Properties

Label 2400.4.a.bq.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.32340.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 42x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.334222\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +15.3676 q^{7} +9.00000 q^{9} -57.1135 q^{11} -5.66311 q^{13} -27.0307 q^{17} -4.68316 q^{19} +46.1028 q^{21} +145.993 q^{23} +27.0000 q^{27} +25.6832 q^{29} -144.186 q^{31} -171.340 q^{33} -9.14193 q^{37} -16.9893 q^{39} -222.832 q^{41} +234.038 q^{43} -117.042 q^{47} -106.837 q^{49} -81.0921 q^{51} +460.267 q^{53} -14.0495 q^{57} -203.759 q^{59} +356.408 q^{61} +138.308 q^{63} +20.1704 q^{67} +437.979 q^{69} -501.702 q^{71} -713.071 q^{73} -877.697 q^{77} -814.480 q^{79} +81.0000 q^{81} -924.709 q^{83} +77.0495 q^{87} -1638.27 q^{89} -87.0284 q^{91} -432.557 q^{93} +1412.86 q^{97} -514.021 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 7 q^{7} + 27 q^{9} - 21 q^{13} - 32 q^{17} + 19 q^{19} - 21 q^{21} - 60 q^{23} + 81 q^{27} + 44 q^{29} - 151 q^{31} - 330 q^{37} - 63 q^{39} + 82 q^{41} - 367 q^{43} + 246 q^{47} - 42 q^{49}+ \cdots + 351 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 15.3676 0.829773 0.414886 0.909873i \(-0.363821\pi\)
0.414886 + 0.909873i \(0.363821\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −57.1135 −1.56549 −0.782744 0.622344i \(-0.786180\pi\)
−0.782744 + 0.622344i \(0.786180\pi\)
\(12\) 0 0
\(13\) −5.66311 −0.120820 −0.0604102 0.998174i \(-0.519241\pi\)
−0.0604102 + 0.998174i \(0.519241\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −27.0307 −0.385642 −0.192821 0.981234i \(-0.561764\pi\)
−0.192821 + 0.981234i \(0.561764\pi\)
\(18\) 0 0
\(19\) −4.68316 −0.0565469 −0.0282734 0.999600i \(-0.509001\pi\)
−0.0282734 + 0.999600i \(0.509001\pi\)
\(20\) 0 0
\(21\) 46.1028 0.479069
\(22\) 0 0
\(23\) 145.993 1.32355 0.661774 0.749703i \(-0.269804\pi\)
0.661774 + 0.749703i \(0.269804\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 25.6832 0.164457 0.0822283 0.996614i \(-0.473796\pi\)
0.0822283 + 0.996614i \(0.473796\pi\)
\(30\) 0 0
\(31\) −144.186 −0.835371 −0.417685 0.908592i \(-0.637159\pi\)
−0.417685 + 0.908592i \(0.637159\pi\)
\(32\) 0 0
\(33\) −171.340 −0.903835
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.14193 −0.0406196 −0.0203098 0.999794i \(-0.506465\pi\)
−0.0203098 + 0.999794i \(0.506465\pi\)
\(38\) 0 0
\(39\) −16.9893 −0.0697557
\(40\) 0 0
\(41\) −222.832 −0.848794 −0.424397 0.905476i \(-0.639514\pi\)
−0.424397 + 0.905476i \(0.639514\pi\)
\(42\) 0 0
\(43\) 234.038 0.830010 0.415005 0.909819i \(-0.363780\pi\)
0.415005 + 0.909819i \(0.363780\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −117.042 −0.363242 −0.181621 0.983369i \(-0.558134\pi\)
−0.181621 + 0.983369i \(0.558134\pi\)
\(48\) 0 0
\(49\) −106.837 −0.311477
\(50\) 0 0
\(51\) −81.0921 −0.222650
\(52\) 0 0
\(53\) 460.267 1.19288 0.596439 0.802658i \(-0.296582\pi\)
0.596439 + 0.802658i \(0.296582\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14.0495 −0.0326473
\(58\) 0 0
\(59\) −203.759 −0.449612 −0.224806 0.974403i \(-0.572175\pi\)
−0.224806 + 0.974403i \(0.572175\pi\)
\(60\) 0 0
\(61\) 356.408 0.748088 0.374044 0.927411i \(-0.377971\pi\)
0.374044 + 0.927411i \(0.377971\pi\)
\(62\) 0 0
\(63\) 138.308 0.276591
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 20.1704 0.0367792 0.0183896 0.999831i \(-0.494146\pi\)
0.0183896 + 0.999831i \(0.494146\pi\)
\(68\) 0 0
\(69\) 437.979 0.764151
\(70\) 0 0
\(71\) −501.702 −0.838607 −0.419303 0.907846i \(-0.637726\pi\)
−0.419303 + 0.907846i \(0.637726\pi\)
\(72\) 0 0
\(73\) −713.071 −1.14327 −0.571634 0.820508i \(-0.693690\pi\)
−0.571634 + 0.820508i \(0.693690\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −877.697 −1.29900
\(78\) 0 0
\(79\) −814.480 −1.15995 −0.579976 0.814634i \(-0.696938\pi\)
−0.579976 + 0.814634i \(0.696938\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −924.709 −1.22289 −0.611446 0.791286i \(-0.709412\pi\)
