Properties

Label 2400.4.a.bw.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.23109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 37x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.47542\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +11.6634 q^{7} +9.00000 q^{9} -41.5651 q^{11} -1.76173 q^{13} +63.3879 q^{17} -25.3463 q^{19} +34.9903 q^{21} -181.906 q^{23} +27.0000 q^{27} +204.916 q^{29} +61.8228 q^{31} -124.695 q^{33} -365.452 q^{37} -5.28520 q^{39} +130.634 q^{41} -135.252 q^{43} +380.524 q^{47} -206.964 q^{49} +190.164 q^{51} -352.853 q^{53} -76.0388 q^{57} -556.502 q^{59} +88.5048 q^{61} +104.971 q^{63} +708.780 q^{67} -545.718 q^{69} -750.078 q^{71} -57.1465 q^{73} -484.792 q^{77} +544.449 q^{79} +81.0000 q^{81} -1414.64 q^{83} +614.747 q^{87} +533.702 q^{89} -20.5479 q^{91} +185.468 q^{93} +300.461 q^{97} -374.086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 32 q^{7} + 27 q^{9} - 48 q^{11} - 76 q^{13} - 16 q^{17} - 88 q^{19} + 96 q^{21} + 20 q^{23} + 81 q^{27} + 58 q^{29} + 56 q^{31} - 144 q^{33} - 436 q^{37} - 228 q^{39} + 362 q^{41} + 148 q^{43}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 11.6634 0.629766 0.314883 0.949130i \(-0.398035\pi\)
0.314883 + 0.949130i \(0.398035\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −41.5651 −1.13931 −0.569653 0.821886i \(-0.692922\pi\)
−0.569653 + 0.821886i \(0.692922\pi\)
\(12\) 0 0
\(13\) −1.76173 −0.0375859 −0.0187930 0.999823i \(-0.505982\pi\)
−0.0187930 + 0.999823i \(0.505982\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 63.3879 0.904343 0.452172 0.891931i \(-0.350649\pi\)
0.452172 + 0.891931i \(0.350649\pi\)
\(18\) 0 0
\(19\) −25.3463 −0.306044 −0.153022 0.988223i \(-0.548901\pi\)
−0.153022 + 0.988223i \(0.548901\pi\)
\(20\) 0 0
\(21\) 34.9903 0.363596
\(22\) 0 0
\(23\) −181.906 −1.64913 −0.824566 0.565765i \(-0.808581\pi\)
−0.824566 + 0.565765i \(0.808581\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 204.916 1.31213 0.656067 0.754702i \(-0.272219\pi\)
0.656067 + 0.754702i \(0.272219\pi\)
\(30\) 0 0
\(31\) 61.8228 0.358184 0.179092 0.983832i \(-0.442684\pi\)
0.179092 + 0.983832i \(0.442684\pi\)
\(32\) 0 0
\(33\) −124.695 −0.657778
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −365.452 −1.62378 −0.811891 0.583809i \(-0.801562\pi\)
−0.811891 + 0.583809i \(0.801562\pi\)
\(38\) 0 0
\(39\) −5.28520 −0.0217003
\(40\) 0 0
\(41\) 130.634 0.497601 0.248801 0.968555i \(-0.419964\pi\)
0.248801 + 0.968555i \(0.419964\pi\)
\(42\) 0 0
\(43\) −135.252 −0.479670 −0.239835 0.970814i \(-0.577093\pi\)
−0.239835 + 0.970814i \(0.577093\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 380.524 1.18096 0.590480 0.807052i \(-0.298938\pi\)
0.590480 + 0.807052i \(0.298938\pi\)
\(48\) 0 0
\(49\) −206.964 −0.603395
\(50\) 0 0
\(51\) 190.164 0.522123
\(52\) 0 0
\(53\) −352.853 −0.914493 −0.457246 0.889340i \(-0.651164\pi\)
−0.457246 + 0.889340i \(0.651164\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −76.0388 −0.176694
\(58\) 0 0
\(59\) −556.502 −1.22797 −0.613986 0.789317i \(-0.710435\pi\)
−0.613986 + 0.789317i \(0.710435\pi\)
\(60\) 0 0
\(61\) 88.5048 0.185768 0.0928842 0.995677i \(-0.470391\pi\)
0.0928842 + 0.995677i \(0.470391\pi\)
\(62\) 0 0
\(63\) 104.971 0.209922
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 708.780 1.29241 0.646203 0.763165i \(-0.276356\pi\)
0.646203 + 0.763165i \(0.276356\pi\)
\(68\) 0 0
\(69\) −545.718 −0.952127
\(70\) 0 0
\(71\) −750.078 −1.25377 −0.626887 0.779110i \(-0.715671\pi\)
−0.626887 + 0.779110i \(0.715671\pi\)
\(72\) 0 0
\(73\) −57.1465 −0.0916232 −0.0458116 0.998950i \(-0.514587\pi\)
−0.0458116 + 0.998950i \(0.514587\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −484.792 −0.717496
\(78\) 0 0
\(79\) 544.449 0.775384 0.387692 0.921789i \(-0.373272\pi\)
0.387692 + 0.921789i \(0.373272\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1414.64 −1.87081 −0.935406 0.353576i \(-0.884966\pi\)
−0.935406 + 0.353576i \(0.884966\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 614.747 0.757561
\(88\) 0 0
