Properties

Label 2400.4.a.br.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.32340.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 42x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.64138\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +4.63836 q^{7} +9.00000 q^{9} -58.7815 q^{11} +33.5655 q^{13} +44.2039 q^{17} +133.466 q^{19} +13.9151 q^{21} -90.0824 q^{23} +27.0000 q^{27} +154.466 q^{29} -21.0703 q^{31} -176.345 q^{33} -38.0923 q^{37} +100.697 q^{39} +335.184 q^{41} -388.354 q^{43} -267.316 q^{47} -321.486 q^{49} +132.612 q^{51} +445.403 q^{53} +400.398 q^{57} -36.6018 q^{59} -813.303 q^{61} +41.7453 q^{63} +41.5968 q^{67} -270.247 q^{69} +999.660 q^{71} +56.3644 q^{73} -272.650 q^{77} +80.5101 q^{79} +81.0000 q^{81} +577.640 q^{83} +463.398 q^{87} +679.631 q^{89} +155.689 q^{91} -63.2110 q^{93} -193.914 q^{97} -529.034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 7 q^{7} + 27 q^{9} + 21 q^{13} + 32 q^{17} - 19 q^{19} - 21 q^{21} - 60 q^{23} + 81 q^{27} + 44 q^{29} + 151 q^{31} + 330 q^{37} + 63 q^{39} + 82 q^{41} - 367 q^{43} + 246 q^{47} - 42 q^{49}+ \cdots - 351 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.63836 0.250448 0.125224 0.992128i \(-0.460035\pi\)
0.125224 + 0.992128i \(0.460035\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −58.7815 −1.61121 −0.805604 0.592454i \(-0.798159\pi\)
−0.805604 + 0.592454i \(0.798159\pi\)
\(12\) 0 0
\(13\) 33.5655 0.716108 0.358054 0.933701i \(-0.383440\pi\)
0.358054 + 0.933701i \(0.383440\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 44.2039 0.630648 0.315324 0.948984i \(-0.397887\pi\)
0.315324 + 0.948984i \(0.397887\pi\)
\(18\) 0 0
\(19\) 133.466 1.61154 0.805769 0.592230i \(-0.201752\pi\)
0.805769 + 0.592230i \(0.201752\pi\)
\(20\) 0 0
\(21\) 13.9151 0.144596
\(22\) 0 0
\(23\) −90.0824 −0.816673 −0.408337 0.912831i \(-0.633891\pi\)
−0.408337 + 0.912831i \(0.633891\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 154.466 0.989091 0.494545 0.869152i \(-0.335335\pi\)
0.494545 + 0.869152i \(0.335335\pi\)
\(30\) 0 0
\(31\) −21.0703 −0.122076 −0.0610378 0.998135i \(-0.519441\pi\)
−0.0610378 + 0.998135i \(0.519441\pi\)
\(32\) 0 0
\(33\) −176.345 −0.930232
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −38.0923 −0.169252 −0.0846262 0.996413i \(-0.526970\pi\)
−0.0846262 + 0.996413i \(0.526970\pi\)
\(38\) 0 0
\(39\) 100.697 0.413445
\(40\) 0 0
\(41\) 335.184 1.27676 0.638378 0.769723i \(-0.279606\pi\)
0.638378 + 0.769723i \(0.279606\pi\)
\(42\) 0 0
\(43\) −388.354 −1.37729 −0.688645 0.725099i \(-0.741794\pi\)
−0.688645 + 0.725099i \(0.741794\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −267.316 −0.829617 −0.414809 0.909909i \(-0.636151\pi\)
−0.414809 + 0.909909i \(0.636151\pi\)
\(48\) 0 0
\(49\) −321.486 −0.937276
\(50\) 0 0
\(51\) 132.612 0.364105
\(52\) 0 0
\(53\) 445.403 1.15435 0.577177 0.816619i \(-0.304154\pi\)
0.577177 + 0.816619i \(0.304154\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 400.398 0.930422
\(58\) 0 0
\(59\) −36.6018 −0.0807652 −0.0403826 0.999184i \(-0.512858\pi\)
−0.0403826 + 0.999184i \(0.512858\pi\)
\(60\) 0 0
\(61\) −813.303 −1.70710 −0.853548 0.521015i \(-0.825554\pi\)
−0.853548 + 0.521015i \(0.825554\pi\)
\(62\) 0 0
\(63\) 41.7453 0.0834827
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 41.5968 0.0758487 0.0379244 0.999281i \(-0.487925\pi\)
0.0379244 + 0.999281i \(0.487925\pi\)
\(68\) 0 0
\(69\) −270.247 −0.471507
\(70\) 0 0
\(71\) 999.660 1.67096 0.835478 0.549524i \(-0.185191\pi\)
0.835478 + 0.549524i \(0.185191\pi\)
\(72\) 0 0
\(73\) 56.3644 0.0903693 0.0451846 0.998979i \(-0.485612\pi\)
0.0451846 + 0.998979i \(0.485612\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −272.650 −0.403524
\(78\) 0 0
\(79\) 80.5101 0.114659 0.0573297 0.998355i \(-0.481741\pi\)
0.0573297 + 0.998355i \(0.481741\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 577.640 0.763907 0.381954 0.924182i \(-0.375251\pi\)
