Properties

Label 2400.4.a.bs.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.115636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 69x - 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(9.32800\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +2.13303 q^{7} +9.00000 q^{9} +24.4450 q^{11} +34.0459 q^{13} -123.069 q^{17} +9.17896 q^{19} +6.39909 q^{21} -142.225 q^{23} +27.0000 q^{27} +140.491 q^{29} -158.711 q^{31} +73.3351 q^{33} +58.5783 q^{37} +102.138 q^{39} -108.895 q^{41} +246.565 q^{43} -466.056 q^{47} -338.450 q^{49} -369.207 q^{51} -312.757 q^{53} +27.5369 q^{57} -410.973 q^{59} -44.5685 q^{61} +19.1973 q^{63} +368.079 q^{67} -426.675 q^{69} +108.097 q^{71} -627.753 q^{73} +52.1419 q^{77} -196.404 q^{79} +81.0000 q^{81} +107.596 q^{83} +421.473 q^{87} +685.708 q^{89} +72.6210 q^{91} -476.134 q^{93} +73.7529 q^{97} +220.005 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 3 q^{7} + 27 q^{9} - 44 q^{11} + 13 q^{13} - 36 q^{17} - 71 q^{19} - 9 q^{21} + 160 q^{23} + 81 q^{27} - 184 q^{29} + 59 q^{31} - 132 q^{33} - 350 q^{37} + 39 q^{39} + 166 q^{41} + 341 q^{43}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.13303 0.115173 0.0575864 0.998341i \(-0.481660\pi\)
0.0575864 + 0.998341i \(0.481660\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 24.4450 0.670041 0.335020 0.942211i \(-0.391257\pi\)
0.335020 + 0.942211i \(0.391257\pi\)
\(12\) 0 0
\(13\) 34.0459 0.726357 0.363179 0.931720i \(-0.381692\pi\)
0.363179 + 0.931720i \(0.381692\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −123.069 −1.75580 −0.877900 0.478843i \(-0.841056\pi\)
−0.877900 + 0.478843i \(0.841056\pi\)
\(18\) 0 0
\(19\) 9.17896 0.110831 0.0554157 0.998463i \(-0.482352\pi\)
0.0554157 + 0.998463i \(0.482352\pi\)
\(20\) 0 0
\(21\) 6.39909 0.0664950
\(22\) 0 0
\(23\) −142.225 −1.28939 −0.644695 0.764440i \(-0.723016\pi\)
−0.644695 + 0.764440i \(0.723016\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 140.491 0.899605 0.449803 0.893128i \(-0.351494\pi\)
0.449803 + 0.893128i \(0.351494\pi\)
\(30\) 0 0
\(31\) −158.711 −0.919529 −0.459764 0.888041i \(-0.652066\pi\)
−0.459764 + 0.888041i \(0.652066\pi\)
\(32\) 0 0
\(33\) 73.3351 0.386848
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.5783 0.260276 0.130138 0.991496i \(-0.458458\pi\)
0.130138 + 0.991496i \(0.458458\pi\)
\(38\) 0 0
\(39\) 102.138 0.419362
\(40\) 0 0
\(41\) −108.895 −0.414793 −0.207396 0.978257i \(-0.566499\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(42\) 0 0
\(43\) 246.565 0.874436 0.437218 0.899356i \(-0.355964\pi\)
0.437218 + 0.899356i \(0.355964\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −466.056 −1.44641 −0.723204 0.690634i \(-0.757332\pi\)
−0.723204 + 0.690634i \(0.757332\pi\)
\(48\) 0 0
\(49\) −338.450 −0.986735
\(50\) 0 0
\(51\) −369.207 −1.01371
\(52\) 0 0
\(53\) −312.757 −0.810576 −0.405288 0.914189i \(-0.632829\pi\)
−0.405288 + 0.914189i \(0.632829\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 27.5369 0.0639886
\(58\) 0 0
\(59\) −410.973 −0.906849 −0.453425 0.891295i \(-0.649798\pi\)
−0.453425 + 0.891295i \(0.649798\pi\)
\(60\) 0 0
\(61\) −44.5685 −0.0935478 −0.0467739 0.998906i \(-0.514894\pi\)
−0.0467739 + 0.998906i \(0.514894\pi\)
\(62\) 0 0
\(63\) 19.1973 0.0383909
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 368.079 0.671164 0.335582 0.942011i \(-0.391067\pi\)
0.335582 + 0.942011i \(0.391067\pi\)
\(68\) 0 0
\(69\) −426.675 −0.744430
\(70\) 0 0
\(71\) 108.097 0.180687 0.0903434 0.995911i \(-0.471204\pi\)
0.0903434 + 0.995911i \(0.471204\pi\)
\(72\) 0 0
\(73\) −627.753 −1.00648 −0.503239 0.864147i \(-0.667859\pi\)
−0.503239 + 0.864147i \(0.667859\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 52.1419 0.0771705
\(78\) 0 0
\(79\) −196.404 −0.279711 −0.139856 0.990172i \(-0.544664\pi\)
−0.139856 + 0.990172i \(0.544664\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 107.596 0.142292 0.0711460 0.997466i \(-0.477334\pi\)
