\(781\) 8364.77 0.383246
\(782\) 0 0
\(783\) −4431.10 −0.202241
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36531.1 1.65463 0.827315 0.561739i \(-0.189867\pi\)
0.827315 + 0.561739i \(0.189867\pi\)
\(788\) 0 0
\(789\) 17023.9 0.768144
\(790\) 0 0
\(791\) 46638.6 2.09643
\(792\) 0 0
\(793\) 28637.8 1.28242
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9428.35 −0.419033 −0.209516 0.977805i \(-0.567189\pi\)
−0.209516 + 0.977805i \(0.567189\pi\)
\(798\) 0 0
\(799\) 42637.3 1.88786
\(800\) 0 0
\(801\) −10155.0 −0.447952
\(802\) 0 0
\(803\) 23621.1 1.03807
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11349.3 −0.495059
\(808\) 0 0
\(809\) 16756.0 0.728195 0.364097 0.931361i \(-0.381378\pi\)
0.364097 + 0.931361i \(0.381378\pi\)
\(810\) 0 0
\(811\) 20683.4 0.895552 0.447776 0.894146i \(-0.352216\pi\)
0.447776 + 0.894146i \(0.352216\pi\)
\(812\) 0 0
\(813\) −21809.5 −0.940827
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 9129.47 0.390942
\(818\) 0 0
\(819\) −10284.8 −0.438803
\(820\) 0 0
\(821\) −26056.8 −1.10766 −0.553829 0.832630i \(-0.686834\pi\)
−0.553829 + 0.832630i \(0.686834\pi\)
\(822\) 0 0
\(823\) 3095.88 0.131125 0.0655623 0.997848i \(-0.479116\pi\)
0.0655623 + 0.997848i \(0.479116\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4468.94 −0.187908 −0.0939542 0.995577i \(-0.529951\pi\)
−0.0939542 + 0.995577i \(0.529951\pi\)
\(828\) 0 0
\(829\) 4928.52 0.206483 0.103242 0.994656i \(-0.467079\pi\)
0.103242 + 0.994656i \(0.467079\pi\)
\(830\) 0 0
\(831\) 20216.8 0.843937
\(832\) 0 0
\(833\) −34931.1 −1.45293
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2181.23 −0.0900768
\(838\) 0 0
\(839\) −26858.6 −1.10520 −0.552600 0.833447i \(-0.686364\pi\)
−0.552600 + 0.833447i \(0.686364\pi\)
\(840\) 0 0
\(841\) 2544.70 0.104338
\(842\) 0 0
\(843\) −12126.0 −0.495424
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −7933.08 −0.321823
\(848\) 0 0
\(849\) 13210.1 0.534005
\(850\) 0 0
\(851\) −17794.9 −0.716805
\(852\) 0 0
\(853\) 48489.4 1.94636 0.973181 0.230043i \(-0.0738866\pi\)
0.973181 + 0.230043i \(0.0738866\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20828.8 0.830221 0.415110 0.909771i \(-0.363743\pi\)
0.415110 + 0.909771i \(0.363743\pi\)
\(858\) 0 0
\(859\) 20744.2 0.823963 0.411982 0.911192i \(-0.364837\pi\)
0.411982 + 0.911192i \(0.364837\pi\)
\(860\) 0 0
\(861\) 23264.3 0.920842
\(862\) 0 0
\(863\) −1172.37 −0.0462431 −0.0231215 0.999733i \(-0.507360\pi\)
−0.0231215 + 0.999733i \(0.507360\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8786.82 0.344194
\(868\) 0 0
\(869\) −33310.9 −1.30034
\(870\) 0 0
\(871\) 21089.7 0.820433
\(872\) 0 0
\(873\) −5339.58 −0.207007
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14600.4 0.562166 0.281083 0.959683i \(-0.409306\pi\)
0.281083 + 0.959683i \(0.409306\pi\)
\(878\) 0 0
\(879\) −3268.09 −0.125404
\(880\) 0 0
\(881\) 2582.23 0.0987486 0.0493743 0.998780i \(-0.484277\pi\)
0.0493743 + 0.998780i \(0.484277\pi\)
\(882\) 0 0
\(883\) −8079.59 −0.307927 −0.153964 0.988077i \(-0.549204\pi\)
−0.153964 + 0.988077i \(0.549204\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12509.2 0.473527 0.236764 0.971567i \(-0.423913\pi\)
0.236764 + 0.971567i \(0.423913\pi\)
\(888\) 0 0
\(889\) 317.825 0.0119905
\(890\) 0 0
\(891\) −2610.75 −0.0981634
\(892\) 0 0
\(893\) −17634.0 −0.660806
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −17755.5 −0.660914
\(898\) 0 0
\(899\) 13258.2 0.491865
\(900\) 0 0
\(901\) 49627.7 1.83500
\(902\) 0 0
\(903\) 20307.7 0.748393
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −45428.9 −1.66311 −0.831556 0.555440i \(-0.812550\pi\)
−0.831556 + 0.555440i \(0.812550\pi\)
\(908\) 0 0