\(89\) 533.702 0.635644 0.317822 0.948150i \(-0.397049\pi\)
0.317822 + 0.948150i \(0.397049\pi\)
\(90\) 0 0
\(91\) −20.5479 −0.0236704
\(92\) 0 0
\(93\) 185.468 0.206798
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 300.461 0.314507 0.157254 0.987558i \(-0.449736\pi\)
0.157254 + 0.987558i \(0.449736\pi\)
\(98\) 0 0
\(99\) −374.086 −0.379768
\(100\) 0 0
\(101\) −1723.37 −1.69784 −0.848920 0.528521i \(-0.822747\pi\)
−0.848920 + 0.528521i \(0.822747\pi\)
\(102\) 0 0
\(103\) −613.463 −0.586857 −0.293428 0.955981i \(-0.594796\pi\)
−0.293428 + 0.955981i \(0.594796\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −544.039 −0.491535 −0.245767 0.969329i \(-0.579040\pi\)
−0.245767 + 0.969329i \(0.579040\pi\)
\(108\) 0 0
\(109\) −291.638 −0.256274 −0.128137 0.991757i \(-0.540900\pi\)
−0.128137 + 0.991757i \(0.540900\pi\)
\(110\) 0 0
\(111\) −1096.36 −0.937491
\(112\) 0 0
\(113\) −107.737 −0.0896908 −0.0448454 0.998994i \(-0.514280\pi\)
−0.0448454 + 0.998994i \(0.514280\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −15.8556 −0.0125286
\(118\) 0 0
\(119\) 739.321 0.569525
\(120\) 0 0
\(121\) 396.660 0.298017
\(122\) 0 0
\(123\) 391.903 0.287290
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 218.699 0.152806 0.0764031 0.997077i \(-0.475656\pi\)
0.0764031 + 0.997077i \(0.475656\pi\)
\(128\) 0 0
\(129\) −405.757 −0.276937
\(130\) 0 0
\(131\) 1311.65 0.874806 0.437403 0.899266i \(-0.355898\pi\)
0.437403 + 0.899266i \(0.355898\pi\)
\(132\) 0 0
\(133\) −295.624 −0.192736
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1920.23 −1.19749 −0.598747 0.800939i \(-0.704334\pi\)
−0.598747 + 0.800939i \(0.704334\pi\)
\(138\) 0 0
\(139\) −1151.69 −0.702772 −0.351386 0.936231i \(-0.614290\pi\)
−0.351386 + 0.936231i \(0.614290\pi\)
\(140\) 0 0
\(141\) 1141.57 0.681828
\(142\) 0 0
\(143\) 73.2267 0.0428219
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −620.893 −0.348370
\(148\) 0 0
\(149\) 2650.40 1.45724 0.728621 0.684917i \(-0.240162\pi\)
0.728621 + 0.684917i \(0.240162\pi\)
\(150\) 0 0
\(151\) −2382.66 −1.28409 −0.642046 0.766666i \(-0.721914\pi\)
−0.642046 + 0.766666i \(0.721914\pi\)
\(152\) 0 0
\(153\) 570.491 0.301448
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −664.035 −0.337553 −0.168776 0.985654i \(-0.553982\pi\)
−0.168776 + 0.985654i \(0.553982\pi\)
\(158\) 0 0
\(159\) −1058.56 −0.527983
\(160\) 0 0
\(161\) −2121.65 −1.03857
\(162\) 0 0
\(163\) 2309.27 1.10967 0.554835 0.831960i \(-0.312781\pi\)
0.554835 + 0.831960i \(0.312781\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 134.026 0.0621032 0.0310516 0.999518i \(-0.490114\pi\)
0.0310516 + 0.999518i \(0.490114\pi\)
\(168\) 0 0
\(169\) −2193.90 −0.998587
\(170\) 0 0
\(171\) −228.116 −0.102015
\(172\) 0 0
\(173\) 713.912 0.313744 0.156872 0.987619i \(-0.449859\pi\)
0.156872 + 0.987619i \(0.449859\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1669.51 −0.708970
\(178\) 0 0
\(179\) −2212.94 −0.924037 −0.462018 0.886870i \(-0.652875\pi\)
−0.462018 + 0.886870i \(0.652875\pi\)
\(180\) 0 0
\(181\) 2249.65 0.923841 0.461920 0.886921i \(-0.347161\pi\)
0.461920 + 0.886921i \(0.347161\pi\)
\(182\) 0 0
\(183\) 265.514 0.107253
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2634.73 −1.03032
\(188\) 0 0
\(189\) 314.913 0.121199
\(190\) 0 0
\(191\) −4830.48 −1.82995 −0.914977 0.403507i \(-0.867791\pi\)
−0.914977 + 0.403507i \(0.867791\pi\)
\(192\) 0 0
\(193\) 859.268 0.320474 0.160237 0.987079i \(-0.448774\pi\)
0.160237 + 0.987079i \(0.448774\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3478.85 1.25816 0.629080 0.777340i \(-0.283432\pi\)
0.629080 + 0.777340i \(0.283432\pi\)
\(198\) 0 0
\(199\) 3586.28 1.27751 0.638756 0.769409i \(-0.279449\pi\)
0.638756 + 0.769409i \(0.279449\pi\)
\(200\) 0 0
\(201\) 2126.34 0.746171
\(202\) 0 0
\(203\) 2390.02 0.826338
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1637.16 −0.549711
\(208\) 0 0
\(209\) 1053.52 0.348677
\(210\) 0 0
\(211\) −3571.10 −1.16514 −0.582570 0.812780i \(-0.697953\pi\)
−0.582570 + 0.812780i \(0.697953\pi\)
\(212\) 0 0
\(213\) −2250.24 −0.723867