0.0711460 + 0.997466i \(0.477334\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 421.473 0.519387
\(88\) 0 0
\(89\) 685.708 0.816684 0.408342 0.912829i \(-0.366107\pi\)
0.408342 + 0.912829i \(0.366107\pi\)
\(90\) 0 0
\(91\) 72.6210 0.0836566
\(92\) 0 0
\(93\) −476.134 −0.530890
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 73.7529 0.0772007 0.0386003 0.999255i \(-0.487710\pi\)
0.0386003 + 0.999255i \(0.487710\pi\)
\(98\) 0 0
\(99\) 220.005 0.223347
\(100\) 0 0
\(101\) 120.869 0.119078 0.0595389 0.998226i \(-0.481037\pi\)
0.0595389 + 0.998226i \(0.481037\pi\)
\(102\) 0 0
\(103\) 1136.78 1.08748 0.543740 0.839254i \(-0.317008\pi\)
0.543740 + 0.839254i \(0.317008\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1043.08 −0.942414 −0.471207 0.882023i \(-0.656181\pi\)
−0.471207 + 0.882023i \(0.656181\pi\)
\(108\) 0 0
\(109\) 1903.91 1.67304 0.836521 0.547935i \(-0.184586\pi\)
0.836521 + 0.547935i \(0.184586\pi\)
\(110\) 0 0
\(111\) 175.735 0.150270
\(112\) 0 0
\(113\) 553.984 0.461190 0.230595 0.973050i \(-0.425933\pi\)
0.230595 + 0.973050i \(0.425933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 306.413 0.242119
\(118\) 0 0
\(119\) −262.510 −0.202220
\(120\) 0 0
\(121\) −733.441 −0.551045
\(122\) 0 0
\(123\) −326.684 −0.239481
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −887.643 −0.620201 −0.310101 0.950704i \(-0.600363\pi\)
−0.310101 + 0.950704i \(0.600363\pi\)
\(128\) 0 0
\(129\) 739.694 0.504856
\(130\) 0 0
\(131\) −2320.16 −1.54743 −0.773716 0.633533i \(-0.781604\pi\)
−0.773716 + 0.633533i \(0.781604\pi\)
\(132\) 0 0
\(133\) 19.5790 0.0127648
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1841.31 −1.14828 −0.574139 0.818758i \(-0.694663\pi\)
−0.574139 + 0.818758i \(0.694663\pi\)
\(138\) 0 0
\(139\) −686.396 −0.418844 −0.209422 0.977825i \(-0.567158\pi\)
−0.209422 + 0.977825i \(0.567158\pi\)
\(140\) 0 0
\(141\) −1398.17 −0.835084
\(142\) 0 0
\(143\) 832.253 0.486689
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1015.35 −0.569692
\(148\) 0 0
\(149\) 680.173 0.373973 0.186986 0.982363i \(-0.440128\pi\)
0.186986 + 0.982363i \(0.440128\pi\)
\(150\) 0 0
\(151\) −750.511 −0.404475 −0.202238 0.979336i \(-0.564821\pi\)
−0.202238 + 0.979336i \(0.564821\pi\)
\(152\) 0 0
\(153\) −1107.62 −0.585267
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −941.269 −0.478480 −0.239240 0.970960i \(-0.576898\pi\)
−0.239240 + 0.970960i \(0.576898\pi\)
\(158\) 0 0
\(159\) −938.272 −0.467986
\(160\) 0 0
\(161\) −303.370 −0.148503
\(162\) 0 0
\(163\) 745.142 0.358062 0.179031 0.983843i \(-0.442704\pi\)
0.179031 + 0.983843i \(0.442704\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2744.97 1.27193 0.635965 0.771718i \(-0.280602\pi\)
0.635965 + 0.771718i \(0.280602\pi\)
\(168\) 0 0
\(169\) −1037.87 −0.472405
\(170\) 0 0
\(171\) 82.6106 0.0369438
\(172\) 0 0
\(173\) −1891.42 −0.831224 −0.415612 0.909542i \(-0.636433\pi\)
−0.415612 + 0.909542i \(0.636433\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1232.92 −0.523570
\(178\) 0 0
\(179\) 1127.81 0.470930 0.235465 0.971883i \(-0.424339\pi\)
0.235465 + 0.971883i \(0.424339\pi\)
\(180\) 0 0
\(181\) −3421.68 −1.40515 −0.702574 0.711611i \(-0.747966\pi\)
−0.702574 + 0.711611i \(0.747966\pi\)
\(182\) 0 0
\(183\) −133.706 −0.0540098
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3008.42 −1.17646
\(188\) 0 0
\(189\) 57.5918 0.0221650
\(190\) 0 0
\(191\) −51.0506 −0.0193398 −0.00966988 0.999953i \(-0.503078\pi\)
−0.00966988 + 0.999953i \(0.503078\pi\)
\(192\) 0 0
\(193\) −5176.59 −1.93067 −0.965334 0.261016i \(-0.915942\pi\)
−0.965334 + 0.261016i \(0.915942\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1867.19 0.675287 0.337644 0.941274i \(-0.390370\pi\)
0.337644 + 0.941274i \(0.390370\pi\)
\(198\) 0 0
\(199\) 2891.08 1.02987 0.514933 0.857230i \(-0.327817\pi\)
0.514933 + 0.857230i \(0.327817\pi\)
\(200\) 0 0
\(201\) 1104.24 0.387497
\(202\) 0 0
\(203\) 299.672 0.103610
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1280.03 −0.429797