−0.611446 + 0.791286i \(0.709412\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 77.0495 0.0949491
\(88\) 0 0
\(89\) −1638.27 −1.95119 −0.975597 0.219570i \(-0.929535\pi\)
−0.975597 + 0.219570i \(0.929535\pi\)
\(90\) 0 0
\(91\) −87.0284 −0.100253
\(92\) 0 0
\(93\) −432.557 −0.482302
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1412.86 1.47891 0.739453 0.673208i \(-0.235084\pi\)
0.739453 + 0.673208i \(0.235084\pi\)
\(98\) 0 0
\(99\) −514.021 −0.521829
\(100\) 0 0
\(101\) −337.024 −0.332031 −0.166015 0.986123i \(-0.553090\pi\)
−0.166015 + 0.986123i \(0.553090\pi\)
\(102\) 0 0
\(103\) −2054.36 −1.96526 −0.982630 0.185575i \(-0.940585\pi\)
−0.982630 + 0.185575i \(0.940585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 371.354 0.335515 0.167758 0.985828i \(-0.446347\pi\)
0.167758 + 0.985828i \(0.446347\pi\)
\(108\) 0 0
\(109\) 309.557 0.272020 0.136010 0.990707i \(-0.456572\pi\)
0.136010 + 0.990707i \(0.456572\pi\)
\(110\) 0 0
\(111\) −27.4258 −0.0234517
\(112\) 0 0
\(113\) −836.695 −0.696545 −0.348273 0.937393i \(-0.613232\pi\)
−0.348273 + 0.937393i \(0.613232\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −50.9680 −0.0402734
\(118\) 0 0
\(119\) −415.397 −0.319995
\(120\) 0 0
\(121\) 1930.95 1.45075
\(122\) 0 0
\(123\) −668.497 −0.490051
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 878.510 0.613820 0.306910 0.951738i \(-0.400705\pi\)
0.306910 + 0.951738i \(0.400705\pi\)
\(128\) 0 0
\(129\) 702.113 0.479207
\(130\) 0 0
\(131\) 207.922 0.138673 0.0693367 0.997593i \(-0.477912\pi\)
0.0693367 + 0.997593i \(0.477912\pi\)
\(132\) 0 0
\(133\) −71.9689 −0.0469210
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1894.02 −1.18115 −0.590574 0.806983i \(-0.701099\pi\)
−0.590574 + 0.806983i \(0.701099\pi\)
\(138\) 0 0
\(139\) 1723.74 1.05184 0.525920 0.850534i \(-0.323721\pi\)
0.525920 + 0.850534i \(0.323721\pi\)
\(140\) 0 0
\(141\) −351.127 −0.209718
\(142\) 0 0
\(143\) 323.440 0.189143
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −320.510 −0.179832
\(148\) 0 0
\(149\) −1522.07 −0.836864 −0.418432 0.908248i \(-0.637420\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(150\) 0 0
\(151\) −225.226 −0.121382 −0.0606908 0.998157i \(-0.519330\pi\)
−0.0606908 + 0.998157i \(0.519330\pi\)
\(152\) 0 0
\(153\) −243.276 −0.128547
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 928.691 0.472087 0.236043 0.971743i \(-0.424149\pi\)
0.236043 + 0.971743i \(0.424149\pi\)
\(158\) 0 0
\(159\) 1380.80 0.688709
\(160\) 0 0
\(161\) 2243.56 1.09824
\(162\) 0 0
\(163\) 1801.86 0.865843 0.432922 0.901432i \(-0.357483\pi\)
0.432922 + 0.901432i \(0.357483\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1471.25 0.681728 0.340864 0.940113i \(-0.389280\pi\)
0.340864 + 0.940113i \(0.389280\pi\)
\(168\) 0 0
\(169\) −2164.93 −0.985402
\(170\) 0 0
\(171\) −42.1484 −0.0188490
\(172\) 0 0
\(173\) −3633.06 −1.59663 −0.798314 0.602241i \(-0.794275\pi\)
−0.798314 + 0.602241i \(0.794275\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −611.276 −0.259584
\(178\) 0 0
\(179\) 1329.28 0.555054 0.277527 0.960718i \(-0.410485\pi\)
0.277527 + 0.960718i \(0.410485\pi\)
\(180\) 0 0
\(181\) 26.3286 0.0108121 0.00540605 0.999985i \(-0.498279\pi\)
0.00540605 + 0.999985i \(0.498279\pi\)
\(182\) 0 0
\(183\) 1069.22 0.431909
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1543.82 0.603717
\(188\) 0 0
\(189\) 414.925 0.159690
\(190\) 0 0
\(191\) −2639.91 −1.00009 −0.500045 0.866000i \(-0.666683\pi\)
−0.500045 + 0.866000i \(0.666683\pi\)
\(192\) 0 0
\(193\) −720.370 −0.268670 −0.134335 0.990936i \(-0.542890\pi\)
−0.134335 + 0.990936i \(0.542890\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1768.75 −0.639688 −0.319844 0.947470i \(-0.603630\pi\)
−0.319844 + 0.947470i \(0.603630\pi\)
\(198\) 0 0
\(199\) 1950.50 0.694812 0.347406 0.937715i \(-0.387063\pi\)
0.347406 + 0.937715i \(0.387063\pi\)
\(200\) 0 0
\(201\) 60.5111 0.0212345
\(202\) 0 0
\(203\) 394.689 0.136462
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1313.94 0.441183
