Properties

Label 2400.4.a.bt.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.115636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 69x - 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.22200\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -26.7458 q^{7} +9.00000 q^{9} +46.6338 q^{11} -49.6036 q^{13} -32.4098 q^{17} +4.14220 q^{19} -80.2374 q^{21} +213.169 q^{23} +27.0000 q^{27} -272.661 q^{29} -327.756 q^{31} +139.901 q^{33} +399.010 q^{37} -148.811 q^{39} -42.2890 q^{41} +468.747 q^{43} -275.086 q^{47} +372.338 q^{49} -97.2295 q^{51} -158.152 q^{53} +12.4266 q^{57} -566.435 q^{59} +206.493 q^{61} -240.712 q^{63} -351.557 q^{67} +639.507 q^{69} +500.497 q^{71} +987.718 q^{73} -1247.26 q^{77} -172.311 q^{79} +81.0000 q^{81} -238.950 q^{83} -817.982 q^{87} -42.7769 q^{89} +1326.69 q^{91} -983.268 q^{93} +1187.97 q^{97} +419.704 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 3 q^{7} + 27 q^{9} + 44 q^{11} - 13 q^{13} + 36 q^{17} + 71 q^{19} - 9 q^{21} + 160 q^{23} + 81 q^{27} - 184 q^{29} - 59 q^{31} + 132 q^{33} + 350 q^{37} - 39 q^{39} + 166 q^{41} + 341 q^{43}+ \cdots + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −26.7458 −1.44414 −0.722069 0.691821i \(-0.756809\pi\)
−0.722069 + 0.691821i \(0.756809\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 46.6338 1.27824 0.639119 0.769108i \(-0.279299\pi\)
0.639119 + 0.769108i \(0.279299\pi\)
\(12\) 0 0
\(13\) −49.6036 −1.05827 −0.529137 0.848536i \(-0.677484\pi\)
−0.529137 + 0.848536i \(0.677484\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −32.4098 −0.462384 −0.231192 0.972908i \(-0.574263\pi\)
−0.231192 + 0.972908i \(0.574263\pi\)
\(18\) 0 0
\(19\) 4.14220 0.0500150 0.0250075 0.999687i \(-0.492039\pi\)
0.0250075 + 0.999687i \(0.492039\pi\)
\(20\) 0 0
\(21\) −80.2374 −0.833773
\(22\) 0 0
\(23\) 213.169 1.93256 0.966279 0.257499i \(-0.0828982\pi\)
0.966279 + 0.257499i \(0.0828982\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −272.661 −1.74592 −0.872962 0.487788i \(-0.837804\pi\)
−0.872962 + 0.487788i \(0.837804\pi\)
\(30\) 0 0
\(31\) −327.756 −1.89893 −0.949463 0.313880i \(-0.898371\pi\)
−0.949463 + 0.313880i \(0.898371\pi\)
\(32\) 0 0
\(33\) 139.901 0.737991
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 399.010 1.77289 0.886444 0.462836i \(-0.153168\pi\)
0.886444 + 0.462836i \(0.153168\pi\)
\(38\) 0 0
\(39\) −148.811 −0.610995
\(40\) 0 0
\(41\) −42.2890 −0.161084 −0.0805419 0.996751i \(-0.525665\pi\)
−0.0805419 + 0.996751i \(0.525665\pi\)
\(42\) 0 0
\(43\) 468.747 1.66240 0.831201 0.555973i \(-0.187654\pi\)
0.831201 + 0.555973i \(0.187654\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −275.086 −0.853733 −0.426867 0.904315i \(-0.640383\pi\)
−0.426867 + 0.904315i \(0.640383\pi\)
\(48\) 0 0
\(49\) 372.338 1.08553
\(50\) 0 0
\(51\) −97.2295 −0.266958
\(52\) 0 0
\(53\) −158.152 −0.409885 −0.204942 0.978774i \(-0.565701\pi\)
−0.204942 + 0.978774i \(0.565701\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.4266 0.0288762
\(58\) 0 0
\(59\) −566.435 −1.24989 −0.624945 0.780669i \(-0.714879\pi\)
−0.624945 + 0.780669i \(0.714879\pi\)
\(60\) 0 0
\(61\) 206.493 0.433421 0.216711 0.976236i \(-0.430467\pi\)
0.216711 + 0.976236i \(0.430467\pi\)
\(62\) 0 0
\(63\) −240.712 −0.481379
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −351.557 −0.641039 −0.320519 0.947242i \(-0.603857\pi\)
−0.320519 + 0.947242i \(0.603857\pi\)
\(68\) 0 0
\(69\) 639.507 1.11576
\(70\) 0 0
\(71\) 500.497 0.836593 0.418296 0.908311i \(-0.362627\pi\)
0.418296 + 0.908311i \(0.362627\pi\)
\(72\) 0 0
\(73\) 987.718 1.58361 0.791806 0.610773i \(-0.209141\pi\)
0.791806 + 0.610773i \(0.209141\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1247.26 −1.84595
\(78\) 0 0
\(79\) −172.311 −0.245399 −0.122700 0.992444i \(-0.539155\pi\)
−0.122700 + 0.992444i \(0.539155\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −238.950 −0.316002 −0.158001 0.987439i \(-0.550505\pi\)