\(208\) 0 0
\(209\) 224.380 0.0742616
\(210\) 0 0
\(211\) −122.931 −0.0401085 −0.0200543 0.999799i \(-0.506384\pi\)
−0.0200543 + 0.999799i \(0.506384\pi\)
\(212\) 0 0
\(213\) 324.291 0.104320
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −338.536 −0.105905
\(218\) 0 0
\(219\) −1883.26 −0.581091
\(220\) 0 0
\(221\) −4190.00 −1.27534
\(222\) 0 0
\(223\) −6307.07 −1.89396 −0.946979 0.321295i \(-0.895882\pi\)
−0.946979 + 0.321295i \(0.895882\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2795.36 0.817332 0.408666 0.912684i \(-0.365994\pi\)
0.408666 + 0.912684i \(0.365994\pi\)
\(228\) 0 0
\(229\) 1328.44 0.383343 0.191672 0.981459i \(-0.438609\pi\)
0.191672 + 0.981459i \(0.438609\pi\)
\(230\) 0 0
\(231\) 156.426 0.0445544
\(232\) 0 0
\(233\) −6117.63 −1.72008 −0.860041 0.510226i \(-0.829562\pi\)
−0.860041 + 0.510226i \(0.829562\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −589.212 −0.161491
\(238\) 0 0
\(239\) 1222.76 0.330936 0.165468 0.986215i \(-0.447087\pi\)
0.165468 + 0.986215i \(0.447087\pi\)
\(240\) 0 0
\(241\) 194.893 0.0520919 0.0260460 0.999661i \(-0.491708\pi\)
0.0260460 + 0.999661i \(0.491708\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 312.506 0.0805032
\(248\) 0 0
\(249\) 322.789 0.0821523
\(250\) 0 0
\(251\) 348.453 0.0876262 0.0438131 0.999040i \(-0.486049\pi\)
0.0438131 + 0.999040i \(0.486049\pi\)
\(252\) 0 0
\(253\) −3476.70 −0.863944
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3969.83 −0.963544 −0.481772 0.876296i \(-0.660007\pi\)
−0.481772 + 0.876296i \(0.660007\pi\)
\(258\) 0 0
\(259\) 124.949 0.0299767
\(260\) 0 0
\(261\) 1264.42 0.299868
\(262\) 0 0
\(263\) −756.907 −0.177463 −0.0887317 0.996056i \(-0.528281\pi\)
−0.0887317 + 0.996056i \(0.528281\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2057.12 0.471513
\(268\) 0 0
\(269\) 6105.26 1.38381 0.691904 0.721989i \(-0.256772\pi\)
0.691904 + 0.721989i \(0.256772\pi\)
\(270\) 0 0
\(271\) 3824.23 0.857216 0.428608 0.903491i \(-0.359004\pi\)
0.428608 + 0.903491i \(0.359004\pi\)
\(272\) 0 0
\(273\) 217.863 0.0482991
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1930.18 −0.418676 −0.209338 0.977843i \(-0.567131\pi\)
−0.209338 + 0.977843i \(0.567131\pi\)
\(278\) 0 0
\(279\) −1428.40 −0.306510
\(280\) 0 0
\(281\) −2942.33 −0.624643 −0.312322 0.949976i \(-0.601107\pi\)
−0.312322 + 0.949976i \(0.601107\pi\)
\(282\) 0 0
\(283\) 8483.92 1.78204 0.891019 0.453967i \(-0.149992\pi\)
0.891019 + 0.453967i \(0.149992\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −232.276 −0.0477728
\(288\) 0 0
\(289\) 10233.0 2.08284
\(290\) 0 0
\(291\) 221.259 0.0445718
\(292\) 0 0
\(293\) −8526.45 −1.70007 −0.850035 0.526726i \(-0.823419\pi\)
−0.850035 + 0.526726i \(0.823419\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 660.016 0.128949
\(298\) 0 0
\(299\) −4842.19 −0.936558
\(300\) 0 0
\(301\) 525.929 0.100711
\(302\) 0 0
\(303\) 362.606 0.0687497
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1977.34 −0.367599 −0.183800 0.982964i \(-0.558840\pi\)
−0.183800 + 0.982964i \(0.558840\pi\)
\(308\) 0 0
\(309\) 3410.34 0.627856
\(310\) 0 0
\(311\) 5243.29 0.956012 0.478006 0.878356i \(-0.341360\pi\)
0.478006 + 0.878356i \(0.341360\pi\)
\(312\) 0 0
\(313\) 755.186 0.136376 0.0681879 0.997672i \(-0.478278\pi\)
0.0681879 + 0.997672i \(0.478278\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4018.11 −0.711922 −0.355961 0.934501i \(-0.615846\pi\)
−0.355961 + 0.934501i \(0.615846\pi\)
\(318\) 0 0
\(319\) 3434.31 0.602772
\(320\) 0 0
\(321\) −3129.24 −0.544103
\(322\) 0 0
\(323\) −1129.65 −0.194598
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5711.73 0.965931
\(328\) 0 0
\(329\) −994.110 −0.166587
\(330\) 0 0
\(331\) −5297.98 −0.879769 −0.439884 0.898054i \(-0.644981\pi\)
−0.439884 + 0.898054i \(0.644981\pi\)
\(332\) 0 0
\(333\) 527.204 0.0867586
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9911.99 −1.60220 −0.801099 0.598532i \(-0.795751\pi\)
−0.801099 + 0.598532i \(0.795751\pi\)
