Properties

Label 2400.4.a.bp.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.28724.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 19x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.12921\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +19.6176 q^{7} +9.00000 q^{9} +7.89924 q^{11} -74.5505 q^{13} -0.529863 q^{17} +89.7988 q^{19} +58.8528 q^{21} -174.773 q^{23} +27.0000 q^{27} -275.941 q^{29} +267.417 q^{31} +23.6977 q^{33} +11.3700 q^{37} -223.652 q^{39} -384.881 q^{41} +28.5115 q^{43} -289.504 q^{47} +41.8506 q^{49} -1.58959 q^{51} +256.571 q^{53} +269.396 q^{57} +174.268 q^{59} -732.913 q^{61} +176.558 q^{63} +498.110 q^{67} -524.318 q^{69} -763.136 q^{71} -927.268 q^{73} +154.964 q^{77} +217.199 q^{79} +81.0000 q^{81} -21.8132 q^{83} -827.823 q^{87} -191.701 q^{89} -1462.50 q^{91} +802.250 q^{93} -885.353 q^{97} +71.0931 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 19 q^{7} + 27 q^{9} + 48 q^{11} - 63 q^{13} - 16 q^{17} + 21 q^{19} - 57 q^{21} - 140 q^{23} + 81 q^{27} + 92 q^{29} + 179 q^{31} + 144 q^{33} - 550 q^{37} - 189 q^{39} - 206 q^{41} - 279 q^{43}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 19.6176 1.05925 0.529626 0.848232i \(-0.322332\pi\)
0.529626 + 0.848232i \(0.322332\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 7.89924 0.216519 0.108260 0.994123i \(-0.465472\pi\)
0.108260 + 0.994123i \(0.465472\pi\)
\(12\) 0 0
\(13\) −74.5505 −1.59051 −0.795254 0.606277i \(-0.792662\pi\)
−0.795254 + 0.606277i \(0.792662\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.529863 −0.00755946 −0.00377973 0.999993i \(-0.501203\pi\)
−0.00377973 + 0.999993i \(0.501203\pi\)
\(18\) 0 0
\(19\) 89.7988 1.08428 0.542138 0.840289i \(-0.317615\pi\)
0.542138 + 0.840289i \(0.317615\pi\)
\(20\) 0 0
\(21\) 58.8528 0.611559
\(22\) 0 0
\(23\) −174.773 −1.58446 −0.792231 0.610221i \(-0.791081\pi\)
−0.792231 + 0.610221i \(0.791081\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −275.941 −1.76693 −0.883465 0.468497i \(-0.844796\pi\)
−0.883465 + 0.468497i \(0.844796\pi\)
\(30\) 0 0
\(31\) 267.417 1.54934 0.774669 0.632367i \(-0.217917\pi\)
0.774669 + 0.632367i \(0.217917\pi\)
\(32\) 0 0
\(33\) 23.6977 0.125007
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.3700 0.0505192 0.0252596 0.999681i \(-0.491959\pi\)
0.0252596 + 0.999681i \(0.491959\pi\)
\(38\) 0 0
\(39\) −223.652 −0.918280
\(40\) 0 0
\(41\) −384.881 −1.46606 −0.733029 0.680197i \(-0.761894\pi\)
−0.733029 + 0.680197i \(0.761894\pi\)
\(42\) 0 0
\(43\) 28.5115 0.101115 0.0505577 0.998721i \(-0.483900\pi\)
0.0505577 + 0.998721i \(0.483900\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −289.504 −0.898479 −0.449240 0.893411i \(-0.648305\pi\)
−0.449240 + 0.893411i \(0.648305\pi\)
\(48\) 0 0
\(49\) 41.8506 0.122013
\(50\) 0 0
\(51\) −1.58959 −0.00436445
\(52\) 0 0
\(53\) 256.571 0.664958 0.332479 0.943111i \(-0.392115\pi\)
0.332479 + 0.943111i \(0.392115\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 269.396 0.626007
\(58\) 0 0
\(59\) 174.268 0.384539 0.192270 0.981342i \(-0.438415\pi\)
0.192270 + 0.981342i \(0.438415\pi\)
\(60\) 0 0
\(61\) −732.913 −1.53836 −0.769180 0.639032i \(-0.779335\pi\)
−0.769180 + 0.639032i \(0.779335\pi\)
\(62\) 0 0
\(63\) 176.558 0.353084
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 498.110 0.908266 0.454133 0.890934i \(-0.349949\pi\)
0.454133 + 0.890934i \(0.349949\pi\)