−0.158001 + 0.987439i \(0.550505\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −817.982 −1.00801
\(88\) 0 0
\(89\) −42.7769 −0.0509476 −0.0254738 0.999675i \(-0.508109\pi\)
−0.0254738 + 0.999675i \(0.508109\pi\)
\(90\) 0 0
\(91\) 1326.69 1.52829
\(92\) 0 0
\(93\) −983.268 −1.09635
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1187.97 1.24351 0.621753 0.783213i \(-0.286421\pi\)
0.621753 + 0.783213i \(0.286421\pi\)
\(98\) 0 0
\(99\) 419.704 0.426079
\(100\) 0 0
\(101\) −731.979 −0.721135 −0.360568 0.932733i \(-0.617417\pi\)
−0.360568 + 0.932733i \(0.617417\pi\)
\(102\) 0 0
\(103\) 1043.63 0.998369 0.499184 0.866496i \(-0.333633\pi\)
0.499184 + 0.866496i \(0.333633\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −323.443 −0.292228 −0.146114 0.989268i \(-0.546677\pi\)
−0.146114 + 0.989268i \(0.546677\pi\)
\(108\) 0 0
\(109\) −1345.88 −1.18268 −0.591340 0.806423i \(-0.701401\pi\)
−0.591340 + 0.806423i \(0.701401\pi\)
\(110\) 0 0
\(111\) 1197.03 1.02358
\(112\) 0 0
\(113\) 2226.94 1.85392 0.926959 0.375163i \(-0.122413\pi\)
0.926959 + 0.375163i \(0.122413\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −446.432 −0.352758
\(118\) 0 0
\(119\) 866.827 0.667747
\(120\) 0 0
\(121\) 843.712 0.633894
\(122\) 0 0
\(123\) −126.867 −0.0930017
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 516.237 0.360698 0.180349 0.983603i \(-0.442277\pi\)
0.180349 + 0.983603i \(0.442277\pi\)
\(128\) 0 0
\(129\) 1406.24 0.959788
\(130\) 0 0
\(131\) 241.181 0.160855 0.0804277 0.996760i \(-0.474371\pi\)
0.0804277 + 0.996760i \(0.474371\pi\)
\(132\) 0 0
\(133\) −110.786 −0.0722286
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 917.387 0.572100 0.286050 0.958215i \(-0.407658\pi\)
0.286050 + 0.958215i \(0.407658\pi\)
\(138\) 0 0
\(139\) 1979.43 1.20786 0.603932 0.797036i \(-0.293600\pi\)
0.603932 + 0.797036i \(0.293600\pi\)
\(140\) 0 0
\(141\) −825.259 −0.492903
\(142\) 0 0
\(143\) −2313.21 −1.35273
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1117.01 0.626733
\(148\) 0 0
\(149\) 2737.08 1.50490 0.752452 0.658647i \(-0.228871\pi\)
0.752452 + 0.658647i \(0.228871\pi\)
\(150\) 0 0
\(151\) −1148.59 −0.619011 −0.309505 0.950898i \(-0.600163\pi\)
−0.309505 + 0.950898i \(0.600163\pi\)
\(152\) 0 0
\(153\) −291.688 −0.154128
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1814.64 0.922445 0.461222 0.887285i \(-0.347411\pi\)
0.461222 + 0.887285i \(0.347411\pi\)
\(158\) 0 0
\(159\) −474.457 −0.236647
\(160\) 0 0
\(161\) −5701.38 −2.79088
\(162\) 0 0
\(163\) −2018.38 −0.969887 −0.484943 0.874546i \(-0.661160\pi\)
−0.484943 + 0.874546i \(0.661160\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2456.67 1.13834 0.569171 0.822219i \(-0.307264\pi\)
0.569171 + 0.822219i \(0.307264\pi\)
\(168\) 0 0
\(169\) 263.518 0.119944
\(170\) 0 0
\(171\) 37.2798 0.0166717
\(172\) 0 0
\(173\) 2988.71 1.31346 0.656728 0.754128i \(-0.271940\pi\)
0.656728 + 0.754128i \(0.271940\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1699.30 −0.721624
\(178\) 0 0
\(179\) 2994.76 1.25050 0.625248 0.780426i \(-0.284998\pi\)
0.625248 + 0.780426i \(0.284998\pi\)
\(180\) 0 0
\(181\) −118.802 −0.0487873 −0.0243937 0.999702i \(-0.507766\pi\)
−0.0243937 + 0.999702i \(0.507766\pi\)
\(182\) 0 0
\(183\) 619.479 0.250236
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1511.39 −0.591038
\(188\) 0 0
\(189\) −722.137 −0.277924
\(190\) 0 0
\(191\) 2121.48 0.803690 0.401845 0.915708i \(-0.368369\pi\)
0.401845 + 0.915708i \(0.368369\pi\)
\(192\) 0 0
\(193\) 2915.49 1.08736 0.543682 0.839291i \(-0.317030\pi\)
0.543682 + 0.839291i \(0.317030\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1072.39 −0.387841 −0.193921 0.981017i \(-0.562120\pi\)
−0.193921 + 0.981017i \(0.562120\pi\)
\(198\) 0 0
\(199\) 664.899 0.236852 0.118426 0.992963i \(-0.462215\pi\)
0.118426 + 0.992963i \(0.462215\pi\)
\(200\) 0 0
\(201\) −1054.67 −0.370104
\(202\) 0 0
\(203\) 7292.53 2.52136
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1918.52 0.644186
\(208\) 0 0
