Properties

Label 2400.4.a.bv.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.304244.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 164x - 780 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.49763\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -13.9953 q^{7} +9.00000 q^{9} -43.3861 q^{11} -25.3909 q^{13} -85.3766 q^{17} -92.3766 q^{19} -41.9858 q^{21} -31.3861 q^{23} +27.0000 q^{27} -220.130 q^{29} +111.976 q^{31} -130.158 q^{33} -123.972 q^{37} -76.1726 q^{39} +431.693 q^{41} +278.348 q^{43} +340.326 q^{47} -147.133 q^{49} -256.130 q^{51} +367.728 q^{53} -277.130 q^{57} +638.596 q^{59} -195.651 q^{61} -125.957 q^{63} -11.5701 q^{67} -94.1584 q^{69} +110.542 q^{71} +734.226 q^{73} +607.200 q^{77} +195.256 q^{79} +81.0000 q^{81} -392.994 q^{83} -660.390 q^{87} +317.620 q^{89} +355.352 q^{91} +335.929 q^{93} -993.323 q^{97} -390.475 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 9 q^{7} + 27 q^{9} + 4 q^{11} + 7 q^{13} - 20 q^{17} - 41 q^{19} + 27 q^{21} + 40 q^{23} + 81 q^{27} + 48 q^{29} + 81 q^{31} + 12 q^{33} - 66 q^{37} + 21 q^{39} + 254 q^{41} + 293 q^{43}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −13.9953 −0.755673 −0.377836 0.925872i \(-0.623332\pi\)
−0.377836 + 0.925872i \(0.623332\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −43.3861 −1.18922 −0.594610 0.804015i \(-0.702693\pi\)
−0.594610 + 0.804015i \(0.702693\pi\)
\(12\) 0 0
\(13\) −25.3909 −0.541705 −0.270852 0.962621i \(-0.587306\pi\)
−0.270852 + 0.962621i \(0.587306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −85.3766 −1.21805 −0.609026 0.793150i \(-0.708439\pi\)
−0.609026 + 0.793150i \(0.708439\pi\)
\(18\) 0 0
\(19\) −92.3766 −1.11540 −0.557701 0.830042i \(-0.688317\pi\)
−0.557701 + 0.830042i \(0.688317\pi\)
\(20\) 0 0
\(21\) −41.9858 −0.436288
\(22\) 0 0
\(23\) −31.3861 −0.284542 −0.142271 0.989828i \(-0.545440\pi\)
−0.142271 + 0.989828i \(0.545440\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −220.130 −1.40956 −0.704778 0.709428i \(-0.748953\pi\)
−0.704778 + 0.709428i \(0.748953\pi\)
\(30\) 0 0
\(31\) 111.976 0.648759 0.324380 0.945927i \(-0.394844\pi\)
0.324380 + 0.945927i \(0.394844\pi\)
\(32\) 0 0
\(33\) −130.158 −0.686596
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −123.972 −0.550832 −0.275416 0.961325i \(-0.588816\pi\)
−0.275416 + 0.961325i \(0.588816\pi\)
\(38\) 0 0
\(39\) −76.1726 −0.312753
\(40\) 0 0
\(41\) 431.693 1.64437 0.822185 0.569220i \(-0.192755\pi\)
0.822185 + 0.569220i \(0.192755\pi\)
\(42\) 0 0
\(43\) 278.348 0.987156 0.493578 0.869702i \(-0.335689\pi\)
0.493578 + 0.869702i \(0.335689\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 340.326 1.05621 0.528103 0.849180i \(-0.322903\pi\)
0.528103 + 0.849180i \(0.322903\pi\)
\(48\) 0 0
\(49\) −147.133 −0.428959
\(50\) 0 0
\(51\) −256.130 −0.703242
\(52\) 0 0
\(53\) 367.728 0.953043 0.476522 0.879163i \(-0.341897\pi\)
0.476522 + 0.879163i \(0.341897\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −277.130 −0.643978
\(58\) 0 0
\(59\) 638.596 1.40912 0.704560 0.709644i \(-0.251144\pi\)
0.704560 + 0.709644i \(0.251144\pi\)
\(60\) 0 0
\(61\) −195.651 −0.410664 −0.205332 0.978692i \(-0.565827\pi\)
−0.205332 + 0.978692i \(0.565827\pi\)
\(62\) 0 0
\(63\) −125.957 −0.251891
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.5701 −0.0210972 −0.0105486 0.999944i \(-0.503358\pi\)
−0.0105486 + 0.999944i \(0.503358\pi\)
\(68\) 0 0
\(69\) −94.1584 −0.164280
\(70\) 0 0
\(71\) 110.542 0.184773 0.0923865 0.995723i \(-0.470550\pi\)
0.0923865 + 0.995723i \(0.470550\pi\)
\(72\) 0 0
\(73\) 734.226 1.17719 0.588593 0.808429i \(-0.299682\pi\)
0.588593 + 0.808429i \(0.299682\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 607.200 0.898661
\(78\) 0 0
\(79\) 195.256 0.278076 0.139038 0.990287i \(-0.455599\pi\)
0.139038 + 0.990287i \(0.455599\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −392.994 −0.519719 −0.259860 0.965646i \(-0.583676\pi\)