\(338\) 0 0
\(339\) 1661.95 0.266268
\(340\) 0 0
\(341\) −3879.70 −0.616122
\(342\) 0 0
\(343\) −1453.55 −0.228818
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4218.61 −0.652643 −0.326321 0.945259i \(-0.605809\pi\)
−0.326321 + 0.945259i \(0.605809\pi\)
\(348\) 0 0
\(349\) 2128.88 0.326522 0.163261 0.986583i \(-0.447799\pi\)
0.163261 + 0.986583i \(0.447799\pi\)
\(350\) 0 0
\(351\) 919.240 0.139787
\(352\) 0 0
\(353\) −8492.19 −1.28044 −0.640218 0.768194i \(-0.721156\pi\)
−0.640218 + 0.768194i \(0.721156\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −787.529 −0.116752
\(358\) 0 0
\(359\) −6606.71 −0.971277 −0.485639 0.874160i \(-0.661413\pi\)
−0.485639 + 0.874160i \(0.661413\pi\)
\(360\) 0 0
\(361\) −6774.75 −0.987716
\(362\) 0 0
\(363\) −2200.32 −0.318146
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7180.57 1.02132 0.510658 0.859784i \(-0.329402\pi\)
0.510658 + 0.859784i \(0.329402\pi\)
\(368\) 0 0
\(369\) −980.053 −0.138264
\(370\) 0 0
\(371\) −667.120 −0.0933562
\(372\) 0 0
\(373\) −7436.71 −1.03233 −0.516164 0.856490i \(-0.672641\pi\)
−0.516164 + 0.856490i \(0.672641\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4783.15 0.653435
\(378\) 0 0
\(379\) 11591.3 1.57099 0.785496 0.618867i \(-0.212408\pi\)
0.785496 + 0.618867i \(0.212408\pi\)
\(380\) 0 0
\(381\) −2662.93 −0.358073
\(382\) 0 0
\(383\) −7706.49 −1.02815 −0.514077 0.857744i \(-0.671866\pi\)
−0.514077 + 0.857744i \(0.671866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2219.08 0.291479
\(388\) 0 0
\(389\) 2067.75 0.269509 0.134755 0.990879i \(-0.456975\pi\)
0.134755 + 0.990879i \(0.456975\pi\)
\(390\) 0 0
\(391\) 17503.5 2.26391
\(392\) 0 0
\(393\) −6960.49 −0.893410
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11330.1 1.43235 0.716175 0.697921i \(-0.245891\pi\)
0.716175 + 0.697921i \(0.245891\pi\)
\(398\) 0 0
\(399\) 58.7370 0.00736974
\(400\) 0 0
\(401\) −8551.98 −1.06500 −0.532500 0.846430i \(-0.678747\pi\)
−0.532500 + 0.846430i \(0.678747\pi\)
\(402\) 0 0
\(403\) −5403.47 −0.667906
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1431.95 0.174395
\(408\) 0 0
\(409\) 448.744 0.0542517 0.0271259 0.999632i \(-0.491365\pi\)
0.0271259 + 0.999632i \(0.491365\pi\)
\(410\) 0 0
\(411\) −5523.94 −0.662958
\(412\) 0 0
\(413\) −876.617 −0.104444
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2059.19 −0.241820
\(418\) 0 0
\(419\) −5153.24 −0.600841 −0.300420 0.953807i \(-0.597127\pi\)
−0.300420 + 0.953807i \(0.597127\pi\)
\(420\) 0 0
\(421\) −12633.7 −1.46254 −0.731269 0.682089i \(-0.761072\pi\)
−0.731269 + 0.682089i \(0.761072\pi\)
\(422\) 0 0
\(423\) −4194.50 −0.482136
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −95.0660 −0.0107742
\(428\) 0 0
\(429\) 2496.76 0.280990
\(430\) 0 0
\(431\) 9746.12 1.08922 0.544610 0.838689i \(-0.316678\pi\)
0.544610 + 0.838689i \(0.316678\pi\)
\(432\) 0 0
\(433\) −12953.8 −1.43768 −0.718842 0.695173i \(-0.755328\pi\)
−0.718842 + 0.695173i \(0.755328\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1305.48 −0.142905
\(438\) 0 0
\(439\) 11877.5 1.29130 0.645649 0.763634i \(-0.276587\pi\)
0.645649 + 0.763634i \(0.276587\pi\)
\(440\) 0 0
\(441\) −3046.05 −0.328912
\(442\) 0 0
\(443\) −1165.96 −0.125049 −0.0625243 0.998043i \(-0.519915\pi\)
−0.0625243 + 0.998043i \(0.519915\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2040.52 0.215913
\(448\) 0 0
\(449\) 1415.70 0.148799 0.0743996 0.997229i \(-0.476296\pi\)
0.0743996 + 0.997229i \(0.476296\pi\)
\(450\) 0 0
\(451\) −2661.94 −0.277928
\(452\) 0 0
\(453\) −2251.53 −0.233524
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12279.3 −1.25690 −0.628449 0.777851i \(-0.716310\pi\)
−0.628449 + 0.777851i \(0.716310\pi\)
\(458\) 0 0
\(459\) −3322.86 −0.337904
\(460\) 0 0
\(461\) −5591.54 −0.564911 −0.282455 0.959280i \(-0.591149\pi\)
−0.282455 + 0.959280i \(0.591149\pi\)
\(462\) 0 0
\(463\) 18810.7 1.88813 0.944067 0.329755i \(-0.106966\pi\)