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 721.066 0.225572
\(218\) 0 0
\(219\) −171.440 −0.0528987
\(220\) 0 0
\(221\) −111.673 −0.0339906
\(222\) 0 0
\(223\) 3283.29 0.985944 0.492972 0.870045i \(-0.335910\pi\)
0.492972 + 0.870045i \(0.335910\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3940.04 −1.15203 −0.576013 0.817441i \(-0.695392\pi\)
−0.576013 + 0.817441i \(0.695392\pi\)
\(228\) 0 0
\(229\) 633.256 0.182737 0.0913684 0.995817i \(-0.470876\pi\)
0.0913684 + 0.995817i \(0.470876\pi\)
\(230\) 0 0
\(231\) −1454.38 −0.414246
\(232\) 0 0
\(233\) −1925.29 −0.541331 −0.270666 0.962673i \(-0.587244\pi\)
−0.270666 + 0.962673i \(0.587244\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1633.35 0.447668
\(238\) 0 0
\(239\) −3800.09 −1.02848 −0.514241 0.857646i \(-0.671926\pi\)
−0.514241 + 0.857646i \(0.671926\pi\)
\(240\) 0 0
\(241\) 3265.31 0.872769 0.436384 0.899760i \(-0.356259\pi\)
0.436384 + 0.899760i \(0.356259\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 44.6534 0.0115029
\(248\) 0 0
\(249\) −4243.93 −1.08011
\(250\) 0 0
\(251\) −6918.67 −1.73985 −0.869926 0.493182i \(-0.835833\pi\)
−0.869926 + 0.493182i \(0.835833\pi\)
\(252\) 0 0
\(253\) 7560.95 1.87887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1318.70 0.320071 0.160036 0.987111i \(-0.448839\pi\)
0.160036 + 0.987111i \(0.448839\pi\)
\(258\) 0 0
\(259\) −4262.42 −1.02260
\(260\) 0 0
\(261\) 1844.24 0.437378
\(262\) 0 0
\(263\) 7131.42 1.67202 0.836012 0.548711i \(-0.184881\pi\)
0.836012 + 0.548711i \(0.184881\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1601.11 0.366989
\(268\) 0 0
\(269\) 1924.07 0.436107 0.218054 0.975937i \(-0.430029\pi\)
0.218054 + 0.975937i \(0.430029\pi\)
\(270\) 0 0
\(271\) 1384.60 0.310364 0.155182 0.987886i \(-0.450404\pi\)
0.155182 + 0.987886i \(0.450404\pi\)
\(272\) 0 0
\(273\) −61.6436 −0.0136661
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5198.50 −1.12761 −0.563805 0.825908i \(-0.690663\pi\)
−0.563805 + 0.825908i \(0.690663\pi\)
\(278\) 0 0
\(279\) 556.405 0.119395
\(280\) 0 0
\(281\) −9293.25 −1.97291 −0.986457 0.164021i \(-0.947554\pi\)
−0.986457 + 0.164021i \(0.947554\pi\)
\(282\) 0 0
\(283\) −5127.94 −1.07712 −0.538559 0.842588i \(-0.681031\pi\)
−0.538559 + 0.842588i \(0.681031\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1523.64 0.313372
\(288\) 0 0
\(289\) −894.970 −0.182164
\(290\) 0 0
\(291\) 901.383 0.181581
\(292\) 0 0
\(293\) −7146.94 −1.42501 −0.712506 0.701666i \(-0.752440\pi\)
−0.712506 + 0.701666i \(0.752440\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1122.26 −0.219259
\(298\) 0 0
\(299\) 320.470 0.0619842
\(300\) 0 0
\(301\) −1577.51 −0.302080
\(302\) 0 0
\(303\) −5170.12 −0.980249
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6428.75 −1.19514 −0.597570 0.801817i \(-0.703867\pi\)
−0.597570 + 0.801817i \(0.703867\pi\)
\(308\) 0 0
\(309\) −1840.39 −0.338822
\(310\) 0 0
\(311\) −7273.31 −1.32615 −0.663073 0.748555i \(-0.730748\pi\)
−0.663073 + 0.748555i \(0.730748\pi\)
\(312\) 0 0
\(313\) −6757.12 −1.22024 −0.610120 0.792309i \(-0.708879\pi\)
−0.610120 + 0.792309i \(0.708879\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2773.99 −0.491492 −0.245746 0.969334i \(-0.579033\pi\)
−0.245746 + 0.969334i \(0.579033\pi\)
\(318\) 0 0
\(319\) −8517.35 −1.49492
\(320\) 0 0
\(321\) −1632.12 −0.283788
\(322\) 0 0
\(323\) −1606.65 −0.276769
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −874.913 −0.147960
\(328\) 0 0
\(329\) 4438.22 0.743729
\(330\) 0 0
\(331\) −11223.4 −1.86374 −0.931868 0.362798i \(-0.881822\pi\)
−0.931868 + 0.362798i \(0.881822\pi\)
\(332\) 0 0
\(333\) −3289.07 −0.541260
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11193.3 1.80932 0.904659 0.426135i \(-0.140125\pi\)
0.904659 + 0.426135i \(0.140125\pi\)
\(338\) 0 0
\(339\) −323.211 −0.0517830
\(340\) 0 0
\(341\) −2569.67 −0.408081
\(342\) 0 0
\(343\) −6414.47 −1.00976
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3275.24 0.506698 0.253349 0.967375i \(-0.418468\pi\)
0.253349 + 0.967375i \(0.418468\pi\)
\(348\) 0 0