\(209\) 193.167 0.0639311
\(210\) 0 0
\(211\) 2615.36 0.853311 0.426656 0.904414i \(-0.359692\pi\)
0.426656 + 0.904414i \(0.359692\pi\)
\(212\) 0 0
\(213\) 1501.49 0.483007
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8766.09 2.74231
\(218\) 0 0
\(219\) 2963.15 0.914299
\(220\) 0 0
\(221\) 1607.64 0.489330
\(222\) 0 0
\(223\) 3223.81 0.968082 0.484041 0.875045i \(-0.339169\pi\)
0.484041 + 0.875045i \(0.339169\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4268.28 −1.24800 −0.624000 0.781424i \(-0.714493\pi\)
−0.624000 + 0.781424i \(0.714493\pi\)
\(228\) 0 0
\(229\) 5115.74 1.47624 0.738118 0.674672i \(-0.235715\pi\)
0.738118 + 0.674672i \(0.235715\pi\)
\(230\) 0 0
\(231\) −3741.78 −1.06576
\(232\) 0 0
\(233\) −2434.30 −0.684447 −0.342223 0.939619i \(-0.611180\pi\)
−0.342223 + 0.939619i \(0.611180\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −516.934 −0.141681
\(238\) 0 0
\(239\) 2824.46 0.764431 0.382215 0.924073i \(-0.375161\pi\)
0.382215 + 0.924073i \(0.375161\pi\)
\(240\) 0 0
\(241\) 626.231 0.167382 0.0836910 0.996492i \(-0.473329\pi\)
0.0836910 + 0.996492i \(0.473329\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −205.468 −0.0529296
\(248\) 0 0
\(249\) −716.849 −0.182444
\(250\) 0 0
\(251\) −1832.85 −0.460910 −0.230455 0.973083i \(-0.574021\pi\)
−0.230455 + 0.973083i \(0.574021\pi\)
\(252\) 0 0
\(253\) 9940.89 2.47027
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 815.323 0.197893 0.0989464 0.995093i \(-0.468453\pi\)
0.0989464 + 0.995093i \(0.468453\pi\)
\(258\) 0 0
\(259\) −10671.8 −2.56029
\(260\) 0 0
\(261\) −2453.95 −0.581975
\(262\) 0 0
\(263\) −5949.94 −1.39501 −0.697507 0.716578i \(-0.745708\pi\)
−0.697507 + 0.716578i \(0.745708\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −128.331 −0.0294146
\(268\) 0 0
\(269\) 6545.45 1.48358 0.741790 0.670632i \(-0.233977\pi\)
0.741790 + 0.670632i \(0.233977\pi\)
\(270\) 0 0
\(271\) −3544.39 −0.794488 −0.397244 0.917713i \(-0.630033\pi\)
−0.397244 + 0.917713i \(0.630033\pi\)
\(272\) 0 0
\(273\) 3980.07 0.882361
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4238.42 −0.919357 −0.459678 0.888086i \(-0.652035\pi\)
−0.459678 + 0.888086i \(0.652035\pi\)
\(278\) 0 0
\(279\) −2949.80 −0.632975
\(280\) 0 0
\(281\) 7626.83 1.61914 0.809571 0.587022i \(-0.199700\pi\)
0.809571 + 0.587022i \(0.199700\pi\)
\(282\) 0 0
\(283\) −4972.15 −1.04439 −0.522197 0.852825i \(-0.674888\pi\)
−0.522197 + 0.852825i \(0.674888\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1131.05 0.232627
\(288\) 0 0
\(289\) −3862.60 −0.786201
\(290\) 0 0
\(291\) 3563.91 0.717938
\(292\) 0 0
\(293\) 3804.72 0.758614 0.379307 0.925271i \(-0.376162\pi\)
0.379307 + 0.925271i \(0.376162\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1259.11 0.245997
\(298\) 0 0
\(299\) −10574.0 −2.04518
\(300\) 0 0
\(301\) −12537.0 −2.40074
\(302\) 0 0
\(303\) −2195.94 −0.416348
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −293.524 −0.0545677 −0.0272839 0.999628i \(-0.508686\pi\)
−0.0272839 + 0.999628i \(0.508686\pi\)
\(308\) 0 0
\(309\) 3130.89 0.576409
\(310\) 0 0
\(311\) −7593.46 −1.38452 −0.692260 0.721648i \(-0.743385\pi\)
−0.692260 + 0.721648i \(0.743385\pi\)
\(312\) 0 0
\(313\) 9630.88 1.73920 0.869600 0.493758i \(-0.164377\pi\)
0.869600 + 0.493758i \(0.164377\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7493.10 1.32762 0.663808 0.747903i \(-0.268939\pi\)
0.663808 + 0.747903i \(0.268939\pi\)
\(318\) 0 0
\(319\) −12715.2 −2.23171
\(320\) 0 0
\(321\) −970.328 −0.168718
\(322\) 0 0
\(323\) −134.248 −0.0231262
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4037.64 −0.682820
\(328\) 0 0
\(329\) 7357.41 1.23291
\(330\) 0 0
\(331\) −1160.95 −0.192785 −0.0963923 0.995343i \(-0.530730\pi\)
−0.0963923 + 0.995343i \(0.530730\pi\)
\(332\) 0 0
\(333\) 3591.09 0.590963
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −11656.9 −1.88425 −0.942123 0.335266i \(-0.891174\pi\)
−0.942123 + 0.335266i \(0.891174\pi\)
\(338\) 0 0