\(68\) 0 0
\(69\) −524.318 −0.914790
\(70\) 0 0
\(71\) −763.136 −1.27560 −0.637800 0.770202i \(-0.720155\pi\)
−0.637800 + 0.770202i \(0.720155\pi\)
\(72\) 0 0
\(73\) −927.268 −1.48669 −0.743346 0.668907i \(-0.766762\pi\)
−0.743346 + 0.668907i \(0.766762\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 154.964 0.229348
\(78\) 0 0
\(79\) 217.199 0.309327 0.154663 0.987967i \(-0.450571\pi\)
0.154663 + 0.987967i \(0.450571\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −21.8132 −0.0288471 −0.0144235 0.999896i \(-0.504591\pi\)
−0.0144235 + 0.999896i \(0.504591\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −827.823 −1.02014
\(88\) 0 0
\(89\) −191.701 −0.228318 −0.114159 0.993463i \(-0.536417\pi\)
−0.114159 + 0.993463i \(0.536417\pi\)
\(90\) 0 0
\(91\) −1462.50 −1.68475
\(92\) 0 0
\(93\) 802.250 0.894510
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −885.353 −0.926742 −0.463371 0.886164i \(-0.653360\pi\)
−0.463371 + 0.886164i \(0.653360\pi\)
\(98\) 0 0
\(99\) 71.0931 0.0721730
\(100\) 0 0
\(101\) 1432.59 1.41137 0.705684 0.708527i \(-0.250640\pi\)
0.705684 + 0.708527i \(0.250640\pi\)
\(102\) 0 0
\(103\) −622.362 −0.595370 −0.297685 0.954664i \(-0.596215\pi\)
−0.297685 + 0.954664i \(0.596215\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1204.84 −1.08857 −0.544283 0.838902i \(-0.683198\pi\)
−0.544283 + 0.838902i \(0.683198\pi\)
\(108\) 0 0
\(109\) 109.573 0.0962866 0.0481433 0.998840i \(-0.484670\pi\)
0.0481433 + 0.998840i \(0.484670\pi\)
\(110\) 0 0
\(111\) 34.1099 0.0291673
\(112\) 0 0
\(113\) 924.455 0.769606 0.384803 0.922999i \(-0.374269\pi\)
0.384803 + 0.922999i \(0.374269\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −670.955 −0.530169
\(118\) 0 0
\(119\) −10.3947 −0.00800736
\(120\) 0 0
\(121\) −1268.60 −0.953120
\(122\) 0 0
\(123\) −1154.64 −0.846429
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1251.14 0.874178 0.437089 0.899418i \(-0.356009\pi\)
0.437089 + 0.899418i \(0.356009\pi\)
\(128\) 0 0
\(129\) 85.5344 0.0583790
\(130\) 0 0
\(131\) 2391.14 1.59477 0.797387 0.603469i \(-0.206215\pi\)
0.797387 + 0.603469i \(0.206215\pi\)
\(132\) 0 0
\(133\) 1761.64 1.14852
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −568.517 −0.354538 −0.177269 0.984162i \(-0.556726\pi\)
−0.177269 + 0.984162i \(0.556726\pi\)
\(138\) 0 0
\(139\) 1615.92 0.986049 0.493024 0.870015i \(-0.335891\pi\)
0.493024 + 0.870015i \(0.335891\pi\)
\(140\) 0 0
\(141\) −868.512 −0.518737
\(142\) 0 0
\(143\) −588.892 −0.344375
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 125.552 0.0704444
\(148\) 0 0
\(149\) 36.9552 0.0203187 0.0101593 0.999948i \(-0.496766\pi\)
0.0101593 + 0.999948i \(0.496766\pi\)
\(150\) 0 0
\(151\) −2566.94 −1.38341 −0.691704 0.722181i \(-0.743140\pi\)
−0.691704 + 0.722181i \(0.743140\pi\)
\(152\) 0 0
\(153\) −4.76877 −0.00251982
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2649.19 −1.34668 −0.673338 0.739335i \(-0.735140\pi\)
−0.673338 + 0.739335i \(0.735140\pi\)
\(158\) 0 0
\(159\) 769.714 0.383914
\(160\) 0 0
\(161\) −3428.62 −1.67834
\(162\) 0 0
\(163\) −1787.40 −0.858897 −0.429448 0.903091i \(-0.641292\pi\)
−0.429448 + 0.903091i \(0.641292\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1223.60 0.566974 0.283487 0.958976i \(-0.408509\pi\)
0.283487 + 0.958976i \(0.408509\pi\)
\(168\) 0 0
\(169\) 3360.78 1.52971
\(170\) 0 0
\(171\) 808.189 0.361425
\(172\) 0 0