\(349\) −59.2693 −0.00909059 −0.00454529 0.999990i \(-0.501447\pi\)
−0.00454529 + 0.999990i \(0.501447\pi\)
\(350\) 0 0
\(351\) −47.5668 −0.00723342
\(352\) 0 0
\(353\) 6885.71 1.03821 0.519107 0.854709i \(-0.326265\pi\)
0.519107 + 0.854709i \(0.326265\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2217.96 0.328815
\(358\) 0 0
\(359\) −1089.97 −0.160241 −0.0801207 0.996785i \(-0.525531\pi\)
−0.0801207 + 0.996785i \(0.525531\pi\)
\(360\) 0 0
\(361\) −6216.57 −0.906337
\(362\) 0 0
\(363\) 1189.98 0.172060
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11974.8 1.70321 0.851607 0.524181i \(-0.175629\pi\)
0.851607 + 0.524181i \(0.175629\pi\)
\(368\) 0 0
\(369\) 1175.71 0.165867
\(370\) 0 0
\(371\) −4115.48 −0.575917
\(372\) 0 0
\(373\) 11363.2 1.57739 0.788695 0.614784i \(-0.210757\pi\)
0.788695 + 0.614784i \(0.210757\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −361.007 −0.0493178
\(378\) 0 0
\(379\) 9179.37 1.24410 0.622048 0.782979i \(-0.286301\pi\)
0.622048 + 0.782979i \(0.286301\pi\)
\(380\) 0 0
\(381\) 656.097 0.0882227
\(382\) 0 0
\(383\) 610.812 0.0814910 0.0407455 0.999170i \(-0.487027\pi\)
0.0407455 + 0.999170i \(0.487027\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1217.27 −0.159890
\(388\) 0 0
\(389\) 5645.96 0.735890 0.367945 0.929847i \(-0.380061\pi\)
0.367945 + 0.929847i \(0.380061\pi\)
\(390\) 0 0
\(391\) −11530.7 −1.49138
\(392\) 0 0
\(393\) 3934.96 0.505069
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8028.62 1.01497 0.507487 0.861659i \(-0.330575\pi\)
0.507487 + 0.861659i \(0.330575\pi\)
\(398\) 0 0
\(399\) −886.873 −0.111276
\(400\) 0 0
\(401\) 11847.6 1.47542 0.737709 0.675119i \(-0.235908\pi\)
0.737709 + 0.675119i \(0.235908\pi\)
\(402\) 0 0
\(403\) −108.915 −0.0134627
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15190.1 1.84998
\(408\) 0 0
\(409\) −13465.2 −1.62790 −0.813949 0.580937i \(-0.802686\pi\)
−0.813949 + 0.580937i \(0.802686\pi\)
\(410\) 0 0
\(411\) −5760.70 −0.691373
\(412\) 0 0
\(413\) −6490.72 −0.773336
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3455.08 −0.405746
\(418\) 0 0
\(419\) 2570.65 0.299724 0.149862 0.988707i \(-0.452117\pi\)
0.149862 + 0.988707i \(0.452117\pi\)
\(420\) 0 0
\(421\) 8360.03 0.967798 0.483899 0.875124i \(-0.339220\pi\)
0.483899 + 0.875124i \(0.339220\pi\)
\(422\) 0 0
\(423\) 3424.72 0.393654
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1032.27 0.116991
\(428\) 0 0
\(429\) 219.680 0.0247232
\(430\) 0 0
\(431\) 10432.8 1.16597 0.582984 0.812484i \(-0.301885\pi\)
0.582984 + 0.812484i \(0.301885\pi\)
\(432\) 0 0
\(433\) 2439.39 0.270738 0.135369 0.990795i \(-0.456778\pi\)
0.135369 + 0.990795i \(0.456778\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4610.64 0.504707
\(438\) 0 0
\(439\) −13826.6 −1.50320 −0.751601 0.659618i \(-0.770718\pi\)
−0.751601 + 0.659618i \(0.770718\pi\)
\(440\) 0 0
\(441\) −1862.68 −0.201132
\(442\) 0 0
\(443\) −17520.3 −1.87904 −0.939518 0.342500i \(-0.888726\pi\)
−0.939518 + 0.342500i \(0.888726\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7951.19 0.841339
\(448\) 0 0
\(449\) −1353.24 −0.142234 −0.0711171 0.997468i \(-0.522656\pi\)
−0.0711171 + 0.997468i \(0.522656\pi\)
\(450\) 0 0
\(451\) −5429.83 −0.566920
\(452\) 0 0
\(453\) −7147.97 −0.741371
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11601.7 1.18754 0.593771 0.804634i \(-0.297639\pi\)
0.593771 + 0.804634i \(0.297639\pi\)
\(458\) 0 0
\(459\) 1711.47 0.174041
\(460\) 0 0
\(461\) 5113.70 0.516635 0.258318 0.966060i \(-0.416832\pi\)
0.258318 + 0.966060i \(0.416832\pi\)
\(462\) 0 0
\(463\) 2761.40 0.277178 0.138589 0.990350i \(-0.455743\pi\)
0.138589 + 0.990350i \(0.455743\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9663.24 −0.957519 −0.478760 0.877946i \(-0.658913\pi\)
−0.478760 + 0.877946i \(0.658913\pi\)
\(468\) 0 0
\(469\) 8266.81 0.813914
\(470\) 0 0
\(471\) −1992.10 −0.194886
\(472\) 0 0
\(473\) 5621.78 0.546490
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3175.68 −0.304831
\(478\) 0 0
\(479\) −11386.1 −1.08610 −0.543052 0.839699i \(-0.682731\pi\)