0.381954 + 0.924182i \(0.375251\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 463.398 0.571052
\(88\) 0 0
\(89\) 679.631 0.809446 0.404723 0.914439i \(-0.367368\pi\)
0.404723 + 0.914439i \(0.367368\pi\)
\(90\) 0 0
\(91\) 155.689 0.179348
\(92\) 0 0
\(93\) −63.2110 −0.0704804
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −193.914 −0.202979 −0.101489 0.994837i \(-0.532361\pi\)
−0.101489 + 0.994837i \(0.532361\pi\)
\(98\) 0 0
\(99\) −529.034 −0.537070
\(100\) 0 0
\(101\) 757.519 0.746297 0.373148 0.927772i \(-0.378278\pi\)
0.373148 + 0.927772i \(0.378278\pi\)
\(102\) 0 0
\(103\) 499.587 0.477920 0.238960 0.971029i \(-0.423194\pi\)
0.238960 + 0.971029i \(0.423194\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1466.02 1.32454 0.662271 0.749265i \(-0.269593\pi\)
0.662271 + 0.749265i \(0.269593\pi\)
\(108\) 0 0
\(109\) −1546.95 −1.35937 −0.679685 0.733504i \(-0.737883\pi\)
−0.679685 + 0.733504i \(0.737883\pi\)
\(110\) 0 0
\(111\) −114.277 −0.0977180
\(112\) 0 0
\(113\) 1583.68 1.31841 0.659204 0.751964i \(-0.270893\pi\)
0.659204 + 0.751964i \(0.270893\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 302.090 0.238703
\(118\) 0 0
\(119\) 205.034 0.157945
\(120\) 0 0
\(121\) 2124.27 1.59599
\(122\) 0 0
\(123\) 1005.55 0.737136
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1522.46 1.06375 0.531875 0.846823i \(-0.321488\pi\)
0.531875 + 0.846823i \(0.321488\pi\)
\(128\) 0 0
\(129\) −1165.06 −0.795179
\(130\) 0 0
\(131\) 637.626 0.425264 0.212632 0.977132i \(-0.431796\pi\)
0.212632 + 0.977132i \(0.431796\pi\)
\(132\) 0 0
\(133\) 619.064 0.403607
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1342.34 −0.837107 −0.418554 0.908192i \(-0.637463\pi\)
−0.418554 + 0.908192i \(0.637463\pi\)
\(138\) 0 0
\(139\) 203.460 0.124153 0.0620765 0.998071i \(-0.480228\pi\)
0.0620765 + 0.998071i \(0.480228\pi\)
\(140\) 0 0
\(141\) −801.947 −0.478980
\(142\) 0 0
\(143\) −1973.03 −1.15380
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −964.457 −0.541136
\(148\) 0 0
\(149\) 1804.64 0.992225 0.496112 0.868258i \(-0.334760\pi\)
0.496112 + 0.868258i \(0.334760\pi\)
\(150\) 0 0
\(151\) 1527.91 0.823440 0.411720 0.911310i \(-0.364928\pi\)
0.411720 + 0.911310i \(0.364928\pi\)
\(152\) 0 0
\(153\) 397.835 0.210216
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2867.85 1.45783 0.728914 0.684605i \(-0.240025\pi\)
0.728914 + 0.684605i \(0.240025\pi\)
\(158\) 0 0
\(159\) 1336.21 0.666466
\(160\) 0 0
\(161\) −417.835 −0.204534
\(162\) 0 0
\(163\) −3499.31 −1.68152 −0.840759 0.541409i \(-0.817891\pi\)
−0.840759 + 0.541409i \(0.817891\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −288.699 −0.133774 −0.0668868 0.997761i \(-0.521307\pi\)
−0.0668868 + 0.997761i \(0.521307\pi\)
\(168\) 0 0
\(169\) −1070.35 −0.487189
\(170\) 0 0
\(171\) 1201.19 0.537179
\(172\) 0 0
\(173\) 989.001 0.434638 0.217319 0.976101i \(-0.430269\pi\)
0.217319 + 0.976101i \(0.430269\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −109.805 −0.0466298
\(178\) 0 0
\(179\) 172.882 0.0721888 0.0360944 0.999348i \(-0.488508\pi\)
0.0360944 + 0.999348i \(0.488508\pi\)
\(180\) 0 0
\(181\) 4329.68 1.77803 0.889013 0.457882i \(-0.151392\pi\)
0.889013 + 0.457882i \(0.151392\pi\)
\(182\) 0 0
\(183\) −2439.91 −0.985592
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2598.37 −1.01611
\(188\) 0 0
\(189\) 125.236 0.0481988
\(190\) 0 0
\(191\) −1399.28 −0.530095 −0.265047 0.964235i \(-0.585388\pi\)
−0.265047 + 0.964235i \(0.585388\pi\)
\(192\) 0 0
\(193\) 1222.42 0.455916 0.227958 0.973671i \(-0.426795\pi\)
0.227958 + 0.973671i \(0.426795\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3867.75 1.39881 0.699406 0.714725i \(-0.253448\pi\)
0.699406 + 0.714725i \(0.253448\pi\)
\(198\) 0 0
\(199\) −2184.64 −0.778218 −0.389109 0.921192i \(-0.627217\pi\)
−0.389109 + 0.921192i \(0.627217\pi\)
\(200\) 0 0
\(201\) 124.791 0.0437913
\(202\) 0 0
\(203\) 716.470 0.247716
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −810.742 −0.272224
\(208\) 0 0