−0.259860 + 0.965646i \(0.583676\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −660.390 −0.813807
\(88\) 0 0
\(89\) 317.620 0.378289 0.189144 0.981949i \(-0.439429\pi\)
0.189144 + 0.981949i \(0.439429\pi\)
\(90\) 0 0
\(91\) 355.352 0.409352
\(92\) 0 0
\(93\) 335.929 0.374561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −993.323 −1.03976 −0.519880 0.854240i \(-0.674023\pi\)
−0.519880 + 0.854240i \(0.674023\pi\)
\(98\) 0 0
\(99\) −390.475 −0.396406
\(100\) 0 0
\(101\) 11.2649 0.0110980 0.00554900 0.999985i \(-0.498234\pi\)
0.00554900 + 0.999985i \(0.498234\pi\)
\(102\) 0 0
\(103\) 1497.69 1.43274 0.716370 0.697721i \(-0.245802\pi\)
0.716370 + 0.697721i \(0.245802\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.6081 0.0150053 0.00750264 0.999972i \(-0.497612\pi\)
0.00750264 + 0.999972i \(0.497612\pi\)
\(108\) 0 0
\(109\) 1670.46 1.46790 0.733949 0.679204i \(-0.237675\pi\)
0.733949 + 0.679204i \(0.237675\pi\)
\(110\) 0 0
\(111\) −371.915 −0.318023
\(112\) 0 0
\(113\) −322.209 −0.268238 −0.134119 0.990965i \(-0.542820\pi\)
−0.134119 + 0.990965i \(0.542820\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −228.518 −0.180568
\(118\) 0 0
\(119\) 1194.87 0.920448
\(120\) 0 0
\(121\) 551.357 0.414243
\(122\) 0 0
\(123\) 1295.08 0.949378
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1322.37 0.923950 0.461975 0.886893i \(-0.347141\pi\)
0.461975 + 0.886893i \(0.347141\pi\)
\(128\) 0 0
\(129\) 835.045 0.569935
\(130\) 0 0
\(131\) −1545.31 −1.03064 −0.515322 0.856997i \(-0.672328\pi\)
−0.515322 + 0.856997i \(0.672328\pi\)
\(132\) 0 0
\(133\) 1292.83 0.842880
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1125.56 −0.701919 −0.350959 0.936391i \(-0.614145\pi\)
−0.350959 + 0.936391i \(0.614145\pi\)
\(138\) 0 0
\(139\) −1933.99 −1.18013 −0.590067 0.807354i \(-0.700899\pi\)
−0.590067 + 0.807354i \(0.700899\pi\)
\(140\) 0 0
\(141\) 1020.98 0.609801
\(142\) 0 0
\(143\) 1101.61 0.644206
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −441.398 −0.247659
\(148\) 0 0
\(149\) 303.869 0.167073 0.0835367 0.996505i \(-0.473378\pi\)
0.0835367 + 0.996505i \(0.473378\pi\)
\(150\) 0 0
\(151\) −2290.31 −1.23432 −0.617162 0.786836i \(-0.711718\pi\)
−0.617162 + 0.786836i \(0.711718\pi\)
\(152\) 0 0
\(153\) −768.390 −0.406017
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1976.47 1.00471 0.502355 0.864661i \(-0.332467\pi\)
0.502355 + 0.864661i \(0.332467\pi\)
\(158\) 0 0
\(159\) 1103.18 0.550240
\(160\) 0 0
\(161\) 439.257 0.215021
\(162\) 0 0
\(163\) −82.0214 −0.0394136 −0.0197068 0.999806i \(-0.506273\pi\)
−0.0197068 + 0.999806i \(0.506273\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −929.769 −0.430825 −0.215412 0.976523i \(-0.569110\pi\)
−0.215412 + 0.976523i \(0.569110\pi\)
\(168\) 0 0
\(169\) −1552.30 −0.706556
\(170\) 0 0
\(171\) −831.390 −0.371801
\(172\) 0 0
\(173\) −465.080 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1915.79 0.813556
\(178\) 0 0
\(179\) 3917.60 1.63584 0.817919 0.575334i \(-0.195128\pi\)
0.817919 + 0.575334i \(0.195128\pi\)
\(180\) 0 0
\(181\) 3846.50 1.57960 0.789802 0.613362i \(-0.210183\pi\)
0.789802 + 0.613362i \(0.210183\pi\)
\(182\) 0 0
\(183\) −586.952 −0.237097
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3704.16 1.44853
\(188\) 0 0
\(189\) −377.872 −0.145429
\(190\) 0 0
\(191\) 757.545 0.286985 0.143492 0.989651i \(-0.454167\pi\)
0.143492 + 0.989651i \(0.454167\pi\)
\(192\) 0 0
\(193\) −3505.79 −1.30752 −0.653762 0.756700i \(-0.726810\pi\)
−0.653762 + 0.756700i \(0.726810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2015.09 −0.728779 −0.364390 0.931247i \(-0.618722\pi\)
−0.364390 + 0.931247i \(0.618722\pi\)
\(198\) 0 0
\(199\) 3225.89 1.14913 0.574566 0.818458i \(-0.305171\pi\)
0.574566 + 0.818458i \(0.305171\pi\)
\(200\) 0 0
\(201\) −34.7104 −0.0121805
\(202\) 0 0
\(203\) 3080.77 1.06516
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −282.475 −0.0948473
\(208\) 0 0
\(209\) 4007.87 1.32646
\(210\) 0 0