−0.543052 + 0.839699i \(0.682731\pi\)
\(480\) 0 0
\(481\) 643.829 0.0610314
\(482\) 0 0
\(483\) −6364.95 −0.599617
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2106.69 0.196023 0.0980113 0.995185i \(-0.468752\pi\)
0.0980113 + 0.995185i \(0.468752\pi\)
\(488\) 0 0
\(489\) 6927.82 0.640669
\(490\) 0 0
\(491\) −15897.6 −1.46119 −0.730597 0.682809i \(-0.760758\pi\)
−0.730597 + 0.682809i \(0.760758\pi\)
\(492\) 0 0
\(493\) 12989.2 1.18662
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8748.49 −0.789584
\(498\) 0 0
\(499\) −18439.4 −1.65423 −0.827115 0.562032i \(-0.810020\pi\)
−0.827115 + 0.562032i \(0.810020\pi\)
\(500\) 0 0
\(501\) 402.078 0.0358553
\(502\) 0 0
\(503\) −3305.82 −0.293040 −0.146520 0.989208i \(-0.546807\pi\)
−0.146520 + 0.989208i \(0.546807\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6581.69 −0.576535
\(508\) 0 0
\(509\) −16712.0 −1.45530 −0.727650 0.685949i \(-0.759387\pi\)
−0.727650 + 0.685949i \(0.759387\pi\)
\(510\) 0 0
\(511\) −666.525 −0.0577012
\(512\) 0 0
\(513\) −684.349 −0.0588982
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15816.5 −1.34547
\(518\) 0 0
\(519\) 2141.74 0.181140
\(520\) 0 0
\(521\) 13038.2 1.09638 0.548188 0.836355i \(-0.315318\pi\)
0.548188 + 0.836355i \(0.315318\pi\)
\(522\) 0 0
\(523\) −7503.18 −0.627326 −0.313663 0.949534i \(-0.601556\pi\)
−0.313663 + 0.949534i \(0.601556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3918.82 0.323921
\(528\) 0 0
\(529\) 20922.8 1.71964
\(530\) 0 0
\(531\) −5008.52 −0.409324
\(532\) 0 0
\(533\) −230.143 −0.0187028
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6638.81 −0.533493
\(538\) 0 0
\(539\) 8602.50 0.687451
\(540\) 0 0
\(541\) −6604.05 −0.524825 −0.262412 0.964956i \(-0.584518\pi\)
−0.262412 + 0.964956i \(0.584518\pi\)
\(542\) 0 0
\(543\) 6748.95 0.533380
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7065.78 0.552305 0.276153 0.961114i \(-0.410940\pi\)
0.276153 + 0.961114i \(0.410940\pi\)
\(548\) 0 0
\(549\) 796.543 0.0619228
\(550\) 0 0
\(551\) −5193.85 −0.401571
\(552\) 0 0
\(553\) 6350.15 0.488310
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12082.2 0.919098 0.459549 0.888152i \(-0.348011\pi\)
0.459549 + 0.888152i \(0.348011\pi\)
\(558\) 0 0
\(559\) 238.279 0.0180288
\(560\) 0 0
\(561\) −7904.18 −0.594857
\(562\) 0 0
\(563\) −3893.48 −0.291458 −0.145729 0.989325i \(-0.546553\pi\)
−0.145729 + 0.989325i \(0.546553\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 944.738 0.0699740
\(568\) 0 0
\(569\) −17381.1 −1.28059 −0.640294 0.768130i \(-0.721188\pi\)
−0.640294 + 0.768130i \(0.721188\pi\)
\(570\) 0 0
\(571\) −5199.76 −0.381091 −0.190546 0.981678i \(-0.561026\pi\)
−0.190546 + 0.981678i \(0.561026\pi\)
\(572\) 0 0
\(573\) −14491.4 −1.05652
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −431.725 −0.0311490 −0.0155745 0.999879i \(-0.504958\pi\)
−0.0155745 + 0.999879i \(0.504958\pi\)
\(578\) 0 0
\(579\) 2577.80 0.185026
\(580\) 0 0
\(581\) −16499.6 −1.17817
\(582\) 0 0
\(583\) 14666.4 1.04189
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25072.0 −1.76292 −0.881459 0.472261i \(-0.843438\pi\)
−0.881459 + 0.472261i \(0.843438\pi\)
\(588\) 0 0
\(589\) −1566.98 −0.109620
\(590\) 0 0
\(591\) 10436.5 0.726399
\(592\) 0 0
\(593\) −20774.7 −1.43864 −0.719322 0.694676i \(-0.755548\pi\)
−0.719322 + 0.694676i \(0.755548\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10758.9 0.737572
\(598\) 0 0
\(599\) 12128.5 0.827308 0.413654 0.910434i \(-0.364252\pi\)
0.413654 + 0.910434i \(0.364252\pi\)
\(600\) 0 0
\(601\) −5384.63 −0.365463 −0.182732 0.983163i \(-0.558494\pi\)
−0.182732 + 0.983163i \(0.558494\pi\)
\(602\) 0 0
\(603\) 6379.02 0.430802
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2112.00 −0.141225 −0.0706125 0.997504i \(-0.522495\pi\)
−0.0706125 + 0.997504i \(0.522495\pi\)
\(608\) 0 0
\(609\) 7170.07 0.477087
\(610\) 0 0
\(611\) −670.383 −0.0443875
\(612\) 0 0
\(613\) 24806.7 1.63448 0.817239 0.576299i \(-0.195504\pi\)
0.817239 + 0.576299i \(0.195504\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9265.71 −0.604576 −0.302288 0.953217i \(-0.597750\pi\)