\(209\) −7845.34 −2.59652
\(210\) 0 0
\(211\) −3404.41 −1.11075 −0.555377 0.831599i \(-0.687426\pi\)
−0.555377 + 0.831599i \(0.687426\pi\)
\(212\) 0 0
\(213\) 2998.98 0.964727
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −97.7319 −0.0305736
\(218\) 0 0
\(219\) 169.093 0.0521747
\(220\) 0 0
\(221\) 1483.73 0.451612
\(222\) 0 0
\(223\) 945.784 0.284011 0.142005 0.989866i \(-0.454645\pi\)
0.142005 + 0.989866i \(0.454645\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1913.77 −0.559566 −0.279783 0.960063i \(-0.590262\pi\)
−0.279783 + 0.960063i \(0.590262\pi\)
\(228\) 0 0
\(229\) 1269.96 0.366467 0.183234 0.983069i \(-0.441343\pi\)
0.183234 + 0.983069i \(0.441343\pi\)
\(230\) 0 0
\(231\) −817.950 −0.232975
\(232\) 0 0
\(233\) 4255.71 1.19657 0.598285 0.801284i \(-0.295849\pi\)
0.598285 + 0.801284i \(0.295849\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 241.530 0.0661986
\(238\) 0 0
\(239\) 4803.26 1.29999 0.649995 0.759939i \(-0.274771\pi\)
0.649995 + 0.759939i \(0.274771\pi\)
\(240\) 0 0
\(241\) −675.567 −0.180569 −0.0902844 0.995916i \(-0.528778\pi\)
−0.0902844 + 0.995916i \(0.528778\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4479.86 1.15404
\(248\) 0 0
\(249\) 1732.92 0.441042
\(250\) 0 0
\(251\) −3599.90 −0.905275 −0.452637 0.891695i \(-0.649517\pi\)
−0.452637 + 0.891695i \(0.649517\pi\)
\(252\) 0 0
\(253\) 5295.18 1.31583
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2090.93 0.507504 0.253752 0.967269i \(-0.418335\pi\)
0.253752 + 0.967269i \(0.418335\pi\)
\(258\) 0 0
\(259\) −176.686 −0.0423890
\(260\) 0 0
\(261\) 1390.19 0.329697
\(262\) 0 0
\(263\) 1506.25 0.353152 0.176576 0.984287i \(-0.443498\pi\)
0.176576 + 0.984287i \(0.443498\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2038.89 0.467334
\(268\) 0 0
\(269\) −6100.29 −1.38268 −0.691340 0.722529i \(-0.742979\pi\)
−0.691340 + 0.722529i \(0.742979\pi\)
\(270\) 0 0
\(271\) 5675.56 1.27220 0.636099 0.771608i \(-0.280547\pi\)
0.636099 + 0.771608i \(0.280547\pi\)
\(272\) 0 0
\(273\) 467.068 0.103547
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2581.47 −0.559947 −0.279974 0.960008i \(-0.590326\pi\)
−0.279974 + 0.960008i \(0.590326\pi\)
\(278\) 0 0
\(279\) −189.633 −0.0406919
\(280\) 0 0
\(281\) 3975.57 0.843995 0.421998 0.906597i \(-0.361329\pi\)
0.421998 + 0.906597i \(0.361329\pi\)
\(282\) 0 0
\(283\) 6441.12 1.35295 0.676475 0.736466i \(-0.263507\pi\)
0.676475 + 0.736466i \(0.263507\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1554.71 0.319761
\(288\) 0 0
\(289\) −2959.01 −0.602283
\(290\) 0 0
\(291\) −581.741 −0.117190
\(292\) 0 0
\(293\) 6129.25 1.22210 0.611049 0.791593i \(-0.290748\pi\)
0.611049 + 0.791593i \(0.290748\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1587.10 −0.310077
\(298\) 0 0
\(299\) −3023.67 −0.584826
\(300\) 0 0
\(301\) −1801.33 −0.344940
\(302\) 0 0
\(303\) 2272.56 0.430875
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2666.78 0.495770 0.247885 0.968789i \(-0.420264\pi\)
0.247885 + 0.968789i \(0.420264\pi\)
\(308\) 0 0
\(309\) 1498.76 0.275927
\(310\) 0 0
\(311\) 5196.76 0.947529 0.473764 0.880652i \(-0.342895\pi\)
0.473764 + 0.880652i \(0.342895\pi\)
\(312\) 0 0
\(313\) 10688.1 1.93011 0.965056 0.262043i \(-0.0843961\pi\)
0.965056 + 0.262043i \(0.0843961\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8826.29 1.56383 0.781915 0.623385i \(-0.214243\pi\)
0.781915 + 0.623385i \(0.214243\pi\)
\(318\) 0 0
\(319\) −9079.75 −1.59363
\(320\) 0 0
\(321\) 4398.07 0.764725
\(322\) 0 0
\(323\) 5899.72 1.01631
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4640.86 −0.784832
\(328\) 0 0
\(329\) −1239.91 −0.207776
\(330\) 0 0
\(331\) −7108.78 −1.18046 −0.590232 0.807234i \(-0.700964\pi\)
−0.590232 + 0.807234i \(0.700964\pi\)
\(332\) 0 0
\(333\) −342.831 −0.0564175
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −85.5709 −0.0138319 −0.00691594 0.999976i \(-0.502201\pi\)
−0.00691594 + 0.999976i \(0.502201\pi\)
\(338\) 0 0
\(339\) 4751.04 0.761183