\(211\) −2091.98 −0.682550 −0.341275 0.939964i \(-0.610859\pi\)
−0.341275 + 0.939964i \(0.610859\pi\)
\(212\) 0 0
\(213\) 331.625 0.106679
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1567.14 −0.490250
\(218\) 0 0
\(219\) 2202.68 0.679649
\(220\) 0 0
\(221\) 2167.79 0.659825
\(222\) 0 0
\(223\) 6171.25 1.85317 0.926587 0.376081i \(-0.122729\pi\)
0.926587 + 0.376081i \(0.122729\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4440.71 1.29841 0.649207 0.760611i \(-0.275101\pi\)
0.649207 + 0.760611i \(0.275101\pi\)
\(228\) 0 0
\(229\) −5771.96 −1.66560 −0.832798 0.553576i \(-0.813263\pi\)
−0.832798 + 0.553576i \(0.813263\pi\)
\(230\) 0 0
\(231\) 1821.60 0.518842
\(232\) 0 0
\(233\) −131.028 −0.0368408 −0.0184204 0.999830i \(-0.505864\pi\)
−0.0184204 + 0.999830i \(0.505864\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 585.769 0.160548
\(238\) 0 0
\(239\) −3674.77 −0.994566 −0.497283 0.867588i \(-0.665669\pi\)
−0.497283 + 0.867588i \(0.665669\pi\)
\(240\) 0 0
\(241\) −5713.18 −1.52705 −0.763524 0.645780i \(-0.776532\pi\)
−0.763524 + 0.645780i \(0.776532\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2345.52 0.604219
\(248\) 0 0
\(249\) −1178.98 −0.300060
\(250\) 0 0
\(251\) −4897.68 −1.23163 −0.615814 0.787891i \(-0.711173\pi\)
−0.615814 + 0.787891i \(0.711173\pi\)
\(252\) 0 0
\(253\) 1361.72 0.338383
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −211.524 −0.0513405 −0.0256702 0.999670i \(-0.508172\pi\)
−0.0256702 + 0.999670i \(0.508172\pi\)
\(258\) 0 0
\(259\) 1735.01 0.416249
\(260\) 0 0
\(261\) −1981.17 −0.469852
\(262\) 0 0
\(263\) 7121.69 1.66974 0.834871 0.550446i \(-0.185542\pi\)
0.834871 + 0.550446i \(0.185542\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 952.861 0.218405
\(268\) 0 0
\(269\) −285.049 −0.0646087 −0.0323044 0.999478i \(-0.510285\pi\)
−0.0323044 + 0.999478i \(0.510285\pi\)
\(270\) 0 0
\(271\) 3616.79 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(272\) 0 0
\(273\) 1066.06 0.236339
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3355.98 −0.727947 −0.363973 0.931409i \(-0.618580\pi\)
−0.363973 + 0.931409i \(0.618580\pi\)
\(278\) 0 0
\(279\) 1007.79 0.216253
\(280\) 0 0
\(281\) −4125.61 −0.875848 −0.437924 0.899012i \(-0.644286\pi\)
−0.437924 + 0.899012i \(0.644286\pi\)
\(282\) 0 0
\(283\) 3678.07 0.772575 0.386287 0.922378i \(-0.373757\pi\)
0.386287 + 0.922378i \(0.373757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6041.66 −1.24261
\(288\) 0 0
\(289\) 2376.17 0.483650
\(290\) 0 0
\(291\) −2979.97 −0.600305
\(292\) 0 0
\(293\) −847.397 −0.168961 −0.0844803 0.996425i \(-0.526923\pi\)
−0.0844803 + 0.996425i \(0.526923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1171.43 −0.228865
\(298\) 0 0
\(299\) 796.922 0.154138
\(300\) 0 0
\(301\) −3895.55 −0.745967
\(302\) 0 0
\(303\) 33.7947 0.00640743
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2049.62 −0.381035 −0.190518 0.981684i \(-0.561017\pi\)
−0.190518 + 0.981684i \(0.561017\pi\)
\(308\) 0 0
\(309\) 4493.08 0.827193
\(310\) 0 0
\(311\) −8754.65 −1.59624 −0.798120 0.602498i \(-0.794172\pi\)
−0.798120 + 0.602498i \(0.794172\pi\)
\(312\) 0 0
\(313\) 8221.23 1.48464 0.742318 0.670047i \(-0.233726\pi\)
0.742318 + 0.670047i \(0.233726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9177.22 1.62601 0.813003 0.582260i \(-0.197831\pi\)
0.813003 + 0.582260i \(0.197831\pi\)
\(318\) 0 0
\(319\) 9550.59 1.67627
\(320\) 0 0
\(321\) 49.8242 0.00866330
\(322\) 0 0
\(323\) 7886.81 1.35862
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5011.38 0.847492
\(328\) 0 0
\(329\) −4762.95 −0.798146
\(330\) 0 0
\(331\) −8137.57 −1.35130 −0.675651 0.737222i \(-0.736137\pi\)
−0.675651 + 0.737222i \(0.736137\pi\)
\(332\) 0 0
\(333\) −1115.74 −0.183611
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2490.26 −0.402532 −0.201266 0.979537i \(-0.564506\pi\)
−0.201266 + 0.979537i \(0.564506\pi\)
\(338\) 0 0
\(339\) −966.626 −0.154867
\(340\) 0 0
\(341\) −4858.22 −0.771517