\(909\) −1349.82 −0.0492526
\(910\) 0 0
\(911\) −32437.4 −1.17969 −0.589847 0.807515i \(-0.700812\pi\)
−0.589847 + 0.807515i \(0.700812\pi\)
\(912\) 0 0
\(913\) 27570.4 0.999396
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −75139.0 −2.70590
\(918\) 0 0
\(919\) 31513.2 1.13115 0.565573 0.824698i \(-0.308655\pi\)
0.565573 + 0.824698i \(0.308655\pi\)
\(920\) 0 0
\(921\) −9128.12 −0.326582
\(922\) 0 0
\(923\) 10920.9 0.389452
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13480.8 0.477634
\(928\) 0 0
\(929\) −22220.7 −0.784756 −0.392378 0.919804i \(-0.628347\pi\)
−0.392378 + 0.919804i \(0.628347\pi\)
\(930\) 0 0
\(931\) 14446.9 0.508568
\(932\) 0 0
\(933\) −9592.01 −0.336579
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25800.7 0.899542 0.449771 0.893144i \(-0.351506\pi\)
0.449771 + 0.893144i \(0.351506\pi\)
\(938\) 0 0
\(939\) 23815.3 0.827672
\(940\) 0 0
\(941\) 25758.2 0.892341 0.446170 0.894948i \(-0.352788\pi\)
0.446170 + 0.894948i \(0.352788\pi\)
\(942\) 0 0
\(943\) 40163.2 1.38695
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17272.7 −0.592701 −0.296350 0.955079i \(-0.595770\pi\)
−0.296350 + 0.955079i \(0.595770\pi\)
\(948\) 0 0
\(949\) 30839.2 1.05488
\(950\) 0 0
\(951\) −7683.35 −0.261987
\(952\) 0 0
\(953\) 33704.2 1.14563 0.572816 0.819684i \(-0.305851\pi\)
0.572816 + 0.819684i \(0.305851\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 15869.0 0.536022
\(958\) 0 0
\(959\) −9575.80 −0.322439
\(960\) 0 0
\(961\) −23264.6 −0.780926
\(962\) 0 0
\(963\) −3223.13 −0.107855
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −36732.9 −1.22156 −0.610780 0.791800i \(-0.709144\pi\)
−0.610780 + 0.791800i \(0.709144\pi\)
\(968\) 0 0
\(969\) −9729.86 −0.322568
\(970\) 0 0
\(971\) 42831.6 1.41558 0.707792 0.706421i \(-0.249691\pi\)
0.707792 + 0.706421i \(0.249691\pi\)
\(972\) 0 0
\(973\) 78701.9 2.59308
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17406.1 −0.569981 −0.284991 0.958530i \(-0.591991\pi\)
−0.284991 + 0.958530i \(0.591991\pi\)
\(978\) 0 0
\(979\) 36367.9 1.18726
\(980\) 0 0
\(981\) −4348.26 −0.141518
\(982\) 0 0
\(983\) 32571.0 1.05682 0.528410 0.848989i \(-0.322788\pi\)
0.528410 + 0.848989i \(0.322788\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −39225.4 −1.26500
\(988\) 0 0
\(989\) 35059.1 1.12721
\(990\) 0 0
\(991\) 35747.2 1.14586 0.572930 0.819604i \(-0.305807\pi\)
0.572930 + 0.819604i \(0.305807\pi\)
\(992\) 0 0
\(993\) −10403.9 −0.332486
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11858.8 0.376701 0.188351 0.982102i \(-0.439686\pi\)
0.188351 + 0.982102i \(0.439686\pi\)
\(998\) 0 0
\(999\) −3416.10 −0.108189
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bw.1.3 3
4.3 odd 2 2400.4.a.bf.1.1 3
5.2 odd 4 480.4.f.d.289.1 6
5.3 odd 4 480.4.f.d.289.4 yes 6
5.4 even 2 2400.4.a.be.1.1 3
15.2 even 4 1440.4.f.j.289.5 6
15.8 even 4 1440.4.f.j.289.6 6
20.3 even 4 480.4.f.e.289.1 yes 6
20.7 even 4 480.4.f.e.289.4 yes 6
20.19 odd 2 2400.4.a.bx.1.3 3
40.3 even 4 960.4.f.r.769.6 6
40.13 odd 4 960.4.f.s.769.3 6
40.27 even 4 960.4.f.r.769.3 6
40.37 odd 4 960.4.f.s.769.6 6
60.23 odd 4 1440.4.f.i.289.6 6
60.47 odd 4 1440.4.f.i.289.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.d.289.1 6 5.2 odd 4
480.4.f.d.289.4 yes 6 5.3 odd 4
480.4.f.e.289.1 yes 6 20.3 even 4
480.4.f.e.289.4 yes 6 20.7 even 4
960.4.f.r.769.3 6 40.27 even 4
960.4.f.r.769.6 6 40.3 even 4
960.4.f.s.769.3 6 40.13 odd 4
960.4.f.s.769.6 6 40.37 odd 4
1440.4.f.i.289.5 6 60.47 odd 4
1440.4.f.i.289.6 6 60.23 odd 4
1440.4.f.j.289.5 6 15.2 even 4
1440.4.f.j.289.6 6 15.8 even 4
2400.4.a.be.1.1 3 5.4 even 2
2400.4.a.bf.1.1 3 4.3 odd 2
2400.4.a.bw.1.3 3 1.1 even 1 trivial
2400.4.a.bx.1.3 3 20.19 odd 2