−0.302288 + 0.953217i \(0.597750\pi\)
\(618\) 0 0
\(619\) 18334.2 1.19049 0.595246 0.803544i \(-0.297055\pi\)
0.595246 + 0.803544i \(0.297055\pi\)
\(620\) 0 0
\(621\) −4911.47 −0.317376
\(622\) 0 0
\(623\) 6224.80 0.400307
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3160.56 0.201309
\(628\) 0 0
\(629\) −23165.2 −1.46846
\(630\) 0 0
\(631\) −17943.0 −1.13201 −0.566005 0.824402i \(-0.691512\pi\)
−0.566005 + 0.824402i \(0.691512\pi\)
\(632\) 0 0
\(633\) −10713.3 −0.672694
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 364.616 0.0226792
\(638\) 0 0
\(639\) −6750.71 −0.417925
\(640\) 0 0
\(641\) 20712.2 1.27626 0.638130 0.769928i \(-0.279708\pi\)
0.638130 + 0.769928i \(0.279708\pi\)
\(642\) 0 0
\(643\) 14215.3 0.871845 0.435923 0.899984i \(-0.356422\pi\)
0.435923 + 0.899984i \(0.356422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6049.75 0.367605 0.183802 0.982963i \(-0.441159\pi\)
0.183802 + 0.982963i \(0.441159\pi\)
\(648\) 0 0
\(649\) 23131.1 1.39904
\(650\) 0 0
\(651\) 2163.20 0.130234
\(652\) 0 0
\(653\) −8493.91 −0.509023 −0.254512 0.967070i \(-0.581915\pi\)
−0.254512 + 0.967070i \(0.581915\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −514.319 −0.0305411
\(658\) 0 0
\(659\) −22783.1 −1.34674 −0.673372 0.739304i \(-0.735155\pi\)
−0.673372 + 0.739304i \(0.735155\pi\)
\(660\) 0 0
\(661\) −28896.4 −1.70036 −0.850182 0.526489i \(-0.823508\pi\)
−0.850182 + 0.526489i \(0.823508\pi\)
\(662\) 0 0
\(663\) −335.018 −0.0196245
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −37275.4 −2.16388
\(668\) 0 0
\(669\) 9849.88 0.569235
\(670\) 0 0
\(671\) −3678.71 −0.211647
\(672\) 0 0
\(673\) 17060.8 0.977184 0.488592 0.872512i \(-0.337511\pi\)
0.488592 + 0.872512i \(0.337511\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14151.4 −0.803370 −0.401685 0.915778i \(-0.631575\pi\)
−0.401685 + 0.915778i \(0.631575\pi\)
\(678\) 0 0
\(679\) 3504.41 0.198066
\(680\) 0 0
\(681\) −11820.1 −0.665122
\(682\) 0 0
\(683\) 14040.6 0.786600 0.393300 0.919410i \(-0.371333\pi\)
0.393300 + 0.919410i \(0.371333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1899.77 0.105503
\(688\) 0 0
\(689\) 621.634 0.0343721
\(690\) 0 0
\(691\) 31165.8 1.71578 0.857890 0.513833i \(-0.171775\pi\)
0.857890 + 0.513833i \(0.171775\pi\)
\(692\) 0 0
\(693\) −4363.13 −0.239165
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8280.64 0.450002
\(698\) 0 0
\(699\) −5775.88 −0.312538
\(700\) 0 0
\(701\) 12236.2 0.659277 0.329639 0.944107i \(-0.393073\pi\)
0.329639 + 0.944107i \(0.393073\pi\)
\(702\) 0 0
\(703\) 9262.84 0.496948
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20100.4 −1.06924
\(708\) 0 0
\(709\) −14852.5 −0.786736 −0.393368 0.919381i \(-0.628690\pi\)
−0.393368 + 0.919381i \(0.628690\pi\)
\(710\) 0 0
\(711\) 4900.04 0.258461
\(712\) 0 0
\(713\) −11245.9 −0.590693
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11400.3 −0.593794
\(718\) 0 0
\(719\) −4359.05 −0.226099 −0.113049 0.993589i \(-0.536062\pi\)
−0.113049 + 0.993589i \(0.536062\pi\)
\(720\) 0 0
\(721\) −7155.08 −0.369583
\(722\) 0 0
\(723\) 9795.94 0.503893
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 27492.5 1.40253 0.701267 0.712899i \(-0.252618\pi\)
0.701267 + 0.712899i \(0.252618\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −8573.37 −0.433786
\(732\) 0 0
\(733\) −7621.45 −0.384045 −0.192022 0.981391i \(-0.561505\pi\)
−0.192022 + 0.981391i \(0.561505\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −29460.5 −1.47245
\(738\) 0 0
\(739\) −9833.06 −0.489466 −0.244733 0.969591i \(-0.578700\pi\)
−0.244733 + 0.969591i \(0.578700\pi\)
\(740\) 0 0
\(741\) 133.960 0.00664123
\(742\) 0 0
\(743\) 14571.3 0.719474 0.359737 0.933054i \(-0.382866\pi\)
0.359737 + 0.933054i \(0.382866\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −12731.8 −0.623604
\(748\) 0 0
\(749\) −6345.36 −0.309552
\(750\) 0 0
\(751\) 11234.6 0.545882 0.272941 0.962031i \(-0.412004\pi\)
0.272941 + 0.962031i \(0.412004\pi\)
\(752\) 0 0
\(753\) −20756.0 −1.00450