\(173\) −778.379 −0.342075 −0.171038 0.985264i \(-0.554712\pi\)
−0.171038 + 0.985264i \(0.554712\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 522.805 0.222014
\(178\) 0 0
\(179\) 1316.25 0.549614 0.274807 0.961499i \(-0.411386\pi\)
0.274807 + 0.961499i \(0.411386\pi\)
\(180\) 0 0
\(181\) 1822.39 0.748381 0.374190 0.927352i \(-0.377921\pi\)
0.374190 + 0.927352i \(0.377921\pi\)
\(182\) 0 0
\(183\) −2198.74 −0.888172
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.18552 −0.00163677
\(188\) 0 0
\(189\) 529.675 0.203853
\(190\) 0 0
\(191\) −1417.75 −0.537092 −0.268546 0.963267i \(-0.586543\pi\)
−0.268546 + 0.963267i \(0.586543\pi\)
\(192\) 0 0
\(193\) 2798.24 1.04364 0.521818 0.853057i \(-0.325254\pi\)
0.521818 + 0.853057i \(0.325254\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −690.819 −0.249842 −0.124921 0.992167i \(-0.539868\pi\)
−0.124921 + 0.992167i \(0.539868\pi\)
\(198\) 0 0
\(199\) 5000.57 1.78131 0.890656 0.454679i \(-0.150246\pi\)
0.890656 + 0.454679i \(0.150246\pi\)
\(200\) 0 0
\(201\) 1494.33 0.524388
\(202\) 0 0
\(203\) −5413.31 −1.87162
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1572.95 −0.528154
\(208\) 0 0
\(209\) 709.342 0.234766
\(210\) 0 0
\(211\) −1102.07 −0.359572 −0.179786 0.983706i \(-0.557541\pi\)
−0.179786 + 0.983706i \(0.557541\pi\)
\(212\) 0 0
\(213\) −2289.41 −0.736467
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5246.08 1.64114
\(218\) 0 0
\(219\) −2781.80 −0.858342
\(220\) 0 0
\(221\) 39.5016 0.0120234
\(222\) 0 0
\(223\) 1638.23 0.491946 0.245973 0.969277i \(-0.420893\pi\)
0.245973 + 0.969277i \(0.420893\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3682.55 −1.07674 −0.538368 0.842710i \(-0.680959\pi\)
−0.538368 + 0.842710i \(0.680959\pi\)
\(228\) 0 0
\(229\) −3932.80 −1.13488 −0.567439 0.823415i \(-0.692066\pi\)
−0.567439 + 0.823415i \(0.692066\pi\)
\(230\) 0 0
\(231\) 464.892 0.132414
\(232\) 0 0
\(233\) 830.393 0.233480 0.116740 0.993163i \(-0.462756\pi\)
0.116740 + 0.993163i \(0.462756\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 651.597 0.178590
\(238\) 0 0
\(239\) −1673.62 −0.452959 −0.226479 0.974016i \(-0.572722\pi\)
−0.226479 + 0.974016i \(0.572722\pi\)
\(240\) 0 0
\(241\) 4585.84 1.22572 0.612862 0.790190i \(-0.290018\pi\)
0.612862 + 0.790190i \(0.290018\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6694.55 −1.72455
\(248\) 0 0
\(249\) −65.4395 −0.0166549
\(250\) 0 0
\(251\) −6139.35 −1.54387 −0.771937 0.635699i \(-0.780712\pi\)
−0.771937 + 0.635699i \(0.780712\pi\)
\(252\) 0 0
\(253\) −1380.57 −0.343066
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2218.01 −0.538349 −0.269174 0.963091i \(-0.586751\pi\)
−0.269174 + 0.963091i \(0.586751\pi\)
\(258\) 0 0
\(259\) 223.051 0.0535125
\(260\) 0 0
\(261\) −2483.47 −0.588977
\(262\) 0 0
\(263\) −7479.49 −1.75363 −0.876815 0.480827i \(-0.840336\pi\)
−0.876815 + 0.480827i \(0.840336\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −575.103 −0.131819
\(268\) 0 0
\(269\) −294.700 −0.0667962 −0.0333981 0.999442i \(-0.510633\pi\)
−0.0333981 + 0.999442i \(0.510633\pi\)
\(270\) 0 0
\(271\) −6961.39 −1.56042 −0.780211 0.625517i \(-0.784888\pi\)
−0.780211 + 0.625517i \(0.784888\pi\)
\(272\) 0 0
\(273\) −4387.51 −0.972689
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2035.72 −0.441570 −0.220785 0.975323i \(-0.570862\pi\)
−0.220785 + 0.975323i \(0.570862\pi\)