\(342\) 0 0
\(343\) 6859.53 1.07983
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4551.26 0.704104 0.352052 0.935980i \(-0.385484\pi\)
0.352052 + 0.935980i \(0.385484\pi\)
\(348\) 0 0
\(349\) −7826.48 −1.20041 −0.600203 0.799847i \(-0.704914\pi\)
−0.600203 + 0.799847i \(0.704914\pi\)
\(350\) 0 0
\(351\) −685.554 −0.104251
\(352\) 0 0
\(353\) 4816.88 0.726280 0.363140 0.931735i \(-0.381705\pi\)
0.363140 + 0.931735i \(0.381705\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3584.60 0.531421
\(358\) 0 0
\(359\) 5261.91 0.773574 0.386787 0.922169i \(-0.373585\pi\)
0.386787 + 0.922169i \(0.373585\pi\)
\(360\) 0 0
\(361\) 1674.44 0.244124
\(362\) 0 0
\(363\) 1654.07 0.239163
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1964.39 0.279401 0.139700 0.990194i \(-0.455386\pi\)
0.139700 + 0.990194i \(0.455386\pi\)
\(368\) 0 0
\(369\) 3885.24 0.548124
\(370\) 0 0
\(371\) −5146.44 −0.720189
\(372\) 0 0
\(373\) −4896.84 −0.679756 −0.339878 0.940470i \(-0.610386\pi\)
−0.339878 + 0.940470i \(0.610386\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5589.29 0.763563
\(378\) 0 0
\(379\) 7414.06 1.00484 0.502420 0.864623i \(-0.332443\pi\)
0.502420 + 0.864623i \(0.332443\pi\)
\(380\) 0 0
\(381\) 3967.12 0.533443
\(382\) 0 0
\(383\) 12359.7 1.64896 0.824478 0.565894i \(-0.191469\pi\)
0.824478 + 0.565894i \(0.191469\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2505.13 0.329052
\(388\) 0 0
\(389\) −6344.48 −0.826935 −0.413468 0.910519i \(-0.635682\pi\)
−0.413468 + 0.910519i \(0.635682\pi\)
\(390\) 0 0
\(391\) 2679.64 0.346587
\(392\) 0 0
\(393\) −4635.93 −0.595043
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1236.73 0.156347 0.0781734 0.996940i \(-0.475091\pi\)
0.0781734 + 0.996940i \(0.475091\pi\)
\(398\) 0 0
\(399\) 3878.50 0.486637
\(400\) 0 0
\(401\) −1868.99 −0.232750 −0.116375 0.993205i \(-0.537127\pi\)
−0.116375 + 0.993205i \(0.537127\pi\)
\(402\) 0 0
\(403\) −2843.18 −0.351436
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5378.65 0.655060
\(408\) 0 0
\(409\) −5205.01 −0.629269 −0.314635 0.949213i \(-0.601882\pi\)
−0.314635 + 0.949213i \(0.601882\pi\)
\(410\) 0 0
\(411\) −3376.67 −0.405253
\(412\) 0 0
\(413\) −8937.31 −1.06483
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5801.96 −0.681350
\(418\) 0 0
\(419\) −3557.56 −0.414793 −0.207397 0.978257i \(-0.566499\pi\)
−0.207397 + 0.978257i \(0.566499\pi\)
\(420\) 0 0
\(421\) −10753.8 −1.24492 −0.622459 0.782653i \(-0.713866\pi\)
−0.622459 + 0.782653i \(0.713866\pi\)
\(422\) 0 0
\(423\) 3062.94 0.352069
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2738.18 0.310328
\(428\) 0 0
\(429\) 3304.84 0.371932
\(430\) 0 0
\(431\) 6087.82 0.680371 0.340185 0.940358i \(-0.389510\pi\)
0.340185 + 0.940358i \(0.389510\pi\)
\(432\) 0 0
\(433\) −5043.70 −0.559780 −0.279890 0.960032i \(-0.590298\pi\)
−0.279890 + 0.960032i \(0.590298\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2899.35 0.317379
\(438\) 0 0
\(439\) 6465.16 0.702882 0.351441 0.936210i \(-0.385692\pi\)
0.351441 + 0.936210i \(0.385692\pi\)
\(440\) 0 0
\(441\) −1324.20 −0.142986
\(442\) 0 0
\(443\) −13626.5 −1.46143 −0.730715 0.682682i \(-0.760813\pi\)
−0.730715 + 0.682682i \(0.760813\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 911.608 0.0964599
\(448\) 0 0
\(449\) 9030.40 0.949155 0.474578 0.880214i \(-0.342601\pi\)
0.474578 + 0.880214i \(0.342601\pi\)
\(450\) 0 0
\(451\) −18729.5 −1.95552
\(452\) 0 0
\(453\) −6870.93 −0.712637
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −520.068 −0.0532336 −0.0266168 0.999646i \(-0.508473\pi\)
−0.0266168 + 0.999646i \(0.508473\pi\)
\(458\) 0 0
\(459\) −2305.17 −0.234414
\(460\) 0 0
\(461\) 15812.8 1.59756 0.798782 0.601621i \(-0.205478\pi\)
0.798782 + 0.601621i \(0.205478\pi\)
\(462\) 0 0
\(463\) 9743.53 0.978013 0.489007 0.872280i \(-0.337359\pi\)
0.489007 + 0.872280i \(0.337359\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17272.1 1.71147 0.855734 0.517415i \(-0.173106\pi\)