0.944067 + 0.329755i \(0.106966\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6580.13 −0.652017 −0.326008 0.945367i \(-0.605704\pi\)
−0.326008 + 0.945367i \(0.605704\pi\)
\(468\) 0 0
\(469\) 785.123 0.0772998
\(470\) 0 0
\(471\) −2823.81 −0.276251
\(472\) 0 0
\(473\) 6027.27 0.585908
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2814.81 −0.270192
\(478\) 0 0
\(479\) 12089.0 1.15316 0.576578 0.817042i \(-0.304388\pi\)
0.576578 + 0.817042i \(0.304388\pi\)
\(480\) 0 0
\(481\) 1994.35 0.189053
\(482\) 0 0
\(483\) −910.111 −0.0857381
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7259.45 −0.675477 −0.337738 0.941240i \(-0.609662\pi\)
−0.337738 + 0.941240i \(0.609662\pi\)
\(488\) 0 0
\(489\) 2235.43 0.206727
\(490\) 0 0
\(491\) −16499.5 −1.51652 −0.758260 0.651953i \(-0.773950\pi\)
−0.758260 + 0.651953i \(0.773950\pi\)
\(492\) 0 0
\(493\) −17290.1 −1.57953
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 230.574 0.0208102
\(498\) 0 0
\(499\) −10733.6 −0.962932 −0.481466 0.876465i \(-0.659895\pi\)
−0.481466 + 0.876465i \(0.659895\pi\)
\(500\) 0 0
\(501\) 8234.92 0.734349
\(502\) 0 0
\(503\) −17777.5 −1.57586 −0.787930 0.615764i \(-0.788847\pi\)
−0.787930 + 0.615764i \(0.788847\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3113.62 −0.272743
\(508\) 0 0
\(509\) 11995.3 1.04456 0.522279 0.852775i \(-0.325082\pi\)
0.522279 + 0.852775i \(0.325082\pi\)
\(510\) 0 0
\(511\) −1339.02 −0.115919
\(512\) 0 0
\(513\) 247.832 0.0213295
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −11392.7 −0.969153
\(518\) 0 0
\(519\) −5674.25 −0.479907
\(520\) 0 0
\(521\) 18050.7 1.51788 0.758938 0.651162i \(-0.225718\pi\)
0.758938 + 0.651162i \(0.225718\pi\)
\(522\) 0 0
\(523\) 12834.3 1.07305 0.536523 0.843886i \(-0.319738\pi\)
0.536523 + 0.843886i \(0.319738\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19532.4 1.61451
\(528\) 0 0
\(529\) 8060.98 0.662528
\(530\) 0 0
\(531\) −3698.76 −0.302283
\(532\) 0 0
\(533\) −3707.42 −0.301288
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3383.43 0.271892
\(538\) 0 0
\(539\) −8273.42 −0.661153
\(540\) 0 0
\(541\) 6839.45 0.543532 0.271766 0.962363i \(-0.412392\pi\)
0.271766 + 0.962363i \(0.412392\pi\)
\(542\) 0 0
\(543\) −10265.0 −0.811262
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −24487.2 −1.91407 −0.957034 0.289976i \(-0.906353\pi\)
−0.957034 + 0.289976i \(0.906353\pi\)
\(548\) 0 0
\(549\) −401.117 −0.0311826
\(550\) 0 0
\(551\) 1289.56 0.0997046
\(552\) 0 0
\(553\) −418.936 −0.0322151
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21516.5 −1.63677 −0.818386 0.574669i \(-0.805131\pi\)
−0.818386 + 0.574669i \(0.805131\pi\)
\(558\) 0 0
\(559\) 8394.52 0.635153
\(560\) 0 0
\(561\) −9025.27 −0.679229
\(562\) 0 0
\(563\) 14612.4 1.09385 0.546926 0.837181i \(-0.315798\pi\)
0.546926 + 0.837181i \(0.315798\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 172.775 0.0127970
\(568\) 0 0
\(569\) 17738.6 1.30693 0.653464 0.756958i \(-0.273315\pi\)
0.653464 + 0.756958i \(0.273315\pi\)
\(570\) 0 0
\(571\) 8033.63 0.588786 0.294393 0.955684i \(-0.404883\pi\)
0.294393 + 0.955684i \(0.404883\pi\)
\(572\) 0 0
\(573\) −153.152 −0.0111658
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20620.8 1.48779 0.743894 0.668297i \(-0.232977\pi\)
0.743894 + 0.668297i \(0.232977\pi\)
\(578\) 0 0
\(579\) −15529.8 −1.11467
\(580\) 0 0
\(581\) 229.506 0.0163882
\(582\) 0 0
\(583\) −7645.36 −0.543119
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10364.5 0.728772 0.364386 0.931248i \(-0.381279\pi\)
0.364386 + 0.931248i \(0.381279\pi\)
\(588\) 0 0
\(589\) −1456.80 −0.101913
\(590\) 0 0
\(591\) 5601.56 0.389877
\(592\) 0 0
\(593\) −9074.45 −0.628403 −0.314202 0.949356i \(-0.601737\pi\)
−0.314202 + 0.949356i \(0.601737\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8673.25 0.594594
\(598\) 0 0
\(599\) 6917.00 0.471821 0.235911 0.971775i \(-0.424193\pi\)
0.235911 + 0.971775i \(0.424193\pi\)
\(600\) 0 0
\(601\) −16258.3 −1.10348 −0.551738 0.834017i \(-0.686035\pi\)
−0.551738 + 0.834017i \(0.686035\pi\)