\(278\) 0 0
\(279\) 2406.75 0.516446
\(280\) 0 0
\(281\) −1058.00 −0.224609 −0.112305 0.993674i \(-0.535823\pi\)
−0.112305 + 0.993674i \(0.535823\pi\)
\(282\) 0 0
\(283\) −9252.98 −1.94358 −0.971789 0.235853i \(-0.924212\pi\)
−0.971789 + 0.235853i \(0.924212\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7550.45 −1.55292
\(288\) 0 0
\(289\) −4912.72 −0.999943
\(290\) 0 0
\(291\) −2656.06 −0.535055
\(292\) 0 0
\(293\) −7009.84 −1.39768 −0.698838 0.715280i \(-0.746299\pi\)
−0.698838 + 0.715280i \(0.746299\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 213.279 0.0416691
\(298\) 0 0
\(299\) 13029.4 2.52010
\(300\) 0 0
\(301\) 559.327 0.107107
\(302\) 0 0
\(303\) 4297.77 0.814853
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7972.73 1.48218 0.741088 0.671408i \(-0.234310\pi\)
0.741088 + 0.671408i \(0.234310\pi\)
\(308\) 0 0
\(309\) −1867.09 −0.343737
\(310\) 0 0
\(311\) −8775.06 −1.59996 −0.799981 0.600025i \(-0.795157\pi\)
−0.799981 + 0.600025i \(0.795157\pi\)
\(312\) 0 0
\(313\) 7595.33 1.37161 0.685804 0.727786i \(-0.259451\pi\)
0.685804 + 0.727786i \(0.259451\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5442.28 0.964256 0.482128 0.876101i \(-0.339864\pi\)
0.482128 + 0.876101i \(0.339864\pi\)
\(318\) 0 0
\(319\) −2179.72 −0.382574
\(320\) 0 0
\(321\) −3614.53 −0.628484
\(322\) 0 0
\(323\) −47.5811 −0.00819654
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 328.720 0.0555911
\(328\) 0 0
\(329\) −5679.38 −0.951715
\(330\) 0 0
\(331\) 6541.66 1.08629 0.543146 0.839639i \(-0.317233\pi\)
0.543146 + 0.839639i \(0.317233\pi\)
\(332\) 0 0
\(333\) 102.330 0.0168397
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 512.773 0.0828859 0.0414429 0.999141i \(-0.486805\pi\)
0.0414429 + 0.999141i \(0.486805\pi\)
\(338\) 0 0
\(339\) 2773.37 0.444332
\(340\) 0 0
\(341\) 2112.39 0.335461
\(342\) 0 0
\(343\) −5907.83 −0.930009
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5367.42 0.830370 0.415185 0.909737i \(-0.363717\pi\)
0.415185 + 0.909737i \(0.363717\pi\)
\(348\) 0 0
\(349\) 12534.3 1.92249 0.961243 0.275702i \(-0.0889103\pi\)
0.961243 + 0.275702i \(0.0889103\pi\)
\(350\) 0 0
\(351\) −2012.86 −0.306093
\(352\) 0 0
\(353\) −7701.70 −1.16125 −0.580623 0.814172i \(-0.697191\pi\)
−0.580623 + 0.814172i \(0.697191\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −31.1840 −0.00462305
\(358\) 0 0
\(359\) −3344.13 −0.491633 −0.245817 0.969316i \(-0.579056\pi\)
−0.245817 + 0.969316i \(0.579056\pi\)
\(360\) 0 0
\(361\) 1204.82 0.175655
\(362\) 0 0
\(363\) −3805.81 −0.550284
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5289.16 −0.752293 −0.376147 0.926560i \(-0.622751\pi\)
−0.376147 + 0.926560i \(0.622751\pi\)
\(368\) 0 0
\(369\) −3463.93 −0.488686
\(370\) 0 0
\(371\) 5033.31 0.704357
\(372\) 0 0
\(373\) −2109.80 −0.292872 −0.146436 0.989220i \(-0.546780\pi\)
−0.146436 + 0.989220i \(0.546780\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20571.6 2.81032
\(378\) 0 0
\(379\) 10081.8 1.36641 0.683205 0.730227i \(-0.260586\pi\)
0.683205 + 0.730227i \(0.260586\pi\)
\(380\) 0 0
\(381\) 3753.42 0.504707
\(382\) 0 0
\(383\) −10499.4 −1.40076 −0.700381 0.713769i \(-0.746987\pi\)
−0.700381 + 0.713769i \(0.746987\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 256.603 0.0337051
\(388\) 0 0
\(389\) −3812.31 −0.496893 −0.248447 0.968646i \(-0.579920\pi\)
−0.248447 + 0.968646i \(0.579920\pi\)