\(208\) 0 0
\(209\) 267.472 0.0885234
\(210\) 0 0
\(211\) −2381.61 −0.777048 −0.388524 0.921439i \(-0.627015\pi\)
−0.388524 + 0.921439i \(0.627015\pi\)
\(212\) 0 0
\(213\) −1505.11 −0.484170
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2215.79 −0.693168
\(218\) 0 0
\(219\) −2139.21 −0.660067
\(220\) 0 0
\(221\) 153.078 0.0465934
\(222\) 0 0
\(223\) −2563.32 −0.769742 −0.384871 0.922970i \(-0.625754\pi\)
−0.384871 + 0.922970i \(0.625754\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −218.391 −0.0638550 −0.0319275 0.999490i \(-0.510165\pi\)
−0.0319275 + 0.999490i \(0.510165\pi\)
\(228\) 0 0
\(229\) −6230.84 −1.79802 −0.899008 0.437933i \(-0.855711\pi\)
−0.899008 + 0.437933i \(0.855711\pi\)
\(230\) 0 0
\(231\) −2633.09 −0.749977
\(232\) 0 0
\(233\) −2873.70 −0.807992 −0.403996 0.914761i \(-0.632379\pi\)
−0.403996 + 0.914761i \(0.632379\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2443.44 −0.669698
\(238\) 0 0
\(239\) −2596.49 −0.702733 −0.351367 0.936238i \(-0.614283\pi\)
−0.351367 + 0.936238i \(0.614283\pi\)
\(240\) 0 0
\(241\) 4926.06 1.31666 0.658330 0.752729i \(-0.271263\pi\)
0.658330 + 0.752729i \(0.271263\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 26.5213 0.00683201
\(248\) 0 0
\(249\) −2774.13 −0.706037
\(250\) 0 0
\(251\) 4767.23 1.19883 0.599413 0.800440i \(-0.295401\pi\)
0.599413 + 0.800440i \(0.295401\pi\)
\(252\) 0 0
\(253\) −8338.16 −2.07200
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4055.54 0.984348 0.492174 0.870497i \(-0.336202\pi\)
0.492174 + 0.870497i \(0.336202\pi\)
\(258\) 0 0
\(259\) −140.490 −0.0337050
\(260\) 0 0
\(261\) 231.148 0.0548189
\(262\) 0 0
\(263\) 2192.57 0.514066 0.257033 0.966403i \(-0.417255\pi\)
0.257033 + 0.966403i \(0.417255\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4914.81 −1.12652
\(268\) 0 0
\(269\) 5274.47 1.19550 0.597751 0.801682i \(-0.296061\pi\)
0.597751 + 0.801682i \(0.296061\pi\)
\(270\) 0 0
\(271\) 4338.71 0.972539 0.486269 0.873809i \(-0.338357\pi\)
0.486269 + 0.873809i \(0.338357\pi\)
\(272\) 0 0
\(273\) −261.085 −0.0578813
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6580.91 −1.42747 −0.713733 0.700417i \(-0.752997\pi\)
−0.713733 + 0.700417i \(0.752997\pi\)
\(278\) 0 0
\(279\) −1297.67 −0.278457
\(280\) 0 0
\(281\) 3331.85 0.707336 0.353668 0.935371i \(-0.384934\pi\)
0.353668 + 0.935371i \(0.384934\pi\)
\(282\) 0 0
\(283\) 3393.15 0.712727 0.356364 0.934347i \(-0.384016\pi\)
0.356364 + 0.934347i \(0.384016\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3424.40 −0.704306
\(288\) 0 0
\(289\) −4182.34 −0.851280
\(290\) 0 0
\(291\) 4238.57 0.853847
\(292\) 0 0
\(293\) −6811.67 −1.35816 −0.679082 0.734063i \(-0.737622\pi\)
−0.679082 + 0.734063i \(0.737622\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1542.06 −0.301278
\(298\) 0 0
\(299\) −826.774 −0.159912
\(300\) 0 0
\(301\) 3596.60 0.688720
\(302\) 0 0
\(303\) −1011.07 −0.191698
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4673.14 −0.868762 −0.434381 0.900729i \(-0.643033\pi\)
−0.434381 + 0.900729i \(0.643033\pi\)
\(308\) 0 0
\(309\) −6163.07 −1.13464
\(310\) 0 0
\(311\) −3097.51 −0.564771 −0.282385 0.959301i \(-0.591126\pi\)
−0.282385 + 0.959301i \(0.591126\pi\)
\(312\) 0 0
\(313\) −1570.93 −0.283687 −0.141844 0.989889i \(-0.545303\pi\)
−0.141844 + 0.989889i \(0.545303\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1734.76 −0.307362 −0.153681 0.988121i \(-0.549113\pi\)
−0.153681 + 0.988121i \(0.549113\pi\)
\(318\) 0 0
\(319\) −1466.85 −0.257455
\(320\) 0 0
\(321\) 1114.06 0.193710
\(322\) 0 0
\(323\) 126.589 0.0218068
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 928.671 0.157051
\(328\) 0 0
\(329\) −1798.66 −0.301408
\(330\) 0 0
\(331\) 7538.14 1.25176 0.625881 0.779918i \(-0.284739\pi\)
0.625881 + 0.779918i \(0.284739\pi\)
\(332\) 0 0
\(333\) −82.2774 −0.0135399
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3806.78 0.615337 0.307668 0.951494i \(-0.400451\pi\)