0.855734 + 0.517415i \(0.173106\pi\)
\(468\) 0 0
\(469\) 161.927 0.0159426
\(470\) 0 0
\(471\) 5929.41 0.580070
\(472\) 0 0
\(473\) −12076.5 −1.17394
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3309.55 0.317681
\(478\) 0 0
\(479\) 14442.2 1.37762 0.688812 0.724940i \(-0.258132\pi\)
0.688812 + 0.724940i \(0.258132\pi\)
\(480\) 0 0
\(481\) 3147.75 0.298389
\(482\) 0 0
\(483\) 1317.77 0.124142
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18605.5 −1.73120 −0.865599 0.500737i \(-0.833062\pi\)
−0.865599 + 0.500737i \(0.833062\pi\)
\(488\) 0 0
\(489\) −246.064 −0.0227554
\(490\) 0 0
\(491\) −8083.62 −0.742991 −0.371496 0.928435i \(-0.621155\pi\)
−0.371496 + 0.928435i \(0.621155\pi\)
\(492\) 0 0
\(493\) 18794.0 1.71691
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1547.06 −0.139628
\(498\) 0 0
\(499\) −175.643 −0.0157572 −0.00787861 0.999969i \(-0.502508\pi\)
−0.00787861 + 0.999969i \(0.502508\pi\)
\(500\) 0 0
\(501\) −2789.31 −0.248737
\(502\) 0 0
\(503\) 17108.0 1.51652 0.758258 0.651954i \(-0.226051\pi\)
0.758258 + 0.651954i \(0.226051\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4656.91 −0.407930
\(508\) 0 0
\(509\) 17505.3 1.52438 0.762189 0.647355i \(-0.224125\pi\)
0.762189 + 0.647355i \(0.224125\pi\)
\(510\) 0 0
\(511\) −10275.7 −0.889568
\(512\) 0 0
\(513\) −2494.17 −0.214659
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −14765.4 −1.25606
\(518\) 0 0
\(519\) −1395.24 −0.118004
\(520\) 0 0
\(521\) 6321.21 0.531549 0.265774 0.964035i \(-0.414372\pi\)
0.265774 + 0.964035i \(0.414372\pi\)
\(522\) 0 0
\(523\) 22467.1 1.87843 0.939214 0.343333i \(-0.111556\pi\)
0.939214 + 0.343333i \(0.111556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9560.16 −0.790222
\(528\) 0 0
\(529\) −11181.9 −0.919036
\(530\) 0 0
\(531\) 5747.36 0.469707
\(532\) 0 0
\(533\) −10961.1 −0.890764
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11752.8 0.944451
\(538\) 0 0
\(539\) 6383.53 0.510126
\(540\) 0 0
\(541\) −14522.2 −1.15408 −0.577039 0.816716i \(-0.695792\pi\)
−0.577039 + 0.816716i \(0.695792\pi\)
\(542\) 0 0
\(543\) 11539.5 0.911985
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 14832.1 1.15937 0.579686 0.814840i \(-0.303175\pi\)
0.579686 + 0.814840i \(0.303175\pi\)
\(548\) 0 0
\(549\) −1760.86 −0.136888
\(550\) 0 0
\(551\) 20334.9 1.57222
\(552\) 0 0
\(553\) −2732.66 −0.210135
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12339.9 −0.938704 −0.469352 0.883011i \(-0.655512\pi\)
−0.469352 + 0.883011i \(0.655512\pi\)
\(558\) 0 0
\(559\) −7067.51 −0.534747
\(560\) 0 0
\(561\) 11112.5 0.836310
\(562\) 0 0
\(563\) 7909.79 0.592110 0.296055 0.955171i \(-0.404329\pi\)
0.296055 + 0.955171i \(0.404329\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1133.62 −0.0839636
\(568\) 0 0
\(569\) 11381.7 0.838568 0.419284 0.907855i \(-0.362281\pi\)
0.419284 + 0.907855i \(0.362281\pi\)
\(570\) 0 0
\(571\) −14294.5 −1.04765 −0.523823 0.851827i \(-0.675495\pi\)
−0.523823 + 0.851827i \(0.675495\pi\)
\(572\) 0 0
\(573\) 2272.64 0.165691
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4197.35 0.302839 0.151420 0.988470i \(-0.451616\pi\)
0.151420 + 0.988470i \(0.451616\pi\)
\(578\) 0 0
\(579\) −10517.4 −0.754899
\(580\) 0 0
\(581\) 5500.05 0.392738
\(582\) 0 0
\(583\) −15954.3 −1.13338
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 203.919 0.0143384 0.00716918 0.999974i \(-0.497718\pi\)
0.00716918 + 0.999974i \(0.497718\pi\)
\(588\) 0 0
\(589\) −10344.0 −0.723628
\(590\) 0 0
\(591\) −6045.28 −0.420761
\(592\) 0 0
\(593\) 8172.28 0.565928 0.282964 0.959131i \(-0.408682\pi\)
0.282964 + 0.959131i \(0.408682\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9677.67 0.663452
\(598\) 0 0
\(599\) 5634.82 0.384362 0.192181 0.981360i \(-0.438444\pi\)
0.192181 + 0.981360i \(0.438444\pi\)
\(600\) 0 0
\(601\) 1962.41 0.133192 0.0665959 0.997780i \(-0.478786\pi\)
0.0665959 + 0.997780i \(0.478786\pi\)
\(602\) 0 0
\(603\) −104.131 −0.00703242