\(602\) 0 0
\(603\) 3312.71 0.223721
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1406.90 −0.0940764 −0.0470382 0.998893i \(-0.514978\pi\)
−0.0470382 + 0.998893i \(0.514978\pi\)
\(608\) 0 0
\(609\) 899.015 0.0598193
\(610\) 0 0
\(611\) −15867.3 −1.05061
\(612\) 0 0
\(613\) 21539.2 1.41918 0.709592 0.704613i \(-0.248879\pi\)
0.709592 + 0.704613i \(0.248879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −798.965 −0.0521314 −0.0260657 0.999660i \(-0.508298\pi\)
−0.0260657 + 0.999660i \(0.508298\pi\)
\(618\) 0 0
\(619\) 23307.9 1.51345 0.756724 0.653735i \(-0.226799\pi\)
0.756724 + 0.653735i \(0.226799\pi\)
\(620\) 0 0
\(621\) −3840.08 −0.248143
\(622\) 0 0
\(623\) 1462.63 0.0940597
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 673.140 0.0428750
\(628\) 0 0
\(629\) −7209.17 −0.456993
\(630\) 0 0
\(631\) 15480.0 0.976625 0.488312 0.872669i \(-0.337613\pi\)
0.488312 + 0.872669i \(0.337613\pi\)
\(632\) 0 0
\(633\) −368.792 −0.0231567
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −11522.9 −0.716722
\(638\) 0 0
\(639\) 972.873 0.0602289
\(640\) 0 0
\(641\) −8650.11 −0.533009 −0.266505 0.963834i \(-0.585869\pi\)
−0.266505 + 0.963834i \(0.585869\pi\)
\(642\) 0 0
\(643\) 27769.2 1.70313 0.851563 0.524252i \(-0.175655\pi\)
0.851563 + 0.524252i \(0.175655\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15716.3 0.954977 0.477489 0.878638i \(-0.341547\pi\)
0.477489 + 0.878638i \(0.341547\pi\)
\(648\) 0 0
\(649\) −10046.2 −0.607626
\(650\) 0 0
\(651\) −1015.61 −0.0611441
\(652\) 0 0
\(653\) −22537.5 −1.35063 −0.675313 0.737531i \(-0.735991\pi\)
−0.675313 + 0.737531i \(0.735991\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5649.78 −0.335493
\(658\) 0 0
\(659\) −18711.0 −1.10603 −0.553017 0.833170i \(-0.686523\pi\)
−0.553017 + 0.833170i \(0.686523\pi\)
\(660\) 0 0
\(661\) 14966.5 0.880678 0.440339 0.897832i \(-0.354858\pi\)
0.440339 + 0.897832i \(0.354858\pi\)
\(662\) 0 0
\(663\) −12570.0 −0.736317
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19981.4 −1.15994
\(668\) 0 0
\(669\) −18921.2 −1.09348
\(670\) 0 0
\(671\) −1089.48 −0.0626808
\(672\) 0 0
\(673\) −1398.61 −0.0801075 −0.0400538 0.999198i \(-0.512753\pi\)
−0.0400538 + 0.999198i \(0.512753\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6643.40 0.377144 0.188572 0.982059i \(-0.439614\pi\)
0.188572 + 0.982059i \(0.439614\pi\)
\(678\) 0 0
\(679\) 157.317 0.00889142
\(680\) 0 0
\(681\) 8386.07 0.471887
\(682\) 0 0
\(683\) 11293.0 0.632673 0.316337 0.948647i \(-0.397547\pi\)
0.316337 + 0.948647i \(0.397547\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3985.31 0.221323
\(688\) 0 0
\(689\) −10648.1 −0.588767
\(690\) 0 0
\(691\) −17827.1 −0.981438 −0.490719 0.871318i \(-0.663266\pi\)
−0.490719 + 0.871318i \(0.663266\pi\)
\(692\) 0 0
\(693\) 469.277 0.0257235
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 13401.6 0.728294
\(698\) 0 0
\(699\) −18352.9 −0.993089
\(700\) 0 0
\(701\) −27124.4 −1.46145 −0.730725 0.682672i \(-0.760818\pi\)
−0.730725 + 0.682672i \(0.760818\pi\)
\(702\) 0 0
\(703\) 537.687 0.0288467
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 257.816 0.0137145
\(708\) 0 0
\(709\) −11294.6 −0.598278 −0.299139 0.954210i \(-0.596699\pi\)
−0.299139 + 0.954210i \(0.596699\pi\)
\(710\) 0 0
\(711\) −1767.64 −0.0932371
\(712\) 0 0
\(713\) 22572.7 1.18563
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3668.28 0.191066
\(718\) 0 0
\(719\) −31113.8 −1.61384 −0.806920 0.590661i \(-0.798867\pi\)
−0.806920 + 0.590661i \(0.798867\pi\)
\(720\) 0 0
\(721\) 2424.79 0.125248
\(722\) 0 0
\(723\) 584.679 0.0300753
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −8773.62 −0.447587 −0.223793 0.974637i \(-0.571844\pi\)
−0.223793 + 0.974637i \(0.571844\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −30344.4 −1.53533
\(732\) 0 0
\(733\) 3745.09 0.188715 0.0943576 0.995538i \(-0.469920\pi\)
0.0943576 + 0.995538i \(0.469920\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8997.70 0.449707