0.307668 + 0.951494i \(0.400451\pi\)
\(338\) 0 0
\(339\) −2510.08 −0.402151
\(340\) 0 0
\(341\) 8234.94 1.30776
\(342\) 0 0
\(343\) −6912.91 −1.08823
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9470.86 −1.46519 −0.732597 0.680662i \(-0.761692\pi\)
−0.732597 + 0.680662i \(0.761692\pi\)
\(348\) 0 0
\(349\) 872.978 0.133895 0.0669476 0.997756i \(-0.478674\pi\)
0.0669476 + 0.997756i \(0.478674\pi\)
\(350\) 0 0
\(351\) −152.904 −0.0232519
\(352\) 0 0
\(353\) −9301.55 −1.40247 −0.701234 0.712931i \(-0.747367\pi\)
−0.701234 + 0.712931i \(0.747367\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1246.19 −0.184749
\(358\) 0 0
\(359\) −8712.81 −1.28090 −0.640452 0.767998i \(-0.721253\pi\)
−0.640452 + 0.767998i \(0.721253\pi\)
\(360\) 0 0
\(361\) −6837.07 −0.996802
\(362\) 0 0
\(363\) 5792.85 0.837591
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4504.04 0.640624 0.320312 0.947312i \(-0.396212\pi\)
0.320312 + 0.947312i \(0.396212\pi\)
\(368\) 0 0
\(369\) −2005.49 −0.282931
\(370\) 0 0
\(371\) 7073.20 0.989818
\(372\) 0 0
\(373\) −6677.28 −0.926907 −0.463454 0.886121i \(-0.653390\pi\)
−0.463454 + 0.886121i \(0.653390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −145.447 −0.0198697
\(378\) 0 0
\(379\) 6455.83 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(380\) 0 0
\(381\) 2635.53 0.354389
\(382\) 0 0
\(383\) −27.2888 −0.00364072 −0.00182036 0.999998i \(-0.500579\pi\)
−0.00182036 + 0.999998i \(0.500579\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2106.34 0.276670
\(388\) 0 0
\(389\) −10957.5 −1.42820 −0.714098 0.700046i \(-0.753163\pi\)
−0.714098 + 0.700046i \(0.753163\pi\)
\(390\) 0 0
\(391\) −3946.29 −0.510416
\(392\) 0 0
\(393\) 623.765 0.0800631
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9751.46 −1.23278 −0.616388 0.787443i \(-0.711405\pi\)
−0.616388 + 0.787443i \(0.711405\pi\)
\(398\) 0 0
\(399\) −215.907 −0.0270899
\(400\) 0 0
\(401\) 7247.97 0.902609 0.451305 0.892370i \(-0.350959\pi\)
0.451305 + 0.892370i \(0.350959\pi\)
\(402\) 0 0
\(403\) 816.539 0.100930
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 522.127 0.0635894
\(408\) 0 0
\(409\) −5904.08 −0.713785 −0.356892 0.934146i \(-0.616164\pi\)
−0.356892 + 0.934146i \(0.616164\pi\)
\(410\) 0 0
\(411\) −5682.07 −0.681936
\(412\) 0 0
\(413\) −3131.28 −0.373076
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5171.23 0.607281
\(418\) 0 0
\(419\) 8541.55 0.995900 0.497950 0.867206i \(-0.334086\pi\)
0.497950 + 0.867206i \(0.334086\pi\)
\(420\) 0 0
\(421\) 13152.6 1.52261 0.761304 0.648395i \(-0.224559\pi\)
0.761304 + 0.648395i \(0.224559\pi\)
\(422\) 0 0
\(423\) −1053.38 −0.121081
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5477.14 0.620743
\(428\) 0 0
\(429\) 970.320 0.109202
\(430\) 0 0
\(431\) −10476.7 −1.17087 −0.585437 0.810718i \(-0.699077\pi\)
−0.585437 + 0.810718i \(0.699077\pi\)
\(432\) 0 0
\(433\) −10752.1 −1.19333 −0.596665 0.802491i \(-0.703508\pi\)
−0.596665 + 0.802491i \(0.703508\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −683.708 −0.0748425
\(438\) 0 0
\(439\) 16182.5 1.75934 0.879670 0.475584i \(-0.157763\pi\)
0.879670 + 0.475584i \(0.157763\pi\)
\(440\) 0 0
\(441\) −961.531 −0.103826
\(442\) 0 0
\(443\) 11147.7 1.19558 0.597790 0.801653i \(-0.296046\pi\)
0.597790 + 0.801653i \(0.296046\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4566.21 −0.483164
\(448\) 0 0
\(449\) −11000.0 −1.15618 −0.578089 0.815973i \(-0.696201\pi\)
−0.578089 + 0.815973i \(0.696201\pi\)
\(450\) 0 0
\(451\) 12726.7 1.32878
\(452\) 0 0
\(453\) −675.678 −0.0700797
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14825.8 −1.51755 −0.758774 0.651353i \(-0.774202\pi\)
−0.758774 + 0.651353i \(0.774202\pi\)
\(458\) 0 0
\(459\) −729.829 −0.0742168
\(460\) 0 0
\(461\) 5857.48 0.591779 0.295890 0.955222i \(-0.404384\pi\)
0.295890 + 0.955222i \(0.404384\pi\)
\(462\) 0 0
\(463\) 4134.37 0.414990 0.207495 0.978236i \(-0.433469\pi\)