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2032.86 −0.135933 −0.0679665 0.997688i \(-0.521651\pi\)
−0.0679665 + 0.997688i \(0.521651\pi\)
\(608\) 0 0
\(609\) 9242.32 0.614972
\(610\) 0 0
\(611\) −8641.18 −0.572152
\(612\) 0 0
\(613\) 21125.9 1.39196 0.695978 0.718064i \(-0.254971\pi\)
0.695978 + 0.718064i \(0.254971\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16122.1 1.05195 0.525973 0.850501i \(-0.323701\pi\)
0.525973 + 0.850501i \(0.323701\pi\)
\(618\) 0 0
\(619\) −16312.2 −1.05920 −0.529598 0.848249i \(-0.677657\pi\)
−0.529598 + 0.848249i \(0.677657\pi\)
\(620\) 0 0
\(621\) −847.426 −0.0547601
\(622\) 0 0
\(623\) −4445.18 −0.285863
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 12023.6 0.765831
\(628\) 0 0
\(629\) 10584.3 0.670942
\(630\) 0 0
\(631\) 28427.6 1.79348 0.896739 0.442560i \(-0.145930\pi\)
0.896739 + 0.442560i \(0.145930\pi\)
\(632\) 0 0
\(633\) −6275.95 −0.394070
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3735.83 0.232369
\(638\) 0 0
\(639\) 994.875 0.0615910
\(640\) 0 0
\(641\) −14792.9 −0.911521 −0.455760 0.890103i \(-0.650633\pi\)
−0.455760 + 0.890103i \(0.650633\pi\)
\(642\) 0 0
\(643\) −14400.1 −0.883177 −0.441588 0.897218i \(-0.645585\pi\)
−0.441588 + 0.897218i \(0.645585\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19302.0 1.17286 0.586430 0.810000i \(-0.300533\pi\)
0.586430 + 0.810000i \(0.300533\pi\)
\(648\) 0 0
\(649\) −27706.2 −1.67575
\(650\) 0 0
\(651\) −4701.41 −0.283046
\(652\) 0 0
\(653\) 25140.8 1.50664 0.753321 0.657653i \(-0.228451\pi\)
0.753321 + 0.657653i \(0.228451\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6608.03 0.392395
\(658\) 0 0
\(659\) 11509.5 0.680342 0.340171 0.940364i \(-0.389515\pi\)
0.340171 + 0.940364i \(0.389515\pi\)
\(660\) 0 0
\(661\) 22601.6 1.32996 0.664979 0.746862i \(-0.268441\pi\)
0.664979 + 0.746862i \(0.268441\pi\)
\(662\) 0 0
\(663\) 6503.36 0.380950
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6909.03 0.401077
\(668\) 0 0
\(669\) 18513.8 1.06993
\(670\) 0 0
\(671\) 8488.53 0.488370
\(672\) 0 0
\(673\) 32353.7 1.85311 0.926555 0.376160i \(-0.122756\pi\)
0.926555 + 0.376160i \(0.122756\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15287.2 −0.867853 −0.433927 0.900948i \(-0.642872\pi\)
−0.433927 + 0.900948i \(0.642872\pi\)
\(678\) 0 0
\(679\) 13901.8 0.785718
\(680\) 0 0
\(681\) 13322.1 0.749640
\(682\) 0 0
\(683\) −19333.5 −1.08313 −0.541563 0.840660i \(-0.682167\pi\)
−0.541563 + 0.840660i \(0.682167\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −17315.9 −0.961633
\(688\) 0 0
\(689\) −9336.93 −0.516268
\(690\) 0 0
\(691\) −20845.7 −1.14762 −0.573812 0.818987i \(-0.694536\pi\)
−0.573812 + 0.818987i \(0.694536\pi\)
\(692\) 0 0
\(693\) 5464.80 0.299554
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −36856.5 −2.00293
\(698\) 0 0
\(699\) −393.083 −0.0212701
\(700\) 0 0
\(701\) −17650.0 −0.950974 −0.475487 0.879723i \(-0.657728\pi\)
−0.475487 + 0.879723i \(0.657728\pi\)
\(702\) 0 0
\(703\) 11452.1 0.614400
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −157.655 −0.00838646
\(708\) 0 0
\(709\) 8592.23 0.455131 0.227566 0.973763i \(-0.426923\pi\)
0.227566 + 0.973763i \(0.426923\pi\)
\(710\) 0 0
\(711\) 1757.31 0.0926921
\(712\) 0 0
\(713\) −3514.50 −0.184599
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11024.3 −0.574213
\(718\) 0 0
\(719\) 2820.32 0.146287 0.0731434 0.997321i \(-0.476697\pi\)
0.0731434 + 0.997321i \(0.476697\pi\)
\(720\) 0 0
\(721\) −20960.6 −1.08268
\(722\) 0 0
\(723\) −17139.5 −0.881641
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16483.9 −0.840929 −0.420465 0.907309i \(-0.638133\pi\)
−0.420465 + 0.907309i \(0.638133\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −23764.4 −1.20241
\(732\) 0 0
\(733\) −747.009 −0.0376418 −0.0188209 0.999823i \(-0.505991\pi\)
−0.0188209 + 0.999823i \(0.505991\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 501.983 0.0250893
\(738\) 0 0
\(739\) 22384.1 1.11423 0.557114 0.830436i \(-0.311909\pi\)