\(738\) 0 0
\(739\) 14923.3 0.742844 0.371422 0.928464i \(-0.378870\pi\)
0.371422 + 0.928464i \(0.378870\pi\)
\(740\) 0 0
\(741\) 937.519 0.0464786
\(742\) 0 0
\(743\) 888.743 0.0438827 0.0219413 0.999759i \(-0.493015\pi\)
0.0219413 + 0.999759i \(0.493015\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 968.367 0.0474307
\(748\) 0 0
\(749\) −2224.92 −0.108540
\(750\) 0 0
\(751\) 29588.6 1.43769 0.718843 0.695172i \(-0.244672\pi\)
0.718843 + 0.695172i \(0.244672\pi\)
\(752\) 0 0
\(753\) 1045.36 0.0505910
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8485.87 −0.407429 −0.203715 0.979030i \(-0.565302\pi\)
−0.203715 + 0.979030i \(0.565302\pi\)
\(758\) 0 0
\(759\) −10430.1 −0.498799
\(760\) 0 0
\(761\) 9803.23 0.466974 0.233487 0.972360i \(-0.424986\pi\)
0.233487 + 0.972360i \(0.424986\pi\)
\(762\) 0 0
\(763\) 4061.10 0.192689
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13992.0 −0.658696
\(768\) 0 0
\(769\) −1920.45 −0.0900561 −0.0450281 0.998986i \(-0.514338\pi\)
−0.0450281 + 0.998986i \(0.514338\pi\)
\(770\) 0 0
\(771\) −11909.5 −0.556303
\(772\) 0 0
\(773\) 9679.15 0.450368 0.225184 0.974316i \(-0.427702\pi\)
0.225184 + 0.974316i \(0.427702\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 374.847 0.0173070
\(778\) 0 0
\(779\) −999.541 −0.0459721
\(780\) 0 0
\(781\) 2642.43 0.121067
\(782\) 0 0
\(783\) 3793.26 0.173129
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16275.2 −0.737165 −0.368582 0.929595i \(-0.620157\pi\)
−0.368582 + 0.929595i \(0.620157\pi\)
\(788\) 0 0
\(789\) −2270.72 −0.102459
\(790\) 0 0
\(791\) 1181.67 0.0531165
\(792\) 0 0
\(793\) −1517.38 −0.0679491
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9219.64 0.409757 0.204879 0.978787i \(-0.434320\pi\)
0.204879 + 0.978787i \(0.434320\pi\)
\(798\) 0 0
\(799\) 57357.0 2.53961
\(800\) 0 0
\(801\) 6171.37 0.272228
\(802\) 0 0
\(803\) −15345.4 −0.674382
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18315.8 0.798942
\(808\) 0 0
\(809\) −5045.18 −0.219257 −0.109629 0.993973i \(-0.534966\pi\)
−0.109629 + 0.993973i \(0.534966\pi\)
\(810\) 0 0
\(811\) −45242.3 −1.95890 −0.979452 0.201677i \(-0.935361\pi\)
−0.979452 + 0.201677i \(0.935361\pi\)
\(812\) 0 0
\(813\) 11472.7 0.494914
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2263.21 0.0969150
\(818\) 0 0
\(819\) 653.589 0.0278855
\(820\) 0 0
\(821\) 25431.0 1.08106 0.540528 0.841326i \(-0.318225\pi\)
0.540528 + 0.841326i \(0.318225\pi\)
\(822\) 0 0
\(823\) 6907.29 0.292555 0.146278 0.989244i \(-0.453271\pi\)
0.146278 + 0.989244i \(0.453271\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38201.5 −1.60628 −0.803141 0.595789i \(-0.796840\pi\)
−0.803141 + 0.595789i \(0.796840\pi\)
\(828\) 0 0
\(829\) 20573.4 0.861933 0.430966 0.902368i \(-0.358173\pi\)
0.430966 + 0.902368i \(0.358173\pi\)
\(830\) 0 0
\(831\) −5790.53 −0.241722
\(832\) 0 0
\(833\) 41652.7 1.73251
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4285.20 −0.176963
\(838\) 0 0
\(839\) −16604.9 −0.683272 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(840\) 0 0
\(841\) −4651.24 −0.190710
\(842\) 0 0
\(843\) −8826.99 −0.360638
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1564.45 −0.0634654
\(848\) 0 0
\(849\) 25451.7 1.02886
\(850\) 0 0
\(851\) −8331.30 −0.335597
\(852\) 0 0
\(853\) 39897.4 1.60148 0.800739 0.599013i \(-0.204440\pi\)
0.800739 + 0.599013i \(0.204440\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14165.4 0.564623 0.282311 0.959323i \(-0.408899\pi\)
0.282311 + 0.959323i \(0.408899\pi\)
\(858\) 0 0
\(859\) 18842.9 0.748441 0.374220 0.927340i \(-0.377910\pi\)
0.374220 + 0.927340i \(0.377910\pi\)
\(860\) 0 0
\(861\) −696.827 −0.0275817
\(862\) 0 0
\(863\) −35799.2 −1.41207 −0.706037 0.708175i \(-0.749519\pi\)
−0.706037 + 0.708175i \(0.749519\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 30698.9 1.20253
\(868\) 0 0
\(869\) −4801.10 −0.187418
\(870\) 0 0
\(871\) 12531.6 0.487505
\(872\) 0 0
\(873\) 663.776 0.0257336