0.207495 + 0.978236i \(0.433469\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5734.51 0.568226 0.284113 0.958791i \(-0.408301\pi\)
0.284113 + 0.958791i \(0.408301\pi\)
\(468\) 0 0
\(469\) 309.970 0.0305183
\(470\) 0 0
\(471\) 2786.07 0.272559
\(472\) 0 0
\(473\) −13366.7 −1.29937
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4142.40 0.397626
\(478\) 0 0
\(479\) 1050.39 0.100195 0.0500976 0.998744i \(-0.484047\pi\)
0.0500976 + 0.998744i \(0.484047\pi\)
\(480\) 0 0
\(481\) 51.7718 0.00490767
\(482\) 0 0
\(483\) 6730.68 0.634072
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15368.0 1.42996 0.714978 0.699147i \(-0.246437\pi\)
0.714978 + 0.699147i \(0.246437\pi\)
\(488\) 0 0
\(489\) 5405.58 0.499895
\(490\) 0 0
\(491\) 4469.40 0.410797 0.205398 0.978678i \(-0.434151\pi\)
0.205398 + 0.978678i \(0.434151\pi\)
\(492\) 0 0
\(493\) −694.234 −0.0634214
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7709.96 −0.695853
\(498\) 0 0
\(499\) 17597.2 1.57867 0.789336 0.613961i \(-0.210425\pi\)
0.789336 + 0.613961i \(0.210425\pi\)
\(500\) 0 0
\(501\) 4413.75 0.393596
\(502\) 0 0
\(503\) 1120.29 0.0993069 0.0496535 0.998767i \(-0.484188\pi\)
0.0496535 + 0.998767i \(0.484188\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6494.79 −0.568922
\(508\) 0 0
\(509\) −6857.11 −0.597124 −0.298562 0.954390i \(-0.596507\pi\)
−0.298562 + 0.954390i \(0.596507\pi\)
\(510\) 0 0
\(511\) −10958.2 −0.948653
\(512\) 0 0
\(513\) −126.445 −0.0108824
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6684.70 0.568651
\(518\) 0 0
\(519\) −10899.2 −0.921814
\(520\) 0 0
\(521\) 1950.10 0.163984 0.0819919 0.996633i \(-0.473872\pi\)
0.0819919 + 0.996633i \(0.473872\pi\)
\(522\) 0 0
\(523\) −9869.11 −0.825136 −0.412568 0.910927i \(-0.635368\pi\)
−0.412568 + 0.910927i \(0.635368\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3897.44 0.322154
\(528\) 0 0
\(529\) 9146.92 0.751781
\(530\) 0 0
\(531\) −1833.83 −0.149871
\(532\) 0 0
\(533\) 1261.92 0.102552
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3987.83 0.320461
\(538\) 0 0
\(539\) 6101.82 0.487614
\(540\) 0 0
\(541\) −20927.4 −1.66311 −0.831554 0.555444i \(-0.812548\pi\)
−0.831554 + 0.555444i \(0.812548\pi\)
\(542\) 0 0
\(543\) 78.9858 0.00624237
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −13965.8 −1.09165 −0.545826 0.837899i \(-0.683784\pi\)
−0.545826 + 0.837899i \(0.683784\pi\)
\(548\) 0 0
\(549\) 3207.67 0.249363
\(550\) 0 0
\(551\) −120.278 −0.00929951
\(552\) 0 0
\(553\) −12516.6 −0.962496
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −311.693 −0.0237107 −0.0118554 0.999930i \(-0.503774\pi\)
−0.0118554 + 0.999930i \(0.503774\pi\)
\(558\) 0 0
\(559\) −1325.38 −0.100282
\(560\) 0 0
\(561\) 4631.45 0.348556
\(562\) 0 0
\(563\) 5476.71 0.409975 0.204988 0.978765i \(-0.434285\pi\)
0.204988 + 0.978765i \(0.434285\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1244.78 0.0921970
\(568\) 0 0
\(569\) −13928.0 −1.02617 −0.513087 0.858337i \(-0.671498\pi\)
−0.513087 + 0.858337i \(0.671498\pi\)
\(570\) 0 0
\(571\) 26597.3 1.94932 0.974662 0.223681i \(-0.0718074\pi\)
0.974662 + 0.223681i \(0.0718074\pi\)
\(572\) 0 0
\(573\) −7919.72 −0.577402
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3556.02 −0.256567 −0.128283 0.991738i \(-0.540947\pi\)
−0.128283 + 0.991738i \(0.540947\pi\)
\(578\) 0 0
\(579\) −2161.11 −0.155117
\(580\) 0 0
\(581\) −14210.6 −1.01472
\(582\) 0 0
\(583\) −26287.5 −1.86744
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14010.8 −0.985156 −0.492578 0.870268i \(-0.663945\pi\)
−0.492578 + 0.870268i \(0.663945\pi\)
\(588\) 0 0
\(589\) 675.244 0.0472376
\(590\) 0 0
\(591\) −5306.26 −0.369324
\(592\) 0 0
\(593\) 15250.5 1.05609 0.528046 0.849216i \(-0.322925\pi\)
0.528046 + 0.849216i \(0.322925\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5851.51 0.401150
\(598\) 0 0
\(599\) −22833.8 −1.55754 −0.778768 0.627311i \(-0.784155\pi\)
−0.778768 + 0.627311i \(0.784155\pi\)
\(600\) 0 0
\(601\) 27732.7 1.88226 0.941131 0.338043i \(-0.109765\pi\)
0.941131 + 0.338043i \(0.109765\pi\)