\(339\) 6680.81 1.07036
\(340\) 0 0
\(341\) −15284.5 −2.42728
\(342\) 0 0
\(343\) −784.671 −0.123523
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3271.21 0.506074 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(348\) 0 0
\(349\) 4314.33 0.661722 0.330861 0.943680i \(-0.392661\pi\)
0.330861 + 0.943680i \(0.392661\pi\)
\(350\) 0 0
\(351\) −1339.30 −0.203665
\(352\) 0 0
\(353\) 2525.55 0.380798 0.190399 0.981707i \(-0.439022\pi\)
0.190399 + 0.981707i \(0.439022\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2600.48 0.385524
\(358\) 0 0
\(359\) 934.700 0.137414 0.0687069 0.997637i \(-0.478113\pi\)
0.0687069 + 0.997637i \(0.478113\pi\)
\(360\) 0 0
\(361\) −6841.84 −0.997498
\(362\) 0 0
\(363\) 2531.14 0.365979
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −10414.0 −1.48122 −0.740610 0.671936i \(-0.765463\pi\)
−0.740610 + 0.671936i \(0.765463\pi\)
\(368\) 0 0
\(369\) −380.601 −0.0536946
\(370\) 0 0
\(371\) 4229.91 0.591930
\(372\) 0 0
\(373\) −3471.89 −0.481951 −0.240976 0.970531i \(-0.577467\pi\)
−0.240976 + 0.970531i \(0.577467\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13525.0 1.84767
\(378\) 0 0
\(379\) 11874.1 1.60932 0.804661 0.593734i \(-0.202347\pi\)
0.804661 + 0.593734i \(0.202347\pi\)
\(380\) 0 0
\(381\) 1548.71 0.208249
\(382\) 0 0
\(383\) −5121.40 −0.683268 −0.341634 0.939833i \(-0.610980\pi\)
−0.341634 + 0.939833i \(0.610980\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4218.72 0.554134
\(388\) 0 0
\(389\) 4217.32 0.549683 0.274842 0.961490i \(-0.411375\pi\)
0.274842 + 0.961490i \(0.411375\pi\)
\(390\) 0 0
\(391\) −6908.77 −0.893585
\(392\) 0 0
\(393\) 723.542 0.0928699
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10154.9 1.28378 0.641891 0.766796i \(-0.278150\pi\)
0.641891 + 0.766796i \(0.278150\pi\)
\(398\) 0 0
\(399\) −332.359 −0.0417012
\(400\) 0 0
\(401\) −204.637 −0.0254840 −0.0127420 0.999919i \(-0.504056\pi\)
−0.0127420 + 0.999919i \(0.504056\pi\)
\(402\) 0 0
\(403\) 16257.9 2.00958
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18607.4 2.26617
\(408\) 0 0
\(409\) 9342.45 1.12947 0.564736 0.825271i \(-0.308978\pi\)
0.564736 + 0.825271i \(0.308978\pi\)
\(410\) 0 0
\(411\) 2752.16 0.330302
\(412\) 0 0
\(413\) 15149.7 1.80501
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5938.29 0.697360
\(418\) 0 0
\(419\) 3811.30 0.444377 0.222189 0.975004i \(-0.428680\pi\)
0.222189 + 0.975004i \(0.428680\pi\)
\(420\) 0 0
\(421\) 1274.60 0.147554 0.0737771 0.997275i \(-0.476495\pi\)
0.0737771 + 0.997275i \(0.476495\pi\)
\(422\) 0 0
\(423\) −2475.78 −0.284578
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5522.82 −0.625920
\(428\) 0 0
\(429\) −6939.62 −0.780997
\(430\) 0 0
\(431\) −5481.09 −0.612564 −0.306282 0.951941i \(-0.599085\pi\)
−0.306282 + 0.951941i \(0.599085\pi\)
\(432\) 0 0
\(433\) −5292.42 −0.587384 −0.293692 0.955900i \(-0.594884\pi\)
−0.293692 + 0.955900i \(0.594884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 882.989 0.0966569
\(438\) 0 0
\(439\) −3873.74 −0.421147 −0.210574 0.977578i \(-0.567533\pi\)
−0.210574 + 0.977578i \(0.567533\pi\)
\(440\) 0 0
\(441\) 3351.04 0.361845
\(442\) 0 0
\(443\) −2322.09 −0.249043 −0.124521 0.992217i \(-0.539740\pi\)
−0.124521 + 0.992217i \(0.539740\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8211.25 0.868857
\(448\) 0 0
\(449\) 1584.30 0.166521 0.0832603 0.996528i \(-0.473467\pi\)
0.0832603 + 0.996528i \(0.473467\pi\)
\(450\) 0 0
\(451\) −1972.10 −0.205903
\(452\) 0 0
\(453\) −3445.76 −0.357386
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8008.96 −0.819789 −0.409894 0.912133i \(-0.634434\pi\)
−0.409894 + 0.912133i \(0.634434\pi\)
\(458\) 0 0
\(459\) −875.065 −0.0889859
\(460\) 0 0
\(461\) −5795.05 −0.585471 −0.292736 0.956193i \(-0.594566\pi\)
−0.292736 + 0.956193i \(0.594566\pi\)
\(462\) 0 0
\(463\) −3813.40 −0.382772 −0.191386 0.981515i \(-0.561298\pi\)
−0.191386 + 0.981515i \(0.561298\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12144.0 −1.20334 −0.601669 0.798746i \(-0.705497\pi\)