0.557114 + 0.830436i \(0.311909\pi\)
\(740\) 0 0
\(741\) 7036.57 0.348846
\(742\) 0 0
\(743\) −1177.47 −0.0581389 −0.0290694 0.999577i \(-0.509254\pi\)
−0.0290694 + 0.999577i \(0.509254\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3536.95 −0.173240
\(748\) 0 0
\(749\) −232.434 −0.0113391
\(750\) 0 0
\(751\) 30821.1 1.49757 0.748786 0.662812i \(-0.230637\pi\)
0.748786 + 0.662812i \(0.230637\pi\)
\(752\) 0 0
\(753\) −14693.0 −0.711081
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −19590.0 −0.940568 −0.470284 0.882515i \(-0.655849\pi\)
−0.470284 + 0.882515i \(0.655849\pi\)
\(758\) 0 0
\(759\) 4085.17 0.195365
\(760\) 0 0
\(761\) 21456.5 1.02207 0.511036 0.859560i \(-0.329262\pi\)
0.511036 + 0.859560i \(0.329262\pi\)
\(762\) 0 0
\(763\) −23378.5 −1.10925
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16214.5 −0.763327
\(768\) 0 0
\(769\) −39916.3 −1.87180 −0.935902 0.352260i \(-0.885413\pi\)
−0.935902 + 0.352260i \(0.885413\pi\)
\(770\) 0 0
\(771\) −634.572 −0.0296414
\(772\) 0 0
\(773\) −40881.3 −1.90220 −0.951098 0.308890i \(-0.900043\pi\)
−0.951098 + 0.308890i \(0.900043\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5205.04 0.240321
\(778\) 0 0
\(779\) −39878.4 −1.83414
\(780\) 0 0
\(781\) −4795.98 −0.219736
\(782\) 0 0
\(783\) −5943.51 −0.271269
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1246.46 0.0564570 0.0282285 0.999601i \(-0.491013\pi\)
0.0282285 + 0.999601i \(0.491013\pi\)
\(788\) 0 0
\(789\) 21365.1 0.964026
\(790\) 0 0
\(791\) 4509.39 0.202700
\(792\) 0 0
\(793\) 4967.75 0.222459
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3737.97 0.166130 0.0830650 0.996544i \(-0.473529\pi\)
0.0830650 + 0.996544i \(0.473529\pi\)
\(798\) 0 0
\(799\) −29055.9 −1.28651
\(800\) 0 0
\(801\) 2858.58 0.126096
\(802\) 0 0
\(803\) −31855.2 −1.39993
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −855.147 −0.0373019
\(808\) 0 0
\(809\) 32369.8 1.40675 0.703374 0.710820i \(-0.251676\pi\)
0.703374 + 0.710820i \(0.251676\pi\)
\(810\) 0 0
\(811\) 27132.6 1.17479 0.587394 0.809301i \(-0.300154\pi\)
0.587394 + 0.809301i \(0.300154\pi\)
\(812\) 0 0
\(813\) 10850.4 0.468067
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −25712.9 −1.10108
\(818\) 0 0
\(819\) 3198.17 0.136451
\(820\) 0 0
\(821\) 24168.2 1.02738 0.513688 0.857977i \(-0.328279\pi\)
0.513688 + 0.857977i \(0.328279\pi\)
\(822\) 0 0
\(823\) 28730.8 1.21688 0.608440 0.793600i \(-0.291796\pi\)
0.608440 + 0.793600i \(0.291796\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13095.1 −0.550617 −0.275309 0.961356i \(-0.588780\pi\)
−0.275309 + 0.961356i \(0.588780\pi\)
\(828\) 0 0
\(829\) −43637.6 −1.82822 −0.914112 0.405462i \(-0.867111\pi\)
−0.914112 + 0.405462i \(0.867111\pi\)
\(830\) 0 0
\(831\) −10067.9 −0.420280
\(832\) 0 0
\(833\) 12561.7 0.522494
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3023.36 0.124854
\(838\) 0 0
\(839\) −13467.7 −0.554181 −0.277091 0.960844i \(-0.589370\pi\)
−0.277091 + 0.960844i \(0.589370\pi\)
\(840\) 0 0
\(841\) 24068.2 0.986846
\(842\) 0 0
\(843\) −12376.8 −0.505671
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −7716.38 −0.313032
\(848\) 0 0
\(849\) 11034.2 0.446046
\(850\) 0 0
\(851\) 3890.99 0.156735
\(852\) 0 0
\(853\) −6921.82 −0.277841 −0.138921 0.990304i \(-0.544363\pi\)
−0.138921 + 0.990304i \(0.544363\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34133.9 1.36055 0.680275 0.732957i \(-0.261860\pi\)
0.680275 + 0.732957i \(0.261860\pi\)
\(858\) 0 0
\(859\) −33686.4 −1.33803 −0.669014 0.743250i \(-0.733284\pi\)
−0.669014 + 0.743250i \(0.733284\pi\)
\(860\) 0 0
\(861\) −18125.0 −0.717419
\(862\) 0 0
\(863\) 17696.4 0.698022 0.349011 0.937119i \(-0.386518\pi\)
0.349011 + 0.937119i \(0.386518\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 7128.52 0.279235
\(868\) 0 0
\(869\) −8471.41 −0.330694
\(870\) 0 0
\(871\) 293.776 0.0114285
\(872\) 0 0
\(873\) −8939.90 −0.346586