\(602\) 0 0
\(603\) 181.533 0.0122597
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 26899.7 1.79873 0.899363 0.437203i \(-0.144031\pi\)
0.899363 + 0.437203i \(0.144031\pi\)
\(608\) 0 0
\(609\) 1184.07 0.0787862
\(610\) 0 0
\(611\) 662.824 0.0438870
\(612\) 0 0
\(613\) −18811.6 −1.23947 −0.619733 0.784813i \(-0.712759\pi\)
−0.619733 + 0.784813i \(0.712759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19764.1 −1.28959 −0.644793 0.764357i \(-0.723056\pi\)
−0.644793 + 0.764357i \(0.723056\pi\)
\(618\) 0 0
\(619\) −4748.71 −0.308347 −0.154174 0.988044i \(-0.549272\pi\)
−0.154174 + 0.988044i \(0.549272\pi\)
\(620\) 0 0
\(621\) 3941.81 0.254717
\(622\) 0 0
\(623\) −25176.3 −1.61905
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 802.415 0.0511090
\(628\) 0 0
\(629\) 247.113 0.0156646
\(630\) 0 0
\(631\) −29801.4 −1.88015 −0.940076 0.340965i \(-0.889246\pi\)
−0.940076 + 0.340965i \(0.889246\pi\)
\(632\) 0 0
\(633\) −7144.84 −0.448629
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 605.028 0.0376328
\(638\) 0 0
\(639\) −4515.32 −0.279536
\(640\) 0 0
\(641\) 5350.51 0.329692 0.164846 0.986319i \(-0.447287\pi\)
0.164846 + 0.986319i \(0.447287\pi\)
\(642\) 0 0
\(643\) −18428.5 −1.13025 −0.565125 0.825005i \(-0.691172\pi\)
−0.565125 + 0.825005i \(0.691172\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1269.82 0.0771588 0.0385794 0.999256i \(-0.487717\pi\)
0.0385794 + 0.999256i \(0.487717\pi\)
\(648\) 0 0
\(649\) 11637.4 0.703863
\(650\) 0 0
\(651\) −6647.36 −0.400201
\(652\) 0 0
\(653\) 29619.2 1.77502 0.887510 0.460788i \(-0.152433\pi\)
0.887510 + 0.460788i \(0.152433\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6417.64 −0.381090
\(658\) 0 0
\(659\) −30435.2 −1.79907 −0.899534 0.436850i \(-0.856094\pi\)
−0.899534 + 0.436850i \(0.856094\pi\)
\(660\) 0 0
\(661\) 10059.8 0.591953 0.295976 0.955195i \(-0.404355\pi\)
0.295976 + 0.955195i \(0.404355\pi\)
\(662\) 0 0
\(663\) 459.234 0.0269007
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3749.56 0.217666
\(668\) 0 0
\(669\) −7689.96 −0.444411
\(670\) 0 0
\(671\) −20355.7 −1.17112
\(672\) 0 0
\(673\) 17171.0 0.983499 0.491750 0.870737i \(-0.336358\pi\)
0.491750 + 0.870737i \(0.336358\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12992.5 0.737579 0.368790 0.929513i \(-0.379772\pi\)
0.368790 + 0.929513i \(0.379772\pi\)
\(678\) 0 0
\(679\) 21712.2 1.22716
\(680\) 0 0
\(681\) −655.172 −0.0368667
\(682\) 0 0
\(683\) 18595.6 1.04179 0.520893 0.853622i \(-0.325599\pi\)
0.520893 + 0.853622i \(0.325599\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −18692.5 −1.03808
\(688\) 0 0
\(689\) −2606.54 −0.144124
\(690\) 0 0
\(691\) 21617.6 1.19012 0.595059 0.803682i \(-0.297129\pi\)
0.595059 + 0.803682i \(0.297129\pi\)
\(692\) 0 0
\(693\) −7899.28 −0.433000
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6023.31 0.327330
\(698\) 0 0
\(699\) −8621.09 −0.466495
\(700\) 0 0
\(701\) −26307.6 −1.41744 −0.708719 0.705491i \(-0.750727\pi\)
−0.708719 + 0.705491i \(0.750727\pi\)
\(702\) 0 0
\(703\) 42.8131 0.00229691
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5179.25 −0.275510
\(708\) 0 0
\(709\) −4112.11 −0.217819 −0.108909 0.994052i \(-0.534736\pi\)
−0.108909 + 0.994052i \(0.534736\pi\)
\(710\) 0 0
\(711\) −7330.32 −0.386650
\(712\) 0 0
\(713\) −21050.1 −1.10565
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7789.48 −0.405723
\(718\) 0 0
\(719\) −29343.0 −1.52199 −0.760993 0.648760i \(-0.775288\pi\)
−0.760993 + 0.648760i \(0.775288\pi\)
\(720\) 0 0
\(721\) −31570.5 −1.63072
\(722\) 0 0
\(723\) 14778.2 0.760174
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10792.5 0.550578 0.275289 0.961362i \(-0.411226\pi\)
0.275289 + 0.961362i \(0.411226\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −6326.21 −0.320087
\(732\) 0 0
\(733\) 12900.9 0.650077 0.325038 0.945701i \(-0.394623\pi\)
0.325038 + 0.945701i \(0.394623\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1152.00 −0.0575773
\(738\) 0 0