\(340\) 0 0
\(341\) 1238.55 0.196689
\(342\) 0 0
\(343\) −3082.13 −0.485187
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9256.79 −1.43208 −0.716038 0.698061i \(-0.754046\pi\)
−0.716038 + 0.698061i \(0.754046\pi\)
\(348\) 0 0
\(349\) −5479.63 −0.840452 −0.420226 0.907419i \(-0.638049\pi\)
−0.420226 + 0.907419i \(0.638049\pi\)
\(350\) 0 0
\(351\) 906.270 0.137815
\(352\) 0 0
\(353\) −3747.74 −0.565076 −0.282538 0.959256i \(-0.591176\pi\)
−0.282538 + 0.959256i \(0.591176\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 615.101 0.0911894
\(358\) 0 0
\(359\) 291.519 0.0428574 0.0214287 0.999770i \(-0.493179\pi\)
0.0214287 + 0.999770i \(0.493179\pi\)
\(360\) 0 0
\(361\) 10954.2 1.59705
\(362\) 0 0
\(363\) 6372.80 0.921448
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3190.36 −0.453775 −0.226888 0.973921i \(-0.572855\pi\)
−0.226888 + 0.973921i \(0.572855\pi\)
\(368\) 0 0
\(369\) 3016.66 0.425585
\(370\) 0 0
\(371\) 2065.94 0.289106
\(372\) 0 0
\(373\) 14191.4 1.96998 0.984991 0.172605i \(-0.0552184\pi\)
0.984991 + 0.172605i \(0.0552184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5184.74 0.708296
\(378\) 0 0
\(379\) −7215.48 −0.977927 −0.488963 0.872304i \(-0.662625\pi\)
−0.488963 + 0.872304i \(0.662625\pi\)
\(380\) 0 0
\(381\) 4567.37 0.614156
\(382\) 0 0
\(383\) −2688.97 −0.358747 −0.179373 0.983781i \(-0.557407\pi\)
−0.179373 + 0.983781i \(0.557407\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3495.19 −0.459097
\(388\) 0 0
\(389\) −13512.8 −1.76125 −0.880623 0.473818i \(-0.842876\pi\)
−0.880623 + 0.473818i \(0.842876\pi\)
\(390\) 0 0
\(391\) −3981.99 −0.515034
\(392\) 0 0
\(393\) 1912.88 0.245526
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5487.92 0.693781 0.346890 0.937906i \(-0.387238\pi\)
0.346890 + 0.937906i \(0.387238\pi\)
\(398\) 0 0
\(399\) 1857.19 0.233022
\(400\) 0 0
\(401\) 13000.5 1.61899 0.809496 0.587125i \(-0.199740\pi\)
0.809496 + 0.587125i \(0.199740\pi\)
\(402\) 0 0
\(403\) −707.237 −0.0874194
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2239.13 0.272701
\(408\) 0 0
\(409\) −5388.88 −0.651499 −0.325750 0.945456i \(-0.605617\pi\)
−0.325750 + 0.945456i \(0.605617\pi\)
\(410\) 0 0
\(411\) −4027.01 −0.483304
\(412\) 0 0
\(413\) −169.772 −0.0202275
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 610.380 0.0716798
\(418\) 0 0
\(419\) −7276.23 −0.848371 −0.424185 0.905575i \(-0.639440\pi\)
−0.424185 + 0.905575i \(0.639440\pi\)
\(420\) 0 0
\(421\) −432.934 −0.0501186 −0.0250593 0.999686i \(-0.507977\pi\)
−0.0250593 + 0.999686i \(0.507977\pi\)
\(422\) 0 0
\(423\) −2405.84 −0.276539
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3772.40 −0.427539
\(428\) 0 0
\(429\) −5919.10 −0.666147
\(430\) 0 0
\(431\) −1014.21 −0.113347 −0.0566736 0.998393i \(-0.518049\pi\)
−0.0566736 + 0.998393i \(0.518049\pi\)
\(432\) 0 0
\(433\) −5855.29 −0.649855 −0.324928 0.945739i \(-0.605340\pi\)
−0.324928 + 0.945739i \(0.605340\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12022.9 −1.31610
\(438\) 0 0
\(439\) 12647.5 1.37502 0.687510 0.726174i \(-0.258704\pi\)
0.687510 + 0.726174i \(0.258704\pi\)
\(440\) 0 0
\(441\) −2893.37 −0.312425
\(442\) 0 0
\(443\) −2030.46 −0.217765 −0.108882 0.994055i \(-0.534727\pi\)
−0.108882 + 0.994055i \(0.534727\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5413.91 0.572861
\(448\) 0 0
\(449\) −1213.89 −0.127588 −0.0637940 0.997963i \(-0.520320\pi\)
−0.0637940 + 0.997963i \(0.520320\pi\)
\(450\) 0 0
\(451\) −19702.6 −2.05712
\(452\) 0 0
\(453\) 4583.73 0.475414
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4975.74 0.509312 0.254656 0.967032i \(-0.418038\pi\)
0.254656 + 0.967032i \(0.418038\pi\)
\(458\) 0 0
\(459\) 1193.51 0.121368
\(460\) 0 0
\(461\) −3778.94 −0.381785 −0.190893 0.981611i \(-0.561138\pi\)
−0.190893 + 0.981611i \(0.561138\pi\)
\(462\) 0 0
\(463\) −19151.9 −1.92239 −0.961194 0.275875i \(-0.911033\pi\)
−0.961194 + 0.275875i \(0.911033\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6047.25 −0.599215 −0.299607 0.954063i \(-0.596856\pi\)