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17739.1 0.683019 0.341510 0.939878i \(-0.389062\pi\)
0.341510 + 0.939878i \(0.389062\pi\)
\(878\) 0 0
\(879\) −25579.3 −0.981536
\(880\) 0 0
\(881\) 19788.8 0.756757 0.378379 0.925651i \(-0.376482\pi\)
0.378379 + 0.925651i \(0.376482\pi\)
\(882\) 0 0
\(883\) 15831.4 0.603363 0.301682 0.953409i \(-0.402452\pi\)
0.301682 + 0.953409i \(0.402452\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30374.8 1.14981 0.574907 0.818219i \(-0.305038\pi\)
0.574907 + 0.818219i \(0.305038\pi\)
\(888\) 0 0
\(889\) −1893.37 −0.0714303
\(890\) 0 0
\(891\) 1980.05 0.0744490
\(892\) 0 0
\(893\) −4277.91 −0.160308
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −14526.6 −0.540722
\(898\) 0 0
\(899\) −22297.5 −0.827213
\(900\) 0 0
\(901\) 38490.7 1.42321
\(902\) 0 0
\(903\) 1577.79 0.0581456
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −35591.3 −1.30297 −0.651483 0.758664i \(-0.725853\pi\)
−0.651483 + 0.758664i \(0.725853\pi\)
\(908\) 0 0
\(909\) 1087.82 0.0396926
\(910\) 0 0
\(911\) 53121.1 1.93192 0.965961 0.258689i \(-0.0832904\pi\)
0.965961 + 0.258689i \(0.0832904\pi\)
\(912\) 0 0
\(913\) 2630.19 0.0953415
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4948.98 −0.178222
\(918\) 0 0
\(919\) 23275.5 0.835461 0.417731 0.908571i \(-0.362826\pi\)
0.417731 + 0.908571i \(0.362826\pi\)
\(920\) 0 0
\(921\) −5932.03 −0.212234
\(922\) 0 0
\(923\) 3680.26 0.131243
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10231.0 0.362493
\(928\) 0 0
\(929\) −37535.8 −1.32563 −0.662814 0.748784i \(-0.730638\pi\)
−0.662814 + 0.748784i \(0.730638\pi\)
\(930\) 0 0
\(931\) −3106.62 −0.109361
\(932\) 0 0
\(933\) 15729.9 0.551954
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5622.57 0.196031 0.0980156 0.995185i \(-0.468750\pi\)
0.0980156 + 0.995185i \(0.468750\pi\)
\(938\) 0 0
\(939\) 2265.56 0.0787367
\(940\) 0 0
\(941\) 53452.3 1.85175 0.925875 0.377831i \(-0.123330\pi\)
0.925875 + 0.377831i \(0.123330\pi\)
\(942\) 0 0
\(943\) 15487.6 0.534830
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20301.2 0.696622 0.348311 0.937379i \(-0.386755\pi\)
0.348311 + 0.937379i \(0.386755\pi\)
\(948\) 0 0
\(949\) −21372.4 −0.731063
\(950\) 0 0
\(951\) −12054.3 −0.411028
\(952\) 0 0
\(953\) 46002.1 1.56365 0.781823 0.623500i \(-0.214290\pi\)
0.781823 + 0.623500i \(0.214290\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 10302.9 0.348011
\(958\) 0 0
\(959\) −3927.58 −0.132250
\(960\) 0 0
\(961\) −4601.73 −0.154467
\(962\) 0 0
\(963\) −9387.71 −0.314138
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12199.2 0.405688 0.202844 0.979211i \(-0.434982\pi\)
0.202844 + 0.979211i \(0.434982\pi\)
\(968\) 0 0
\(969\) −3388.94 −0.112351
\(970\) 0 0
\(971\) 37476.7 1.23860 0.619302 0.785153i \(-0.287416\pi\)
0.619302 + 0.785153i \(0.287416\pi\)
\(972\) 0 0
\(973\) −1464.10 −0.0482394
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14592.7 0.477851 0.238926 0.971038i \(-0.423205\pi\)
0.238926 + 0.971038i \(0.423205\pi\)
\(978\) 0 0
\(979\) 16762.1 0.547212
\(980\) 0 0
\(981\) 17135.2 0.557680
\(982\) 0 0
\(983\) −28500.9 −0.924758 −0.462379 0.886682i \(-0.653004\pi\)
−0.462379 + 0.886682i \(0.653004\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2982.33 −0.0961790
\(988\) 0 0
\(989\) −35067.7 −1.12749
\(990\) 0 0
\(991\) 38654.0 1.23904 0.619518 0.784982i \(-0.287328\pi\)
0.619518 + 0.784982i \(0.287328\pi\)
\(992\) 0 0
\(993\) −15893.9 −0.507935
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 25637.7 0.814398 0.407199 0.913339i \(-0.366506\pi\)
0.407199 + 0.913339i \(0.366506\pi\)
\(998\) 0 0
\(999\) 1581.61 0.0500901
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bs.1.2 yes 3
4.3 odd 2 2400.4.a.bj.1.2 yes 3
5.4 even 2 2400.4.a.bi.1.2 3
20.19 odd 2 2400.4.a.bt.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bi.1.2 3 5.4 even 2
2400.4.a.bj.1.2 yes 3 4.3 odd 2
2400.4.a.bs.1.2 yes 3 1.1 even 1 trivial
2400.4.a.bt.1.2 yes 3 20.19 odd 2