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27975.0 −1.07714 −0.538568 0.842582i \(-0.681034\pi\)
−0.538568 + 0.842582i \(0.681034\pi\)
\(878\) 0 0
\(879\) −2542.19 −0.0975495
\(880\) 0 0
\(881\) 28810.0 1.10174 0.550870 0.834591i \(-0.314296\pi\)
0.550870 + 0.834591i \(0.314296\pi\)
\(882\) 0 0
\(883\) −17068.6 −0.650513 −0.325256 0.945626i \(-0.605451\pi\)
−0.325256 + 0.945626i \(0.605451\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31393.8 −1.18839 −0.594195 0.804321i \(-0.702529\pi\)
−0.594195 + 0.804321i \(0.702529\pi\)
\(888\) 0 0
\(889\) −18507.0 −0.698204
\(890\) 0 0
\(891\) −3514.28 −0.132135
\(892\) 0 0
\(893\) −31438.2 −1.17810
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2390.77 0.0889914
\(898\) 0 0
\(899\) −24649.3 −0.914462
\(900\) 0 0
\(901\) −31395.4 −1.16086
\(902\) 0 0
\(903\) −11686.7 −0.430684
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38309.8 1.40249 0.701243 0.712922i \(-0.252629\pi\)
0.701243 + 0.712922i \(0.252629\pi\)
\(908\) 0 0
\(909\) 101.384 0.00369933
\(910\) 0 0
\(911\) 40656.9 1.47862 0.739311 0.673364i \(-0.235151\pi\)
0.739311 + 0.673364i \(0.235151\pi\)
\(912\) 0 0
\(913\) 17050.5 0.618060
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21627.0 0.778830
\(918\) 0 0
\(919\) 10516.8 0.377494 0.188747 0.982026i \(-0.439557\pi\)
0.188747 + 0.982026i \(0.439557\pi\)
\(920\) 0 0
\(921\) −6148.85 −0.219991
\(922\) 0 0
\(923\) −2806.75 −0.100092
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 13479.2 0.477580
\(928\) 0 0
\(929\) 33457.0 1.18158 0.590790 0.806826i \(-0.298816\pi\)
0.590790 + 0.806826i \(0.298816\pi\)
\(930\) 0 0
\(931\) 13591.6 0.478462
\(932\) 0 0
\(933\) −26264.0 −0.921590
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7276.37 −0.253691 −0.126846 0.991922i \(-0.540485\pi\)
−0.126846 + 0.991922i \(0.540485\pi\)
\(938\) 0 0
\(939\) 24663.7 0.857155
\(940\) 0 0
\(941\) 23369.0 0.809573 0.404786 0.914411i \(-0.367346\pi\)
0.404786 + 0.914411i \(0.367346\pi\)
\(942\) 0 0
\(943\) −13549.2 −0.467892
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32741.6 −1.12350 −0.561752 0.827306i \(-0.689872\pi\)
−0.561752 + 0.827306i \(0.689872\pi\)
\(948\) 0 0
\(949\) −18642.6 −0.637688
\(950\) 0 0
\(951\) 27531.6 0.938775
\(952\) 0 0
\(953\) 37093.1 1.26082 0.630410 0.776262i \(-0.282887\pi\)
0.630410 + 0.776262i \(0.282887\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 28651.8 0.967795
\(958\) 0 0
\(959\) 15752.5 0.530421
\(960\) 0 0
\(961\) −17252.3 −0.579112
\(962\) 0 0
\(963\) 149.473 0.00500176
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −17450.9 −0.580334 −0.290167 0.956976i \(-0.593711\pi\)
−0.290167 + 0.956976i \(0.593711\pi\)
\(968\) 0 0
\(969\) 23660.4 0.784399
\(970\) 0 0
\(971\) −37250.4 −1.23112 −0.615562 0.788088i \(-0.711071\pi\)
−0.615562 + 0.788088i \(0.711071\pi\)
\(972\) 0 0
\(973\) 27066.6 0.891795
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39716.1 1.30054 0.650271 0.759702i \(-0.274655\pi\)
0.650271 + 0.759702i \(0.274655\pi\)
\(978\) 0 0
\(979\) −13780.3 −0.449868
\(980\) 0 0
\(981\) 15034.1 0.489300
\(982\) 0 0
\(983\) −60348.7 −1.95811 −0.979057 0.203587i \(-0.934740\pi\)
−0.979057 + 0.203587i \(0.934740\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −14288.9 −0.460810
\(988\) 0 0
\(989\) −8736.27 −0.280887
\(990\) 0 0
\(991\) 60820.4 1.94957 0.974784 0.223149i \(-0.0716337\pi\)
0.974784 + 0.223149i \(0.0716337\pi\)
\(992\) 0 0
\(993\) −24412.7 −0.780175
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5973.09 0.189739 0.0948694 0.995490i \(-0.469757\pi\)
0.0948694 + 0.995490i \(0.469757\pi\)
\(998\) 0 0
\(999\) −3347.23 −0.106008
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bv.1.1 yes 3
4.3 odd 2 2400.4.a.bg.1.3 3
5.4 even 2 2400.4.a.bh.1.3 yes 3
20.19 odd 2 2400.4.a.bu.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bg.1.3 3 4.3 odd 2
2400.4.a.bh.1.3 yes 3 5.4 even 2
2400.4.a.bu.1.1 yes 3 20.19 odd 2
2400.4.a.bv.1.1 yes 3 1.1 even 1 trivial