\(390\) 0 0
\(391\) 92.6057 0.0119777
\(392\) 0 0
\(393\) 7173.43 0.920743
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −227.796 −0.0287979 −0.0143989 0.999896i \(-0.504583\pi\)
−0.0143989 + 0.999896i \(0.504583\pi\)
\(398\) 0 0
\(399\) 5284.91 0.663099
\(400\) 0 0
\(401\) 12646.6 1.57492 0.787460 0.616366i \(-0.211396\pi\)
0.787460 + 0.616366i \(0.211396\pi\)
\(402\) 0 0
\(403\) −19936.1 −2.46423
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 89.8140 0.0109384
\(408\) 0 0
\(409\) 10306.0 1.24596 0.622982 0.782236i \(-0.285921\pi\)
0.622982 + 0.782236i \(0.285921\pi\)
\(410\) 0 0
\(411\) −1705.55 −0.204692
\(412\) 0 0
\(413\) 3418.73 0.407323
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4847.77 0.569296
\(418\) 0 0
\(419\) 5722.65 0.667231 0.333616 0.942709i \(-0.391731\pi\)
0.333616 + 0.942709i \(0.391731\pi\)
\(420\) 0 0
\(421\) 4459.44 0.516247 0.258123 0.966112i \(-0.416896\pi\)
0.258123 + 0.966112i \(0.416896\pi\)
\(422\) 0 0
\(423\) −2605.54 −0.299493
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14378.0 −1.62951
\(428\) 0 0
\(429\) −1766.68 −0.198825
\(430\) 0 0
\(431\) −9956.60 −1.11274 −0.556372 0.830933i \(-0.687807\pi\)
−0.556372 + 0.830933i \(0.687807\pi\)
\(432\) 0 0
\(433\) −7033.60 −0.780631 −0.390316 0.920681i \(-0.627634\pi\)
−0.390316 + 0.920681i \(0.627634\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15694.4 −1.71799
\(438\) 0 0
\(439\) 4855.75 0.527910 0.263955 0.964535i \(-0.414973\pi\)
0.263955 + 0.964535i \(0.414973\pi\)
\(440\) 0 0
\(441\) 376.655 0.0406711
\(442\) 0 0
\(443\) −3421.49 −0.366952 −0.183476 0.983024i \(-0.558735\pi\)
−0.183476 + 0.983024i \(0.558735\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 110.865 0.0117310
\(448\) 0 0
\(449\) 13938.3 1.46501 0.732505 0.680761i \(-0.238351\pi\)
0.732505 + 0.680761i \(0.238351\pi\)
\(450\) 0 0
\(451\) −3040.27 −0.317429
\(452\) 0 0
\(453\) −7700.82 −0.798711
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18167.8 −1.85964 −0.929820 0.368015i \(-0.880037\pi\)
−0.929820 + 0.368015i \(0.880037\pi\)
\(458\) 0 0
\(459\) −14.3063 −0.00145482
\(460\) 0 0
\(461\) −5727.65 −0.578662 −0.289331 0.957229i \(-0.593433\pi\)
−0.289331 + 0.957229i \(0.593433\pi\)
\(462\) 0 0
\(463\) −3651.02 −0.366473 −0.183237 0.983069i \(-0.558657\pi\)
−0.183237 + 0.983069i \(0.558657\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9230.06 0.914596 0.457298 0.889313i \(-0.348817\pi\)
0.457298 + 0.889313i \(0.348817\pi\)
\(468\) 0 0
\(469\) 9771.73 0.962082
\(470\) 0 0
\(471\) −7947.56 −0.777504
\(472\) 0 0
\(473\) 225.219 0.0218934
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2309.14 0.221653
\(478\) 0 0
\(479\) 8663.36 0.826387 0.413193 0.910643i \(-0.364413\pi\)
0.413193 + 0.910643i \(0.364413\pi\)
\(480\) 0 0
\(481\) −847.637 −0.0803512
\(482\) 0 0
\(483\) −10285.9 −0.968992
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −12154.2 −1.13093 −0.565463 0.824773i \(-0.691303\pi\)
−0.565463 + 0.824773i \(0.691303\pi\)
\(488\) 0 0
\(489\) −5362.21 −0.495884
\(490\) 0 0
\(491\) 5635.54 0.517980 0.258990 0.965880i \(-0.416610\pi\)
0.258990 + 0.965880i \(0.416610\pi\)
\(492\) 0 0
\(493\) 146.211 0.0133570
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14970.9 −1.35118
\(498\) 0 0
\(499\) −6749.53 −0.605512 −0.302756 0.953068i \(-0.597907\pi\)
−0.302756 + 0.953068i \(0.597907\pi\)
\(500\) 0 0