−0.601669 + 0.798746i \(0.705497\pi\)
\(468\) 0 0
\(469\) 9402.69 0.925748
\(470\) 0 0
\(471\) 5443.91 0.532574
\(472\) 0 0
\(473\) 21859.5 2.12495
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1423.37 −0.136628
\(478\) 0 0
\(479\) 15414.5 1.47037 0.735184 0.677868i \(-0.237096\pi\)
0.735184 + 0.677868i \(0.237096\pi\)
\(480\) 0 0
\(481\) −19792.3 −1.87620
\(482\) 0 0
\(483\) −17104.1 −1.61131
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20642.1 1.92070 0.960350 0.278798i \(-0.0899358\pi\)
0.960350 + 0.278798i \(0.0899358\pi\)
\(488\) 0 0
\(489\) −6055.13 −0.559964
\(490\) 0 0
\(491\) 18144.3 1.66770 0.833851 0.551990i \(-0.186131\pi\)
0.833851 + 0.551990i \(0.186131\pi\)
\(492\) 0 0
\(493\) 8836.88 0.807288
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13386.2 −1.20815
\(498\) 0 0
\(499\) 6942.15 0.622793 0.311396 0.950280i \(-0.399203\pi\)
0.311396 + 0.950280i \(0.399203\pi\)
\(500\) 0 0
\(501\) 7370.02 0.657222
\(502\) 0 0
\(503\) −8747.35 −0.775398 −0.387699 0.921786i \(-0.626730\pi\)
−0.387699 + 0.921786i \(0.626730\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 790.553 0.0692499
\(508\) 0 0
\(509\) −5823.86 −0.507147 −0.253574 0.967316i \(-0.581606\pi\)
−0.253574 + 0.967316i \(0.581606\pi\)
\(510\) 0 0
\(511\) −26417.3 −2.28695
\(512\) 0 0
\(513\) 111.839 0.00962540
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12828.3 −1.09127
\(518\) 0 0
\(519\) 8966.14 0.758324
\(520\) 0 0
\(521\) −3169.03 −0.266483 −0.133242 0.991084i \(-0.542539\pi\)
−0.133242 + 0.991084i \(0.542539\pi\)
\(522\) 0 0
\(523\) 16801.4 1.40473 0.702363 0.711819i \(-0.252128\pi\)
0.702363 + 0.711819i \(0.252128\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10622.5 0.878034
\(528\) 0 0
\(529\) 33274.0 2.73478
\(530\) 0 0
\(531\) −5097.91 −0.416630
\(532\) 0 0
\(533\) 2097.69 0.170471
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8984.28 0.721975
\(538\) 0 0
\(539\) 17363.5 1.38757
\(540\) 0 0
\(541\) 8055.67 0.640186 0.320093 0.947386i \(-0.396286\pi\)
0.320093 + 0.947386i \(0.396286\pi\)
\(542\) 0 0
\(543\) −356.407 −0.0281674
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1816.69 0.142003 0.0710017 0.997476i \(-0.477380\pi\)
0.0710017 + 0.997476i \(0.477380\pi\)
\(548\) 0 0
\(549\) 1858.44 0.144474
\(550\) 0 0
\(551\) −1129.41 −0.0873225
\(552\) 0 0
\(553\) 4608.60 0.354390
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19471.0 1.48118 0.740588 0.671960i \(-0.234547\pi\)
0.740588 + 0.671960i \(0.234547\pi\)
\(558\) 0 0
\(559\) −23251.5 −1.75928
\(560\) 0 0
\(561\) −4534.18 −0.341236
\(562\) 0 0
\(563\) −312.707 −0.0234085 −0.0117043 0.999932i \(-0.503726\pi\)
−0.0117043 + 0.999932i \(0.503726\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2166.41 −0.160460
\(568\) 0 0
\(569\) −19358.8 −1.42630 −0.713148 0.701013i \(-0.752731\pi\)
−0.713148 + 0.701013i \(0.752731\pi\)
\(570\) 0 0
\(571\) 18362.7 1.34580 0.672902 0.739732i \(-0.265048\pi\)
0.672902 + 0.739732i \(0.265048\pi\)
\(572\) 0 0
\(573\) 6364.44 0.464011
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 22141.3 1.59749 0.798746 0.601669i \(-0.205497\pi\)
0.798746 + 0.601669i \(0.205497\pi\)
\(578\) 0 0
\(579\) 8746.46 0.627790
\(580\) 0 0
\(581\) 6390.90 0.456350
\(582\) 0 0
\(583\) −7375.24 −0.523930
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8549.54 −0.601154 −0.300577 0.953758i \(-0.597179\pi\)
−0.300577 + 0.953758i \(0.597179\pi\)
\(588\) 0 0
\(589\) −1357.63 −0.0949748
\(590\) 0 0
\(591\) −3217.17 −0.223920
\(592\) 0 0
\(593\) 18064.7 1.25098 0.625489 0.780233i \(-0.284900\pi\)
0.625489 + 0.780233i \(0.284900\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1994.70 0.136746
\(598\) 0 0
\(599\) −7052.96 −0.481095 −0.240548 0.970637i \(-0.577327\pi\)
−0.240548 + 0.970637i \(0.577327\pi\)
\(600\) 0 0
\(601\) 5019.65 0.340692 0.170346 0.985384i \(-0.445511\pi\)
0.170346 + 0.985384i \(0.445511\pi\)
\(602\) 0 0
\(603\) −3164.02 −0.213680