\(739\) 32561.0 1.62080 0.810402 0.585874i \(-0.199249\pi\)
0.810402 + 0.585874i \(0.199249\pi\)
\(740\) 0 0
\(741\) 79.5638 0.00394446
\(742\) 0 0
\(743\) −4417.40 −0.218114 −0.109057 0.994035i \(-0.534783\pi\)
−0.109057 + 0.994035i \(0.534783\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8322.38 −0.407631
\(748\) 0 0
\(749\) 5706.82 0.278402
\(750\) 0 0
\(751\) −3091.88 −0.150232 −0.0751161 0.997175i \(-0.523933\pi\)
−0.0751161 + 0.997175i \(0.523933\pi\)
\(752\) 0 0
\(753\) 14301.7 0.692142
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23570.0 1.13166 0.565831 0.824521i \(-0.308556\pi\)
0.565831 + 0.824521i \(0.308556\pi\)
\(758\) 0 0
\(759\) −25014.5 −1.19627
\(760\) 0 0
\(761\) 6901.48 0.328750 0.164375 0.986398i \(-0.447439\pi\)
0.164375 + 0.986398i \(0.447439\pi\)
\(762\) 0 0
\(763\) 4757.15 0.225715
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1153.91 0.0543223
\(768\) 0 0
\(769\) 88.6468 0.00415694 0.00207847 0.999998i \(-0.499338\pi\)
0.00207847 + 0.999998i \(0.499338\pi\)
\(770\) 0 0
\(771\) 12166.6 0.568313
\(772\) 0 0
\(773\) 13345.9 0.620980 0.310490 0.950577i \(-0.399507\pi\)
0.310490 + 0.950577i \(0.399507\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −421.469 −0.0194596
\(778\) 0 0
\(779\) 1043.56 0.0479966
\(780\) 0 0
\(781\) 28653.9 1.31283
\(782\) 0 0
\(783\) 693.445 0.0316497
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2185.46 0.0989877 0.0494939 0.998774i \(-0.484239\pi\)
0.0494939 + 0.998774i \(0.484239\pi\)
\(788\) 0 0
\(789\) 6577.70 0.296796
\(790\) 0 0
\(791\) −12858.0 −0.577974
\(792\) 0 0
\(793\) −2018.38 −0.0903842
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20791.9 0.924073 0.462036 0.886861i \(-0.347119\pi\)
0.462036 + 0.886861i \(0.347119\pi\)
\(798\) 0 0
\(799\) 3163.74 0.140081
\(800\) 0 0
\(801\) −14744.4 −0.650398
\(802\) 0 0
\(803\) 40726.0 1.78977
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15823.4 0.690223
\(808\) 0 0
\(809\) 29004.3 1.26049 0.630245 0.776396i \(-0.282955\pi\)
0.630245 + 0.776396i \(0.282955\pi\)
\(810\) 0 0
\(811\) −1088.27 −0.0471199 −0.0235600 0.999722i \(-0.507500\pi\)
−0.0235600 + 0.999722i \(0.507500\pi\)
\(812\) 0 0
\(813\) 13016.1 0.561496
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1096.04 −0.0469345
\(818\) 0 0
\(819\) −783.256 −0.0334178
\(820\) 0 0
\(821\) 23237.5 0.987815 0.493907 0.869515i \(-0.335568\pi\)
0.493907 + 0.869515i \(0.335568\pi\)
\(822\) 0 0
\(823\) −10035.1 −0.425032 −0.212516 0.977158i \(-0.568166\pi\)
−0.212516 + 0.977158i \(0.568166\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33397.7 −1.40429 −0.702147 0.712032i \(-0.747775\pi\)
−0.702147 + 0.712032i \(0.747775\pi\)
\(828\) 0 0
\(829\) −28989.3 −1.21453 −0.607263 0.794501i \(-0.707732\pi\)
−0.607263 + 0.794501i \(0.707732\pi\)
\(830\) 0 0
\(831\) −19742.7 −0.824148
\(832\) 0 0
\(833\) 2887.87 0.120119
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3893.01 −0.160767
\(838\) 0 0
\(839\) 37189.9 1.53032 0.765160 0.643840i \(-0.222660\pi\)
0.765160 + 0.643840i \(0.222660\pi\)
\(840\) 0 0
\(841\) −23729.4 −0.972954
\(842\) 0 0
\(843\) 9995.55 0.408381
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 29674.1 1.20379
\(848\) 0 0
\(849\) 10179.4 0.411493
\(850\) 0 0
\(851\) −1334.66 −0.0537620
\(852\) 0 0
\(853\) 36074.0 1.44801 0.724004 0.689796i \(-0.242300\pi\)
0.724004 + 0.689796i \(0.242300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2666.63 0.106290 0.0531449 0.998587i \(-0.483075\pi\)
0.0531449 + 0.998587i \(0.483075\pi\)
\(858\) 0 0
\(859\) 12818.1 0.509134 0.254567 0.967055i \(-0.418067\pi\)
0.254567 + 0.967055i \(0.418067\pi\)
\(860\) 0 0
\(861\) −10273.2 −0.406631
\(862\) 0 0
\(863\) 2882.93 0.113715 0.0568575 0.998382i \(-0.481892\pi\)
0.0568575 + 0.998382i \(0.481892\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −12547.0 −0.491487
\(868\) 0 0
\(869\) 46517.8 1.81589
\(870\) 0 0
\(871\) −114.227 −0.00444367
\(872\) 0 0
\(873\) 12715.7 0.492969