\(501\) 3670.79 0.327343
\(502\) 0 0
\(503\) 17215.5 1.52605 0.763025 0.646369i \(-0.223713\pi\)
0.763025 + 0.646369i \(0.223713\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10082.3 0.883181
\(508\) 0 0
\(509\) −17375.6 −1.51308 −0.756541 0.653946i \(-0.773112\pi\)
−0.756541 + 0.653946i \(0.773112\pi\)
\(510\) 0 0
\(511\) −18190.8 −1.57478
\(512\) 0 0
\(513\) 2424.57 0.208669
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −2286.86 −0.194538
\(518\) 0 0
\(519\) −2335.14 −0.197497
\(520\) 0 0
\(521\) −10140.8 −0.852736 −0.426368 0.904550i \(-0.640207\pi\)
−0.426368 + 0.904550i \(0.640207\pi\)
\(522\) 0 0
\(523\) 7367.10 0.615948 0.307974 0.951395i \(-0.400349\pi\)
0.307974 + 0.951395i \(0.400349\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −141.694 −0.0117121
\(528\) 0 0
\(529\) 18378.5 1.51052
\(530\) 0 0
\(531\) 1568.41 0.128180
\(532\) 0 0
\(533\) 28693.1 2.33178
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3948.74 0.317320
\(538\) 0 0
\(539\) 330.587 0.0264182
\(540\) 0 0
\(541\) 456.217 0.0362556 0.0181278 0.999836i \(-0.494229\pi\)
0.0181278 + 0.999836i \(0.494229\pi\)
\(542\) 0 0
\(543\) 5467.16 0.432078
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16435.7 −1.28472 −0.642359 0.766404i \(-0.722044\pi\)
−0.642359 + 0.766404i \(0.722044\pi\)
\(548\) 0 0
\(549\) −6596.22 −0.512787
\(550\) 0 0
\(551\) −24779.2 −1.91584
\(552\) 0 0
\(553\) 4260.93 0.327655
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20749.6 1.57844 0.789218 0.614113i \(-0.210486\pi\)
0.789218 + 0.614113i \(0.210486\pi\)
\(558\) 0 0
\(559\) −2125.55 −0.160825
\(560\) 0 0
\(561\) −12.5565 −0.000944987 0
\(562\) 0 0
\(563\) −24580.2 −1.84002 −0.920009 0.391898i \(-0.871819\pi\)
−0.920009 + 0.391898i \(0.871819\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1589.03 0.117695
\(568\) 0 0
\(569\) −10755.4 −0.792423 −0.396212 0.918159i \(-0.629675\pi\)
−0.396212 + 0.918159i \(0.629675\pi\)
\(570\) 0 0
\(571\) 9370.97 0.686800 0.343400 0.939189i \(-0.388421\pi\)
0.343400 + 0.939189i \(0.388421\pi\)
\(572\) 0 0
\(573\) −4253.24 −0.310090
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14631.2 −1.05564 −0.527819 0.849357i \(-0.676990\pi\)
−0.527819 + 0.849357i \(0.676990\pi\)
\(578\) 0 0
\(579\) 8394.72 0.602543
\(580\) 0 0
\(581\) −427.922 −0.0305563
\(582\) 0 0
\(583\) 2026.72 0.143976
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20163.0 −1.41774 −0.708872 0.705337i \(-0.750796\pi\)
−0.708872 + 0.705337i \(0.750796\pi\)
\(588\) 0 0
\(589\) 24013.7 1.67991
\(590\) 0 0
\(591\) −2072.46 −0.144246
\(592\) 0 0
\(593\) −11427.2 −0.791334 −0.395667 0.918394i \(-0.629486\pi\)
−0.395667 + 0.918394i \(0.629486\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15001.7 1.02844
\(598\) 0 0
\(599\) −13907.2 −0.948637 −0.474318 0.880353i \(-0.657305\pi\)
−0.474318 + 0.880353i \(0.657305\pi\)
\(600\) 0 0
\(601\) 2823.38 0.191627 0.0958136 0.995399i \(-0.469455\pi\)
0.0958136 + 0.995399i \(0.469455\pi\)
\(602\) 0 0
\(603\) 4482.99 0.302755
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −10782.2 −0.720984 −0.360492 0.932762i \(-0.617391\pi\)
−0.360492 + 0.932762i \(0.617391\pi\)
\(608\) 0 0
\(609\) −16239.9 −1.08058
\(610\) 0 0
\(611\) 21582.7 1.42904
\(612\) 0 0
\(613\) 15504.4 1.02156 0.510781 0.859711i \(-0.329356\pi\)
0.510781 + 0.859711i \(0.329356\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1293.49 −0.0843987 −0.0421994 0.999109i \(-0.513436\pi\)