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8722.47 −0.583252 −0.291626 0.956532i \(-0.594196\pi\)
−0.291626 + 0.956532i \(0.594196\pi\)
\(608\) 0 0
\(609\) 21877.6 1.45571
\(610\) 0 0
\(611\) 13645.3 0.903484
\(612\) 0 0
\(613\) −11239.7 −0.740565 −0.370282 0.928919i \(-0.620739\pi\)
−0.370282 + 0.928919i \(0.620739\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2171.46 −0.141685 −0.0708425 0.997488i \(-0.522569\pi\)
−0.0708425 + 0.997488i \(0.522569\pi\)
\(618\) 0 0
\(619\) −16668.6 −1.08234 −0.541170 0.840913i \(-0.682019\pi\)
−0.541170 + 0.840913i \(0.682019\pi\)
\(620\) 0 0
\(621\) 5755.56 0.371921
\(622\) 0 0
\(623\) 1144.10 0.0735754
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 579.500 0.0369107
\(628\) 0 0
\(629\) −12931.8 −0.819756
\(630\) 0 0
\(631\) 10067.4 0.635147 0.317574 0.948234i \(-0.397132\pi\)
0.317574 + 0.948234i \(0.397132\pi\)
\(632\) 0 0
\(633\) 7846.08 0.492660
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18469.3 −1.14879
\(638\) 0 0
\(639\) 4504.47 0.278864
\(640\) 0 0
\(641\) −2111.45 −0.130105 −0.0650524 0.997882i \(-0.520721\pi\)
−0.0650524 + 0.997882i \(0.520721\pi\)
\(642\) 0 0
\(643\) 26308.5 1.61354 0.806771 0.590864i \(-0.201213\pi\)
0.806771 + 0.590864i \(0.201213\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24695.4 −1.50058 −0.750292 0.661107i \(-0.770087\pi\)
−0.750292 + 0.661107i \(0.770087\pi\)
\(648\) 0 0
\(649\) −26415.0 −1.59766
\(650\) 0 0
\(651\) 26298.3 1.58327
\(652\) 0 0
\(653\) −14713.3 −0.881740 −0.440870 0.897571i \(-0.645330\pi\)
−0.440870 + 0.897571i \(0.645330\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8889.46 0.527871
\(658\) 0 0
\(659\) 11985.3 0.708470 0.354235 0.935156i \(-0.384741\pi\)
0.354235 + 0.935156i \(0.384741\pi\)
\(660\) 0 0
\(661\) −897.229 −0.0527960 −0.0263980 0.999652i \(-0.508404\pi\)
−0.0263980 + 0.999652i \(0.508404\pi\)
\(662\) 0 0
\(663\) 4822.93 0.282515
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −58122.8 −3.37410
\(668\) 0 0
\(669\) 9671.43 0.558922
\(670\) 0 0
\(671\) 9629.55 0.554016
\(672\) 0 0
\(673\) 17281.2 0.989808 0.494904 0.868948i \(-0.335203\pi\)
0.494904 + 0.868948i \(0.335203\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18929.2 −1.07460 −0.537302 0.843390i \(-0.680556\pi\)
−0.537302 + 0.843390i \(0.680556\pi\)
\(678\) 0 0
\(679\) −31773.2 −1.79579
\(680\) 0 0
\(681\) −12804.9 −0.720533
\(682\) 0 0
\(683\) −10334.4 −0.578967 −0.289483 0.957183i \(-0.593484\pi\)
−0.289483 + 0.957183i \(0.593484\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 15347.2 0.852305
\(688\) 0 0
\(689\) 7844.92 0.433770
\(690\) 0 0
\(691\) 14503.8 0.798480 0.399240 0.916847i \(-0.369274\pi\)
0.399240 + 0.916847i \(0.369274\pi\)
\(692\) 0 0
\(693\) −11225.3 −0.615317
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1370.58 0.0744826
\(698\) 0 0
\(699\) −7302.89 −0.395166
\(700\) 0 0
\(701\) 11083.4 0.597167 0.298583 0.954384i \(-0.403486\pi\)
0.298583 + 0.954384i \(0.403486\pi\)
\(702\) 0 0
\(703\) 1652.78 0.0886711
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19577.4 1.04142
\(708\) 0 0
\(709\) −16340.6 −0.865561 −0.432780 0.901499i \(-0.642467\pi\)
−0.432780 + 0.901499i \(0.642467\pi\)
\(710\) 0 0
\(711\) −1550.80 −0.0817997
\(712\) 0 0
\(713\) −69867.4 −3.66978
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8473.37 0.441344
\(718\) 0 0
\(719\) −18000.4 −0.933663 −0.466831 0.884346i \(-0.654604\pi\)
−0.466831 + 0.884346i \(0.654604\pi\)
\(720\) 0 0
\(721\) −27912.7 −1.44178
\(722\) 0 0
\(723\) 1878.69 0.0966380
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17076.8 −0.871176 −0.435588 0.900146i \(-0.643459\pi\)
−0.435588 + 0.900146i \(0.643459\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −15192.0 −0.768669
\(732\) 0 0
\(733\) −13749.8 −0.692852 −0.346426 0.938077i \(-0.612605\pi\)
−0.346426 + 0.938077i \(0.612605\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16394.5 −0.819400
\(738\) 0 0