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 989.168 0.0380865 0.0190432 0.999819i \(-0.493938\pi\)
0.0190432 + 0.999819i \(0.493938\pi\)
\(878\) 0 0
\(879\) −20435.0 −0.784136
\(880\) 0 0
\(881\) −39678.2 −1.51736 −0.758678 0.651466i \(-0.774154\pi\)
−0.758678 + 0.651466i \(0.774154\pi\)
\(882\) 0 0
\(883\) −15619.3 −0.595278 −0.297639 0.954679i \(-0.596199\pi\)
−0.297639 + 0.954679i \(0.596199\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30078.6 1.13860 0.569301 0.822129i \(-0.307214\pi\)
0.569301 + 0.822129i \(0.307214\pi\)
\(888\) 0 0
\(889\) 13500.6 0.509331
\(890\) 0 0
\(891\) −4626.19 −0.173943
\(892\) 0 0
\(893\) 548.128 0.0205402
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −2480.32 −0.0923250
\(898\) 0 0
\(899\) −3703.14 −0.137382
\(900\) 0 0
\(901\) −12441.3 −0.460024
\(902\) 0 0
\(903\) 10789.8 0.397632
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 52235.2 1.91229 0.956143 0.292901i \(-0.0946207\pi\)
0.956143 + 0.292901i \(0.0946207\pi\)
\(908\) 0 0
\(909\) −3033.21 −0.110677
\(910\) 0 0
\(911\) −48299.7 −1.75658 −0.878288 0.478132i \(-0.841314\pi\)
−0.878288 + 0.478132i \(0.841314\pi\)
\(912\) 0 0
\(913\) 52813.4 1.91442
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3195.26 0.115067
\(918\) 0 0
\(919\) 23957.4 0.859935 0.429968 0.902844i \(-0.358525\pi\)
0.429968 + 0.902844i \(0.358525\pi\)
\(920\) 0 0
\(921\) −14019.4 −0.501580
\(922\) 0 0
\(923\) 2841.19 0.101321
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −18489.2 −0.655087
\(928\) 0 0
\(929\) 9838.50 0.347460 0.173730 0.984793i \(-0.444418\pi\)
0.173730 + 0.984793i \(0.444418\pi\)
\(930\) 0 0
\(931\) 500.333 0.0176131
\(932\) 0 0
\(933\) −9292.53 −0.326070
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55492.0 1.93473 0.967367 0.253380i \(-0.0815422\pi\)
0.967367 + 0.253380i \(0.0815422\pi\)
\(938\) 0 0
\(939\) −4712.79 −0.163787
\(940\) 0 0
\(941\) 9714.31 0.336533 0.168266 0.985742i \(-0.446183\pi\)
0.168266 + 0.985742i \(0.446183\pi\)
\(942\) 0 0
\(943\) −32531.9 −1.12342
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10533.5 −0.361451 −0.180725 0.983534i \(-0.557845\pi\)
−0.180725 + 0.983534i \(0.557845\pi\)
\(948\) 0 0
\(949\) 4038.20 0.138130
\(950\) 0 0
\(951\) −5204.28 −0.177456
\(952\) 0 0
\(953\) −24457.5 −0.831328 −0.415664 0.909518i \(-0.636451\pi\)
−0.415664 + 0.909518i \(0.636451\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4400.56 −0.148642
\(958\) 0 0
\(959\) −29106.6 −0.980085
\(960\) 0 0
\(961\) −9001.52 −0.302156
\(962\) 0 0
\(963\) 3342.19 0.111838
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12612.1 −0.419419 −0.209710 0.977764i \(-0.567252\pi\)
−0.209710 + 0.977764i \(0.567252\pi\)
\(968\) 0 0
\(969\) 379.767 0.0125902
\(970\) 0 0
\(971\) 47076.0 1.55586 0.777930 0.628350i \(-0.216270\pi\)
0.777930 + 0.628350i \(0.216270\pi\)
\(972\) 0 0
\(973\) 26489.8 0.872789
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12409.7 0.406367 0.203183 0.979141i \(-0.434871\pi\)
0.203183 + 0.979141i \(0.434871\pi\)
\(978\) 0 0
\(979\) 93567.3 3.05457
\(980\) 0 0
\(981\) 2786.01 0.0906733
\(982\) 0 0
\(983\) −18983.3 −0.615943 −0.307972 0.951396i \(-0.599650\pi\)
−0.307972 + 0.951396i \(0.599650\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −5395.98 −0.174018
\(988\) 0 0
\(989\) 34167.9 1.09856
\(990\) 0 0
\(991\) 45928.0 1.47220 0.736101 0.676872i \(-0.236665\pi\)
0.736101 + 0.676872i \(0.236665\pi\)
\(992\) 0 0
\(993\) 22614.4 0.722706
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −34448.3 −1.09427 −0.547136 0.837043i \(-0.684282\pi\)
−0.547136 + 0.837043i \(0.684282\pi\)
\(998\) 0 0
\(999\) −246.832 −0.00781724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bq.1.3 yes 3
4.3 odd 2 2400.4.a.bk.1.1 3
5.4 even 2 2400.4.a.bl.1.1 yes 3
20.19 odd 2 2400.4.a.br.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bk.1.1 3 4.3 odd 2
2400.4.a.bl.1.1 yes 3 5.4 even 2
2400.4.a.bq.1.3 yes 3 1.1 even 1 trivial
2400.4.a.br.1.3 yes 3 20.19 odd 2