−0.0421994 + 0.999109i \(0.513436\pi\)
\(618\) 0 0
\(619\) −4077.37 −0.264755 −0.132378 0.991199i \(-0.542261\pi\)
−0.132378 + 0.991199i \(0.542261\pi\)
\(620\) 0 0
\(621\) −4718.86 −0.304930
\(622\) 0 0
\(623\) −3760.72 −0.241846
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2128.02 0.135542
\(628\) 0 0
\(629\) −6.02453 −0.000381898 0
\(630\) 0 0
\(631\) −4926.34 −0.310799 −0.155400 0.987852i \(-0.549667\pi\)
−0.155400 + 0.987852i \(0.549667\pi\)
\(632\) 0 0
\(633\) −3306.21 −0.207599
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3119.98 −0.194063
\(638\) 0 0
\(639\) −6868.22 −0.425200
\(640\) 0 0
\(641\) −2412.43 −0.148651 −0.0743255 0.997234i \(-0.523680\pi\)
−0.0743255 + 0.997234i \(0.523680\pi\)
\(642\) 0 0
\(643\) −9005.77 −0.552337 −0.276169 0.961109i \(-0.589065\pi\)
−0.276169 + 0.961109i \(0.589065\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7452.03 −0.452812 −0.226406 0.974033i \(-0.572698\pi\)
−0.226406 + 0.974033i \(0.572698\pi\)
\(648\) 0 0
\(649\) 1376.59 0.0832600
\(650\) 0 0
\(651\) 15738.2 0.947511
\(652\) 0 0
\(653\) −19389.2 −1.16195 −0.580977 0.813920i \(-0.697329\pi\)
−0.580977 + 0.813920i \(0.697329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8345.41 −0.495564
\(658\) 0 0
\(659\) 29605.2 1.75001 0.875004 0.484116i \(-0.160859\pi\)
0.875004 + 0.484116i \(0.160859\pi\)
\(660\) 0 0
\(661\) 8840.38 0.520198 0.260099 0.965582i \(-0.416245\pi\)
0.260099 + 0.965582i \(0.416245\pi\)
\(662\) 0 0
\(663\) 118.505 0.00694170
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48227.0 2.79963
\(668\) 0 0
\(669\) 4914.69 0.284025
\(670\) 0 0
\(671\) −5789.46 −0.333084
\(672\) 0 0
\(673\) 16914.1 0.968785 0.484393 0.874851i \(-0.339041\pi\)
0.484393 + 0.874851i \(0.339041\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19762.2 1.12190 0.560949 0.827851i \(-0.310436\pi\)
0.560949 + 0.827851i \(0.310436\pi\)
\(678\) 0 0
\(679\) −17368.5 −0.981653
\(680\) 0 0
\(681\) −11047.6 −0.621654
\(682\) 0 0
\(683\) −15403.9 −0.862976 −0.431488 0.902119i \(-0.642011\pi\)
−0.431488 + 0.902119i \(0.642011\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11798.4 −0.655222
\(688\) 0 0
\(689\) −19127.5 −1.05762
\(690\) 0 0
\(691\) 11468.9 0.631399 0.315699 0.948859i \(-0.397761\pi\)
0.315699 + 0.948859i \(0.397761\pi\)
\(692\) 0 0
\(693\) 1394.68 0.0764493
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 203.935 0.0110826
\(698\) 0 0
\(699\) 2491.18 0.134800
\(700\) 0 0
\(701\) −22926.8 −1.23528 −0.617641 0.786460i \(-0.711911\pi\)
−0.617641 + 0.786460i \(0.711911\pi\)
\(702\) 0 0
\(703\) 1021.01 0.0547768
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28104.0 1.49499
\(708\) 0 0
\(709\) −20023.3 −1.06064 −0.530319 0.847798i \(-0.677928\pi\)
−0.530319 + 0.847798i \(0.677928\pi\)
\(710\) 0 0
\(711\) 1954.79 0.103109
\(712\) 0 0
\(713\) −46737.1 −2.45487
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5020.85 −0.261516
\(718\) 0 0
\(719\) 23678.6 1.22818 0.614092 0.789234i \(-0.289522\pi\)
0.614092 + 0.789234i \(0.289522\pi\)
\(720\) 0 0
\(721\) −12209.2 −0.630647
\(722\) 0 0
\(723\) 13757.5 0.707673
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10302.0 0.525559 0.262779 0.964856i \(-0.415361\pi\)
0.262779 + 0.964856i \(0.415361\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −15.1072 −0.000764377 0