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6495.40 0.311862 0.155931 0.987768i \(-0.450162\pi\)
0.155931 + 0.987768i \(0.450162\pi\)
\(758\) 0 0
\(759\) 22682.9 1.08476
\(760\) 0 0
\(761\) 10465.3 0.498510 0.249255 0.968438i \(-0.419814\pi\)
0.249255 + 0.968438i \(0.419814\pi\)
\(762\) 0 0
\(763\) −3401.50 −0.161392
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 980.409 0.0461545
\(768\) 0 0
\(769\) −22255.7 −1.04364 −0.521822 0.853054i \(-0.674748\pi\)
−0.521822 + 0.853054i \(0.674748\pi\)
\(770\) 0 0
\(771\) 3956.10 0.184793
\(772\) 0 0
\(773\) −16941.8 −0.788299 −0.394150 0.919046i \(-0.628961\pi\)
−0.394150 + 0.919046i \(0.628961\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12787.3 −0.590400
\(778\) 0 0
\(779\) −3311.09 −0.152288
\(780\) 0 0
\(781\) 31177.1 1.42843
\(782\) 0 0
\(783\) 5532.73 0.252520
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −32648.1 −1.47875 −0.739377 0.673291i \(-0.764880\pi\)
−0.739377 + 0.673291i \(0.764880\pi\)
\(788\) 0 0
\(789\) 21394.3 0.965344
\(790\) 0 0
\(791\) −1256.59 −0.0564842
\(792\) 0 0
\(793\) −155.922 −0.00698228
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36971.6 −1.64316 −0.821581 0.570091i \(-0.806908\pi\)
−0.821581 + 0.570091i \(0.806908\pi\)
\(798\) 0 0
\(799\) 24120.6 1.06799
\(800\) 0 0
\(801\) 4803.32 0.211881
\(802\) 0 0
\(803\) 2375.30 0.104387
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5772.22 0.251787
\(808\) 0 0
\(809\) 12381.0 0.538062 0.269031 0.963132i \(-0.413297\pi\)
0.269031 + 0.963132i \(0.413297\pi\)
\(810\) 0 0
\(811\) 23483.4 1.01679 0.508393 0.861125i \(-0.330240\pi\)
0.508393 + 0.861125i \(0.330240\pi\)
\(812\) 0 0
\(813\) 4153.81 0.179189
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3428.14 0.146800
\(818\) 0 0
\(819\) −184.931 −0.00789012
\(820\) 0 0
\(821\) 24594.8 1.04551 0.522756 0.852482i \(-0.324904\pi\)
0.522756 + 0.852482i \(0.324904\pi\)
\(822\) 0 0
\(823\) 6881.39 0.291458 0.145729 0.989325i \(-0.453447\pi\)
0.145729 + 0.989325i \(0.453447\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14527.6 0.610850 0.305425 0.952216i \(-0.401201\pi\)
0.305425 + 0.952216i \(0.401201\pi\)
\(828\) 0 0
\(829\) 23060.0 0.966112 0.483056 0.875590i \(-0.339527\pi\)
0.483056 + 0.875590i \(0.339527\pi\)
\(830\) 0 0
\(831\) −15595.5 −0.651026
\(832\) 0 0
\(833\) −13119.0 −0.545676
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1669.22 0.0689325
\(838\) 0 0
\(839\) 43802.7 1.80243 0.901215 0.433373i \(-0.142677\pi\)
0.901215 + 0.433373i \(0.142677\pi\)
\(840\) 0 0
\(841\) 17601.5 0.721698
\(842\) 0 0
\(843\) −27879.7 −1.13906
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4626.42 0.187681
\(848\) 0 0
\(849\) −15383.8 −0.621874
\(850\) 0 0
\(851\) 66477.9 2.67783
\(852\) 0 0
\(853\) 31828.7 1.27760 0.638801 0.769372i \(-0.279431\pi\)
0.638801 + 0.769372i \(0.279431\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25320.5 1.00925 0.504627 0.863338i \(-0.331630\pi\)
0.504627 + 0.863338i \(0.331630\pi\)
\(858\) 0 0
\(859\) 21700.3 0.861937 0.430968 0.902367i \(-0.358172\pi\)
0.430968 + 0.902367i \(0.358172\pi\)
\(860\) 0 0
\(861\) 4570.93 0.180926
\(862\) 0 0
\(863\) −23951.2 −0.944736 −0.472368 0.881401i \(-0.656601\pi\)
−0.472368 + 0.881401i \(0.656601\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −2684.91 −0.105172
\(868\) 0 0
\(869\) −22630.1 −0.883399
\(870\) 0 0
\(871\) −1248.68 −0.0485763
\(872\) 0 0
\(873\) 2704.15 0.104836
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 23481.3 0.904115 0.452057 0.891989i \(-0.350690\pi\)
0.452057 + 0.891989i \(0.350690\pi\)
\(878\) 0 0
\(879\) −21440.8 −0.822731
\(880\) 0 0
\(881\) 7375.38 0.282046 0.141023 0.990006i \(-0.454961\pi\)
0.141023 + 0.990006i \(0.454961\pi\)
\(882\) 0 0
\(883\) −31736.5 −1.20954 −0.604768 0.796402i \(-0.706734\pi\)
−0.604768 + 0.796402i \(0.706734\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27836.3 1.05372 0.526862 0.849951i \(-0.323369\pi\)
0.526862 + 0.849951i \(0.323369\pi\)
\(888\) 0 0
\(889\) 2550.78 0.0962322
\(890\) 0 0
\(891\) −3366.78 −0.126589
\(892\) 0 0