−0.299607 + 0.954063i \(0.596856\pi\)
\(468\) 0 0
\(469\) 192.941 0.0189962
\(470\) 0 0
\(471\) 8603.54 0.841677
\(472\) 0 0
\(473\) 22828.1 2.21910
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4008.62 0.384785
\(478\) 0 0
\(479\) 16423.8 1.56664 0.783320 0.621619i \(-0.213525\pi\)
0.783320 + 0.621619i \(0.213525\pi\)
\(480\) 0 0
\(481\) −1278.59 −0.121203
\(482\) 0 0
\(483\) −1253.51 −0.118088
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 14392.1 1.33916 0.669578 0.742742i \(-0.266475\pi\)
0.669578 + 0.742742i \(0.266475\pi\)
\(488\) 0 0
\(489\) −10497.9 −0.970825
\(490\) 0 0
\(491\) −17510.6 −1.60945 −0.804727 0.593645i \(-0.797688\pi\)
−0.804727 + 0.593645i \(0.797688\pi\)
\(492\) 0 0
\(493\) 6828.00 0.623768
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4636.79 0.418488
\(498\) 0 0
\(499\) −16297.1 −1.46204 −0.731019 0.682358i \(-0.760955\pi\)
−0.731019 + 0.682358i \(0.760955\pi\)
\(500\) 0 0
\(501\) −866.097 −0.0772343
\(502\) 0 0
\(503\) 7602.90 0.673949 0.336975 0.941514i \(-0.390596\pi\)
0.336975 + 0.941514i \(0.390596\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3211.06 −0.281279
\(508\) 0 0
\(509\) 22010.6 1.91670 0.958351 0.285593i \(-0.0921905\pi\)
0.958351 + 0.285593i \(0.0921905\pi\)
\(510\) 0 0
\(511\) 261.439 0.0226328
\(512\) 0 0
\(513\) 3603.58 0.310141
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15713.2 1.33669
\(518\) 0 0
\(519\) 2967.00 0.250938
\(520\) 0 0
\(521\) 2249.98 0.189200 0.0946001 0.995515i \(-0.469843\pi\)
0.0946001 + 0.995515i \(0.469843\pi\)
\(522\) 0 0
\(523\) −5448.89 −0.455570 −0.227785 0.973711i \(-0.573148\pi\)
−0.227785 + 0.973711i \(0.573148\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −931.391 −0.0769868
\(528\) 0 0
\(529\) −4052.16 −0.333045
\(530\) 0 0
\(531\) −329.416 −0.0269217
\(532\) 0 0
\(533\) 11250.6 0.914295
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 518.646 0.0416782
\(538\) 0 0
\(539\) 18897.4 1.51015
\(540\) 0 0
\(541\) 23423.6 1.86148 0.930738 0.365687i \(-0.119166\pi\)
0.930738 + 0.365687i \(0.119166\pi\)
\(542\) 0 0
\(543\) 12989.0 1.02654
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11465.7 0.896232 0.448116 0.893975i \(-0.352095\pi\)
0.448116 + 0.893975i \(0.352095\pi\)
\(548\) 0 0
\(549\) −7319.73 −0.569032
\(550\) 0 0
\(551\) 20616.0 1.59396
\(552\) 0 0
\(553\) 373.435 0.0287162
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14682.2 −1.11688 −0.558441 0.829544i \(-0.688600\pi\)
−0.558441 + 0.829544i \(0.688600\pi\)
\(558\) 0 0
\(559\) −13035.3 −0.986288
\(560\) 0 0
\(561\) −7795.12 −0.586649
\(562\) 0 0
\(563\) 11593.8 0.867889 0.433944 0.900940i \(-0.357121\pi\)
0.433944 + 0.900940i \(0.357121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 375.707 0.0278276
\(568\) 0 0
\(569\) −4743.55 −0.349491 −0.174745 0.984614i \(-0.555910\pi\)
−0.174745 + 0.984614i \(0.555910\pi\)
\(570\) 0 0
\(571\) 20469.9 1.50024 0.750122 0.661300i \(-0.229995\pi\)
0.750122 + 0.661300i \(0.229995\pi\)
\(572\) 0 0
\(573\) −4197.83 −0.306050
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5814.12 0.419489 0.209744 0.977756i \(-0.432737\pi\)
0.209744 + 0.977756i \(0.432737\pi\)
\(578\) 0 0
\(579\) 3667.26 0.263223
\(580\) 0 0
\(581\) 2679.31 0.191319
\(582\) 0 0
\(583\) −26181.4 −1.85990
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5876.70 −0.413215 −0.206608 0.978424i \(-0.566242\pi\)
−0.206608 + 0.978424i \(0.566242\pi\)
\(588\) 0 0
\(589\) −2812.18 −0.196729
\(590\) 0 0
\(591\) 11603.3 0.807604
\(592\) 0 0
\(593\) 11344.3 0.785590 0.392795 0.919626i \(-0.371508\pi\)
0.392795 + 0.919626i \(0.371508\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6553.93 −0.449304
\(598\) 0 0
\(599\) −14991.8 −1.02262 −0.511308 0.859398i \(-0.670839\pi\)
−0.511308 + 0.859398i \(0.670839\pi\)
\(600\) 0 0
\(601\) −20684.8 −1.40391 −0.701955 0.712222i \(-0.747689\pi\)
−0.701955 + 0.712222i \(0.747689\pi\)
\(602\) 0 0