\(739\) −28511.3 −1.41922 −0.709611 0.704593i \(-0.751130\pi\)
−0.709611 + 0.704593i \(0.751130\pi\)
\(740\) 0 0
\(741\) −616.404 −0.0305589
\(742\) 0 0
\(743\) −17563.7 −0.867229 −0.433614 0.901098i \(-0.642762\pi\)
−0.433614 + 0.901098i \(0.642762\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2150.55 −0.105334
\(748\) 0 0
\(749\) 8650.73 0.422017
\(750\) 0 0
\(751\) −31554.5 −1.53321 −0.766604 0.642120i \(-0.778055\pi\)
−0.766604 + 0.642120i \(0.778055\pi\)
\(752\) 0 0
\(753\) −5498.54 −0.266106
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23937.9 1.14932 0.574662 0.818391i \(-0.305134\pi\)
0.574662 + 0.818391i \(0.305134\pi\)
\(758\) 0 0
\(759\) 29822.7 1.42621
\(760\) 0 0
\(761\) −12606.7 −0.600518 −0.300259 0.953858i \(-0.597073\pi\)
−0.300259 + 0.953858i \(0.597073\pi\)
\(762\) 0 0
\(763\) 35996.7 1.70795
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28097.2 1.32273
\(768\) 0 0
\(769\) 7666.35 0.359500 0.179750 0.983712i \(-0.442471\pi\)
0.179750 + 0.983712i \(0.442471\pi\)
\(770\) 0 0
\(771\) 2445.97 0.114253
\(772\) 0 0
\(773\) 30999.7 1.44241 0.721203 0.692724i \(-0.243589\pi\)
0.721203 + 0.692724i \(0.243589\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −32015.5 −1.47819
\(778\) 0 0
\(779\) −175.169 −0.00805661
\(780\) 0 0
\(781\) 23340.1 1.06936
\(782\) 0 0
\(783\) −7361.84 −0.336003
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −15999.9 −0.724696 −0.362348 0.932043i \(-0.618025\pi\)
−0.362348 + 0.932043i \(0.618025\pi\)
\(788\) 0 0
\(789\) −17849.8 −0.805412
\(790\) 0 0
\(791\) −59561.2 −2.67731
\(792\) 0 0
\(793\) −10242.8 −0.458679
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14714.8 0.653982 0.326991 0.945027i \(-0.393965\pi\)
0.326991 + 0.945027i \(0.393965\pi\)
\(798\) 0 0
\(799\) 8915.50 0.394753
\(800\) 0 0
\(801\) −384.992 −0.0169825
\(802\) 0 0
\(803\) 46061.1 2.02423
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 19636.4 0.856546
\(808\) 0 0
\(809\) 17761.2 0.771881 0.385940 0.922524i \(-0.373877\pi\)
0.385940 + 0.922524i \(0.373877\pi\)
\(810\) 0 0
\(811\) −19307.1 −0.835960 −0.417980 0.908456i \(-0.637262\pi\)
−0.417980 + 0.908456i \(0.637262\pi\)
\(812\) 0 0
\(813\) −10633.2 −0.458698
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1941.64 0.0831451
\(818\) 0 0
\(819\) 11940.2 0.509431
\(820\) 0 0
\(821\) 6344.12 0.269685 0.134842 0.990867i \(-0.456947\pi\)
0.134842 + 0.990867i \(0.456947\pi\)
\(822\) 0 0
\(823\) 678.688 0.0287456 0.0143728 0.999897i \(-0.495425\pi\)
0.0143728 + 0.999897i \(0.495425\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9890.28 0.415863 0.207932 0.978143i \(-0.433327\pi\)
0.207932 + 0.978143i \(0.433327\pi\)
\(828\) 0 0
\(829\) −17731.8 −0.742884 −0.371442 0.928456i \(-0.621137\pi\)
−0.371442 + 0.928456i \(0.621137\pi\)
\(830\) 0 0
\(831\) −12715.2 −0.530791
\(832\) 0 0
\(833\) −12067.4 −0.501934
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8849.41 −0.365448
\(838\) 0 0
\(839\) 21286.1 0.875897 0.437949 0.899000i \(-0.355705\pi\)
0.437949 + 0.899000i \(0.355705\pi\)
\(840\) 0 0
\(841\) 49954.8 2.04825
\(842\) 0 0
\(843\) 22880.5 0.934812
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −22565.8 −0.915430
\(848\) 0 0
\(849\) −14916.5 −0.602982
\(850\) 0 0
\(851\) 85056.6 3.42621
\(852\) 0 0
\(853\) 14452.2 0.580108 0.290054 0.957010i \(-0.406327\pi\)
0.290054 + 0.957010i \(0.406327\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27547.1 −1.09801 −0.549003 0.835820i \(-0.684992\pi\)
−0.549003 + 0.835820i \(0.684992\pi\)
\(858\) 0 0
\(859\) −40442.1 −1.60636 −0.803182 0.595734i \(-0.796861\pi\)
−0.803182 + 0.595734i \(0.796861\pi\)
\(860\) 0 0
\(861\) 3393.16 0.134307
\(862\) 0 0
\(863\) 30084.4 1.18666 0.593328 0.804961i \(-0.297814\pi\)
0.593328 + 0.804961i \(0.297814\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11587.8 −0.453913
\(868\) 0 0
\(869\) −8035.53 −0.313679
\(870\) 0 0
\(871\) 17438.5 0.678395
\(872\) 0 0
\(873\) 10691.7 0.414502