\(893\) −9644.87 −0.361426
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 961.411 0.0357866
\(898\) 0 0
\(899\) 12668.5 0.469986
\(900\) 0 0
\(901\) −22366.6 −0.827015
\(902\) 0 0
\(903\) −4732.52 −0.174406
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5961.53 0.218246 0.109123 0.994028i \(-0.465196\pi\)
0.109123 + 0.994028i \(0.465196\pi\)
\(908\) 0 0
\(909\) −15510.3 −0.565947
\(910\) 0 0
\(911\) 12068.3 0.438903 0.219452 0.975623i \(-0.429573\pi\)
0.219452 + 0.975623i \(0.429573\pi\)
\(912\) 0 0
\(913\) 58799.9 2.13143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15298.4 0.550923
\(918\) 0 0
\(919\) 13799.2 0.495316 0.247658 0.968848i \(-0.420339\pi\)
0.247658 + 0.968848i \(0.420339\pi\)
\(920\) 0 0
\(921\) −19286.3 −0.690015
\(922\) 0 0
\(923\) 1321.44 0.0471243
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5521.16 −0.195619
\(928\) 0 0
\(929\) 37148.8 1.31196 0.655980 0.754778i \(-0.272256\pi\)
0.655980 + 0.754778i \(0.272256\pi\)
\(930\) 0 0
\(931\) 5245.77 0.184665
\(932\) 0 0
\(933\) −21819.9 −0.765651
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21470.1 0.748556 0.374278 0.927316i \(-0.377891\pi\)
0.374278 + 0.927316i \(0.377891\pi\)
\(938\) 0 0
\(939\) −20271.4 −0.704506
\(940\) 0 0
\(941\) −38843.0 −1.34564 −0.672820 0.739806i \(-0.734917\pi\)
−0.672820 + 0.739806i \(0.734917\pi\)
\(942\) 0 0
\(943\) −23763.2 −0.820611
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9323.86 0.319942 0.159971 0.987122i \(-0.448860\pi\)
0.159971 + 0.987122i \(0.448860\pi\)
\(948\) 0 0
\(949\) 100.677 0.00344375
\(950\) 0 0
\(951\) −8321.98 −0.283763
\(952\) 0 0
\(953\) 36337.8 1.23515 0.617574 0.786512i \(-0.288115\pi\)
0.617574 + 0.786512i \(0.288115\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −25552.1 −0.863094
\(958\) 0 0
\(959\) −22396.5 −0.754141
\(960\) 0 0
\(961\) −25968.9 −0.871704
\(962\) 0 0
\(963\) −4896.35 −0.163845
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 35267.8 1.17284 0.586420 0.810007i \(-0.300537\pi\)
0.586420 + 0.810007i \(0.300537\pi\)
\(968\) 0 0
\(969\) −4819.94 −0.159792
\(970\) 0 0
\(971\) 50634.5 1.67347 0.836735 0.547608i \(-0.184461\pi\)
0.836735 + 0.547608i \(0.184461\pi\)
\(972\) 0 0
\(973\) −13432.7 −0.442582
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36423.9 1.19274 0.596368 0.802711i \(-0.296610\pi\)
0.596368 + 0.802711i \(0.296610\pi\)
\(978\) 0 0
\(979\) −22183.4 −0.724193
\(980\) 0 0
\(981\) −2624.74 −0.0854245
\(982\) 0 0
\(983\) 24006.8 0.778941 0.389470 0.921039i \(-0.372658\pi\)
0.389470 + 0.921039i \(0.372658\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13314.7 0.429392
\(988\) 0 0
\(989\) 24603.2 0.791039
\(990\) 0 0
\(991\) 35440.5 1.13603 0.568014 0.823019i \(-0.307712\pi\)
0.568014 + 0.823019i \(0.307712\pi\)
\(992\) 0 0
\(993\) −33670.3 −1.07603
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12930.8 0.410754 0.205377 0.978683i \(-0.434158\pi\)
0.205377 + 0.978683i \(0.434158\pi\)
\(998\) 0 0
\(999\) −9867.20 −0.312497
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bw.1.2 3
4.3 odd 2 2400.4.a.bf.1.2 3
5.2 odd 4 480.4.f.d.289.2 6
5.3 odd 4 480.4.f.d.289.5 yes 6
5.4 even 2 2400.4.a.be.1.2 3
15.2 even 4 1440.4.f.j.289.4 6
15.8 even 4 1440.4.f.j.289.3 6
20.3 even 4 480.4.f.e.289.2 yes 6
20.7 even 4 480.4.f.e.289.5 yes 6
20.19 odd 2 2400.4.a.bx.1.2 3
40.3 even 4 960.4.f.r.769.5 6
40.13 odd 4 960.4.f.s.769.2 6
40.27 even 4 960.4.f.r.769.2 6
40.37 odd 4 960.4.f.s.769.5 6
60.23 odd 4 1440.4.f.i.289.3 6
60.47 odd 4 1440.4.f.i.289.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.d.289.2 6 5.2 odd 4
480.4.f.d.289.5 yes 6 5.3 odd 4
480.4.f.e.289.2 yes 6 20.3 even 4
480.4.f.e.289.5 yes 6 20.7 even 4
960.4.f.r.769.2 6 40.27 even 4
960.4.f.r.769.5 6 40.3 even 4
960.4.f.s.769.2 6 40.13 odd 4
960.4.f.s.769.5 6 40.37 odd 4
1440.4.f.i.289.3 6 60.23 odd 4
1440.4.f.i.289.4 6 60.47 odd 4
1440.4.f.j.289.3 6 15.8 even 4
1440.4.f.j.289.4 6 15.2 even 4
2400.4.a.be.1.2 3 5.4 even 2
2400.4.a.bf.1.2 3 4.3 odd 2
2400.4.a.bw.1.2 3 1.1 even 1 trivial
2400.4.a.bx.1.2 3 20.19 odd 2