\(603\) 374.372 0.0252829
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7476.54 0.499940 0.249970 0.968254i \(-0.419579\pi\)
0.249970 + 0.968254i \(0.419579\pi\)
\(608\) 0 0
\(609\) 2149.41 0.143019
\(610\) 0 0
\(611\) −8972.60 −0.594096
\(612\) 0 0
\(613\) −19585.0 −1.29043 −0.645213 0.764003i \(-0.723231\pi\)
−0.645213 + 0.764003i \(0.723231\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4788.74 −0.312460 −0.156230 0.987721i \(-0.549934\pi\)
−0.156230 + 0.987721i \(0.549934\pi\)
\(618\) 0 0
\(619\) −29582.1 −1.92085 −0.960423 0.278544i \(-0.910148\pi\)
−0.960423 + 0.278544i \(0.910148\pi\)
\(620\) 0 0
\(621\) −2432.23 −0.157169
\(622\) 0 0
\(623\) 3152.37 0.202724
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −23536.0 −1.49910
\(628\) 0 0
\(629\) −1683.83 −0.106739
\(630\) 0 0
\(631\) −2289.96 −0.144472 −0.0722361 0.997388i \(-0.523013\pi\)
−0.0722361 + 0.997388i \(0.523013\pi\)
\(632\) 0 0
\(633\) −10213.2 −0.641294
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −10790.8 −0.671191
\(638\) 0 0
\(639\) 8996.94 0.556985
\(640\) 0 0
\(641\) −4134.97 −0.254792 −0.127396 0.991852i \(-0.540662\pi\)
−0.127396 + 0.991852i \(0.540662\pi\)
\(642\) 0 0
\(643\) 21728.1 1.33262 0.666308 0.745677i \(-0.267874\pi\)
0.666308 + 0.745677i \(0.267874\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16550.0 1.00564 0.502820 0.864391i \(-0.332296\pi\)
0.502820 + 0.864391i \(0.332296\pi\)
\(648\) 0 0
\(649\) 2151.51 0.130130
\(650\) 0 0
\(651\) −293.196 −0.0176517
\(652\) 0 0
\(653\) −1997.70 −0.119718 −0.0598592 0.998207i \(-0.519065\pi\)
−0.0598592 + 0.998207i \(0.519065\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 507.280 0.0301231
\(658\) 0 0
\(659\) −6464.65 −0.382135 −0.191068 0.981577i \(-0.561195\pi\)
−0.191068 + 0.981577i \(0.561195\pi\)
\(660\) 0 0
\(661\) 13815.9 0.812972 0.406486 0.913657i \(-0.366754\pi\)
0.406486 + 0.913657i \(0.366754\pi\)
\(662\) 0 0
\(663\) 4451.18 0.260739
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13914.7 −0.807764
\(668\) 0 0
\(669\) 2837.35 0.163974
\(670\) 0 0
\(671\) 47807.2 2.75049
\(672\) 0 0
\(673\) 24162.3 1.38393 0.691966 0.721930i \(-0.256745\pi\)
0.691966 + 0.721930i \(0.256745\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17605.0 0.999432 0.499716 0.866189i \(-0.333438\pi\)
0.499716 + 0.866189i \(0.333438\pi\)
\(678\) 0 0
\(679\) −899.442 −0.0508356
\(680\) 0 0
\(681\) −5741.31 −0.323065
\(682\) 0 0
\(683\) 16879.1 0.945626 0.472813 0.881163i \(-0.343239\pi\)
0.472813 + 0.881163i \(0.343239\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3809.87 0.211580
\(688\) 0 0
\(689\) 14950.2 0.826642
\(690\) 0 0
\(691\) −15617.5 −0.859795 −0.429897 0.902878i \(-0.641450\pi\)
−0.429897 + 0.902878i \(0.641450\pi\)
\(692\) 0 0
\(693\) −2453.85 −0.134508
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14816.5 0.805184
\(698\) 0 0
\(699\) 12767.1 0.690840
\(700\) 0 0
\(701\) 15499.8 0.835123 0.417561 0.908649i \(-0.362885\pi\)
0.417561 + 0.908649i \(0.362885\pi\)
\(702\) 0 0
\(703\) −5084.03 −0.272757
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3513.65 0.186909
\(708\) 0 0
\(709\) −28548.1 −1.51219 −0.756097 0.654460i \(-0.772896\pi\)
−0.756097 + 0.654460i \(0.772896\pi\)
\(710\) 0 0
\(711\) 724.591 0.0382198
\(712\) 0 0
\(713\) 1898.07 0.0996959
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14409.8 0.750549
\(718\) 0 0
\(719\) 27794.4 1.44167 0.720833 0.693109i \(-0.243760\pi\)
0.720833 + 0.693109i \(0.243760\pi\)
\(720\) 0 0
\(721\) 2317.26 0.119694
\(722\) 0 0
\(723\) −2026.70 −0.104251
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 35634.9 1.81792 0.908958 0.416888i \(-0.136879\pi\)
0.908958 + 0.416888i \(0.136879\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −17166.8 −0.868585
\(732\) 0 0
\(733\) −22550.8 −1.13633 −0.568166 0.822914i \(-0.692347\pi\)
−0.568166 + 0.822914i \(0.692347\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2445.13 −0.122208
\(738\) 0 0