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33411.0 1.28644 0.643221 0.765681i \(-0.277598\pi\)
0.643221 + 0.765681i \(0.277598\pi\)
\(878\) 0 0
\(879\) 11414.2 0.437986
\(880\) 0 0
\(881\) 28291.3 1.08190 0.540952 0.841054i \(-0.318064\pi\)
0.540952 + 0.841054i \(0.318064\pi\)
\(882\) 0 0
\(883\) −5099.71 −0.194359 −0.0971794 0.995267i \(-0.530982\pi\)
−0.0971794 + 0.995267i \(0.530982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17410.2 0.659051 0.329525 0.944147i \(-0.393111\pi\)
0.329525 + 0.944147i \(0.393111\pi\)
\(888\) 0 0
\(889\) −13807.2 −0.520898
\(890\) 0 0
\(891\) 3777.34 0.142026
\(892\) 0 0
\(893\) −1139.46 −0.0426995
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −31721.9 −1.18078
\(898\) 0 0
\(899\) 89366.1 3.31538
\(900\) 0 0
\(901\) 5125.69 0.189524
\(902\) 0 0
\(903\) −37611.1 −1.38607
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 6704.04 0.245429 0.122714 0.992442i \(-0.460840\pi\)
0.122714 + 0.992442i \(0.460840\pi\)
\(908\) 0 0
\(909\) −6587.82 −0.240378
\(910\) 0 0
\(911\) 9442.28 0.343399 0.171700 0.985149i \(-0.445074\pi\)
0.171700 + 0.985149i \(0.445074\pi\)
\(912\) 0 0
\(913\) −11143.1 −0.403925
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6450.57 −0.232297
\(918\) 0 0
\(919\) −37528.3 −1.34706 −0.673529 0.739161i \(-0.735222\pi\)
−0.673529 + 0.739161i \(0.735222\pi\)
\(920\) 0 0
\(921\) −880.572 −0.0315047
\(922\) 0 0
\(923\) −24826.5 −0.885344
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 9392.68 0.332790
\(928\) 0 0
\(929\) −32419.4 −1.14494 −0.572468 0.819927i \(-0.694014\pi\)
−0.572468 + 0.819927i \(0.694014\pi\)
\(930\) 0 0
\(931\) 1542.30 0.0542930
\(932\) 0 0
\(933\) −22780.4 −0.799353
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −39352.8 −1.37204 −0.686020 0.727583i \(-0.740644\pi\)
−0.686020 + 0.727583i \(0.740644\pi\)
\(938\) 0 0
\(939\) 28892.6 1.00413
\(940\) 0 0
\(941\) −48896.5 −1.69392 −0.846961 0.531655i \(-0.821570\pi\)
−0.846961 + 0.531655i \(0.821570\pi\)
\(942\) 0 0
\(943\) −9014.71 −0.311304
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36128.3 −1.23972 −0.619858 0.784714i \(-0.712810\pi\)
−0.619858 + 0.784714i \(0.712810\pi\)
\(948\) 0 0
\(949\) −48994.4 −1.67590
\(950\) 0 0
\(951\) 22479.3 0.766500
\(952\) 0 0
\(953\) −17959.1 −0.610444 −0.305222 0.952281i \(-0.598731\pi\)
−0.305222 + 0.952281i \(0.598731\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −38145.6 −1.28848
\(958\) 0 0
\(959\) −24536.2 −0.826191
\(960\) 0 0
\(961\) 77632.9 2.60592
\(962\) 0 0
\(963\) −2910.98 −0.0974092
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 22352.5 0.743339 0.371669 0.928365i \(-0.378785\pi\)
0.371669 + 0.928365i \(0.378785\pi\)
\(968\) 0 0
\(969\) −402.744 −0.0133519
\(970\) 0 0
\(971\) 28099.6 0.928690 0.464345 0.885654i \(-0.346290\pi\)
0.464345 + 0.885654i \(0.346290\pi\)
\(972\) 0 0
\(973\) −52941.4 −1.74432
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23533.0 0.770612 0.385306 0.922789i \(-0.374096\pi\)
0.385306 + 0.922789i \(0.374096\pi\)
\(978\) 0 0
\(979\) −1994.85 −0.0651232
\(980\) 0 0
\(981\) −12112.9 −0.394226
\(982\) 0 0
\(983\) −59414.3 −1.92779 −0.963897 0.266276i \(-0.914207\pi\)
−0.963897 + 0.266276i \(0.914207\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 22072.2 0.711820
\(988\) 0 0
\(989\) 99922.4 3.21269
\(990\) 0 0
\(991\) −32548.1 −1.04332 −0.521658 0.853155i \(-0.674686\pi\)
−0.521658 + 0.853155i \(0.674686\pi\)
\(992\) 0 0
\(993\) −3482.86 −0.111304
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4644.79 0.147545 0.0737723 0.997275i \(-0.476496\pi\)
0.0737723 + 0.997275i \(0.476496\pi\)
\(998\) 0 0
\(999\) 10773.3 0.341192
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bt.1.1 yes 3
4.3 odd 2 2400.4.a.bi.1.3 3
5.4 even 2 2400.4.a.bj.1.3 yes 3
20.19 odd 2 2400.4.a.bs.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bi.1.3 3 4.3 odd 2
2400.4.a.bj.1.3 yes 3 5.4 even 2
2400.4.a.bs.1.1 yes 3 20.19 odd 2
2400.4.a.bt.1.1 yes 3 1.1 even 1 trivial