\(739\) −9321.14 −0.463983 −0.231992 0.972718i \(-0.574524\pi\)
−0.231992 + 0.972718i \(0.574524\pi\)
\(740\) 0 0
\(741\) 13439.6 0.666283
\(742\) 0 0
\(743\) −34593.1 −1.70807 −0.854037 0.520212i \(-0.825853\pi\)
−0.854037 + 0.520212i \(0.825853\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5198.76 0.254636
\(748\) 0 0
\(749\) 6799.96 0.331729
\(750\) 0 0
\(751\) 19968.6 0.970260 0.485130 0.874442i \(-0.338772\pi\)
0.485130 + 0.874442i \(0.338772\pi\)
\(752\) 0 0
\(753\) −10799.7 −0.522661
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6549.67 −0.314468 −0.157234 0.987561i \(-0.550258\pi\)
−0.157234 + 0.987561i \(0.550258\pi\)
\(758\) 0 0
\(759\) 15885.5 0.759695
\(760\) 0 0
\(761\) 13341.1 0.635497 0.317749 0.948175i \(-0.397073\pi\)
0.317749 + 0.948175i \(0.397073\pi\)
\(762\) 0 0
\(763\) −7175.33 −0.340452
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1228.56 −0.0578366
\(768\) 0 0
\(769\) 30907.6 1.44936 0.724679 0.689087i \(-0.241988\pi\)
0.724679 + 0.689087i \(0.241988\pi\)
\(770\) 0 0
\(771\) 6272.79 0.293008
\(772\) 0 0
\(773\) −40909.5 −1.90351 −0.951754 0.306861i \(-0.900721\pi\)
−0.951754 + 0.306861i \(0.900721\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −530.058 −0.0244733
\(778\) 0 0
\(779\) 44735.7 2.05754
\(780\) 0 0
\(781\) −58761.6 −2.69226
\(782\) 0 0
\(783\) 4170.58 0.190351
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33628.8 1.52317 0.761586 0.648064i \(-0.224421\pi\)
0.761586 + 0.648064i \(0.224421\pi\)
\(788\) 0 0
\(789\) 4518.74 0.203893
\(790\) 0 0
\(791\) 7345.68 0.330193
\(792\) 0 0
\(793\) −27299.0 −1.22246
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25488.0 −1.13279 −0.566395 0.824134i \(-0.691662\pi\)
−0.566395 + 0.824134i \(0.691662\pi\)
\(798\) 0 0
\(799\) −11816.4 −0.523197
\(800\) 0 0
\(801\) 6116.68 0.269815
\(802\) 0 0
\(803\) −3313.19 −0.145604
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18300.9 −0.798291
\(808\) 0 0
\(809\) −13832.0 −0.601122 −0.300561 0.953763i \(-0.597174\pi\)
−0.300561 + 0.953763i \(0.597174\pi\)
\(810\) 0 0
\(811\) −29293.2 −1.26834 −0.634170 0.773194i \(-0.718658\pi\)
−0.634170 + 0.773194i \(0.718658\pi\)
\(812\) 0 0
\(813\) 17026.7 0.734504
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −51832.1 −2.21955
\(818\) 0 0
\(819\) 1401.20 0.0597826
\(820\) 0 0
\(821\) −18890.8 −0.803036 −0.401518 0.915851i \(-0.631517\pi\)
−0.401518 + 0.915851i \(0.631517\pi\)
\(822\) 0 0
\(823\) −37538.3 −1.58992 −0.794959 0.606663i \(-0.792508\pi\)
−0.794959 + 0.606663i \(0.792508\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19341.1 −0.813247 −0.406623 0.913596i \(-0.633294\pi\)
−0.406623 + 0.913596i \(0.633294\pi\)
\(828\) 0 0
\(829\) 19921.4 0.834618 0.417309 0.908765i \(-0.362973\pi\)
0.417309 + 0.908765i \(0.362973\pi\)
\(830\) 0 0
\(831\) −7744.40 −0.323286
\(832\) 0 0
\(833\) −14210.9 −0.591091
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −568.899 −0.0234935
\(838\) 0 0
\(839\) 18561.9 0.763798 0.381899 0.924204i \(-0.375270\pi\)
0.381899 + 0.924204i \(0.375270\pi\)
\(840\) 0 0
\(841\) −529.235 −0.0216998
\(842\) 0 0
\(843\) 11926.7 0.487281
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9853.13 0.399714
\(848\) 0 0
\(849\) 19323.4 0.781126
\(850\) 0 0
\(851\) 3431.45 0.138224
\(852\) 0 0
\(853\) 41454.4 1.66398 0.831989 0.554793i \(-0.187202\pi\)
0.831989 + 0.554793i \(0.187202\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31013.0 1.23615 0.618077 0.786117i \(-0.287912\pi\)
0.618077 + 0.786117i \(0.287912\pi\)
\(858\) 0 0
\(859\) −42007.7 −1.66855 −0.834274 0.551350i \(-0.814113\pi\)
−0.834274 + 0.551350i \(0.814113\pi\)
\(860\) 0 0
\(861\) 4664.12 0.184614
\(862\) 0 0
\(863\) −6303.93 −0.248654 −0.124327 0.992241i \(-0.539677\pi\)
−0.124327 + 0.992241i \(0.539677\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8877.04 −0.347728
\(868\) 0 0
\(869\) −4732.51 −0.184740
\(870\) 0 0
\(871\) 1396.22 0.0543159
\(872\) 0 0
\(873\) −1745.22 −0.0676596
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −44647.5 −1.71909 −0.859544 0.511062i \(-0.829252\pi\)
−0.859544 + 0.511062i \(0.829252\pi\)
\(878\) 0 0
\(879\) 18387.7 0.705578
\(880\) 0 0
\(881\) −31955.0 −1.22201 −0.611004 0.791627i \(-0.709234\pi\)
−0.611004 + 0.791627i \(0.709234\pi\)
\(882\) 0 0
\(883\) −21030.0 −0.801491 −0.400746 0.916189i \(-0.631249\pi\)
−0.400746 + 0.916189i \(0.631249\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48751.9 −1.84547 −0.922734 0.385438i \(-0.874050\pi\)
−0.922734 + 0.385438i \(0.874050\pi\)
\(888\) 0 0
\(889\) 7061.71 0.266414
\(890\) 0 0
\(891\) −4761.30 −0.179023
\(892\) 0 0
\(893\) −35677.6 −1.33696
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −9071.00 −0.337650
\(898\) 0 0
\(899\) −3254.65 −0.120744
\(900\) 0 0
\(901\) 19688.5 0.727991
\(902\) 0 0
\(903\) −5403.98 −0.199151
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7941.89 −0.290746 −0.145373 0.989377i \(-0.546438\pi\)
−0.145373 + 0.989377i \(0.546438\pi\)
\(908\) 0 0
\(909\) 6817.67 0.248766
\(910\) 0 0
\(911\) −16520.2 −0.600810 −0.300405 0.953812i \(-0.597122\pi\)
−0.300405 + 0.953812i \(0.597122\pi\)
\(912\) 0 0
\(913\) −33954.6 −1.23081
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2957.54 0.106507
\(918\) 0 0
\(919\) −35905.8 −1.28882 −0.644408 0.764682i \(-0.722896\pi\)
−0.644408 + 0.764682i \(0.722896\pi\)
\(920\) 0 0
\(921\) 8000.35 0.286233
\(922\) 0 0
\(923\) 33554.1 1.19658
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4496.28 0.159307
\(928\) 0 0
\(929\) −10294.0 −0.363547 −0.181774 0.983340i \(-0.558184\pi\)
−0.181774 + 0.983340i \(0.558184\pi\)
\(930\) 0 0
\(931\) −42907.4 −1.51046
\(932\) 0 0
\(933\) 15590.3 0.547056
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22550.3 0.786219 0.393110 0.919492i \(-0.371399\pi\)
0.393110 + 0.919492i \(0.371399\pi\)
\(938\) 0 0
\(939\) 32064.2 1.11435
\(940\) 0 0
\(941\) −55637.1 −1.92744 −0.963718 0.266923i \(-0.913993\pi\)
−0.963718 + 0.266923i \(0.913993\pi\)
\(942\) 0 0
\(943\) −30194.2 −1.04269
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −57473.9 −1.97218 −0.986088 0.166224i \(-0.946843\pi\)
−0.986088 + 0.166224i \(0.946843\pi\)
\(948\) 0 0
\(949\) 1891.90 0.0647142
\(950\) 0 0
\(951\) 26478.9 0.902877
\(952\) 0 0
\(953\) −19618.2 −0.666837 −0.333418 0.942779i \(-0.608202\pi\)
−0.333418 + 0.942779i \(0.608202\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −27239.3 −0.920084
\(958\) 0 0
\(959\) −6226.25 −0.209652
\(960\) 0 0
\(961\) −29347.0 −0.985098
\(962\) 0 0
\(963\) 13194.2 0.441514
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 45483.5 1.51256 0.756282 0.654245i \(-0.227014\pi\)
0.756282 + 0.654245i \(0.227014\pi\)
\(968\) 0 0
\(969\) 17699.2 0.586769
\(970\) 0 0
\(971\) 15711.6 0.519269 0.259635 0.965707i \(-0.416398\pi\)
0.259635 + 0.965707i \(0.416398\pi\)
\(972\) 0 0
\(973\) 943.722 0.0310939
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23201.6 0.759761 0.379880 0.925036i \(-0.375965\pi\)
0.379880 + 0.925036i \(0.375965\pi\)
\(978\) 0 0
\(979\) −39949.7 −1.30419
\(980\) 0 0
\(981\) −13922.6 −0.453123
\(982\) 0 0
\(983\) 29047.0 0.942476 0.471238 0.882006i \(-0.343807\pi\)
0.471238 + 0.882006i \(0.343807\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3719.72 −0.119960
\(988\) 0 0
\(989\) 34983.9 1.12480
\(990\) 0 0
\(991\) 47593.1 1.52558 0.762788 0.646649i \(-0.223830\pi\)
0.762788 + 0.646649i \(0.223830\pi\)
\(992\) 0 0
\(993\) −21326.3 −0.681541
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3012.91 0.0957071 0.0478535 0.998854i \(-0.484762\pi\)
0.0478535 + 0.998854i \(0.484762\pi\)
\(998\) 0 0
\(999\) −1028.49 −0.0325727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.br.1.2 yes 3
4.3 odd 2 2400.4.a.bl.1.2 yes 3
5.4 even 2 2400.4.a.bk.1.2 3
20.19 odd 2 2400.4.a.bq.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bk.1.2 3 5.4 even 2
2400.4.a.bl.1.2 yes 3 4.3 odd 2
2400.4.a.bq.1.2 yes 3 20.19 odd 2
2400.4.a.br.1.2 yes 3 1.1 even 1 trivial