\(732\) 0 0
\(733\) 23716.7 1.19508 0.597542 0.801838i \(-0.296144\pi\)
0.597542 + 0.801838i \(0.296144\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3934.69 0.196657
\(738\) 0 0
\(739\) 13007.0 0.647459 0.323729 0.946150i \(-0.395063\pi\)
0.323729 + 0.946150i \(0.395063\pi\)
\(740\) 0 0
\(741\) −20083.6 −0.995669
\(742\) 0 0
\(743\) 33942.1 1.67593 0.837964 0.545725i \(-0.183746\pi\)
0.837964 + 0.545725i \(0.183746\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −196.319 −0.00961569
\(748\) 0 0
\(749\) −23636.1 −1.15307
\(750\) 0 0
\(751\) 2959.96 0.143822 0.0719112 0.997411i \(-0.477090\pi\)
0.0719112 + 0.997411i \(0.477090\pi\)
\(752\) 0 0
\(753\) −18418.1 −0.891357
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29475.3 −1.41519 −0.707593 0.706620i \(-0.750219\pi\)
−0.707593 + 0.706620i \(0.750219\pi\)
\(758\) 0 0
\(759\) −4141.71 −0.198069
\(760\) 0 0
\(761\) −7910.79 −0.376828 −0.188414 0.982090i \(-0.560335\pi\)
−0.188414 + 0.982090i \(0.560335\pi\)
\(762\) 0 0
\(763\) 2149.57 0.101992
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12991.8 −0.611612
\(768\) 0 0
\(769\) −8273.59 −0.387976 −0.193988 0.981004i \(-0.562142\pi\)
−0.193988 + 0.981004i \(0.562142\pi\)
\(770\) 0 0
\(771\) −6654.03 −0.310816
\(772\) 0 0
\(773\) 21985.0 1.02296 0.511479 0.859296i \(-0.329098\pi\)
0.511479 + 0.859296i \(0.329098\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 669.154 0.0308955
\(778\) 0 0
\(779\) −34561.9 −1.58961
\(780\) 0 0
\(781\) −6028.19 −0.276191
\(782\) 0 0
\(783\) −7450.41 −0.340046
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25485.2 1.15432 0.577160 0.816631i \(-0.304161\pi\)
0.577160 + 0.816631i \(0.304161\pi\)
\(788\) 0 0
\(789\) −22438.5 −1.01246
\(790\) 0 0
\(791\) 18135.6 0.815206
\(792\) 0 0
\(793\) 54639.1 2.44677
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9611.91 −0.427191 −0.213596 0.976922i \(-0.568517\pi\)
−0.213596 + 0.976922i \(0.568517\pi\)
\(798\) 0 0
\(799\) 153.398 0.00679201
\(800\) 0 0
\(801\) −1725.31 −0.0761059
\(802\) 0 0
\(803\) −7324.71 −0.321897
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −884.101 −0.0385648
\(808\) 0 0
\(809\) −1918.02 −0.0833547 −0.0416774 0.999131i \(-0.513270\pi\)
−0.0416774 + 0.999131i \(0.513270\pi\)
\(810\) 0 0
\(811\) 38027.6 1.64652 0.823261 0.567663i \(-0.192152\pi\)
0.823261 + 0.567663i \(0.192152\pi\)
\(812\) 0 0
\(813\) −20884.2 −0.900910
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2560.29 0.109637
\(818\) 0 0
\(819\) −13162.5 −0.561582
\(820\) 0 0
\(821\) 23150.3 0.984105 0.492052 0.870566i \(-0.336247\pi\)
0.492052 + 0.870566i \(0.336247\pi\)
\(822\) 0 0
\(823\) 26584.1 1.12596 0.562978 0.826472i \(-0.309656\pi\)
0.562978 + 0.826472i \(0.309656\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19219.6 0.808137 0.404069 0.914729i \(-0.367596\pi\)
0.404069 + 0.914729i \(0.367596\pi\)
\(828\) 0 0
\(829\) 38859.1 1.62803 0.814013 0.580846i \(-0.197278\pi\)
0.814013 + 0.580846i \(0.197278\pi\)
\(830\) 0 0
\(831\) −6107.17 −0.254940
\(832\) 0 0
\(833\) −22.1751 −0.000922354 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 7220.25 0.298170
\(838\) 0 0
\(839\) −32060.3 −1.31924 −0.659621 0.751598i \(-0.729283\pi\)
−0.659621 + 0.751598i \(0.729283\pi\)
\(840\) 0 0
\(841\) 51754.5 2.12204
\(842\) 0 0
\(843\) −3174.01 −0.129678
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −24886.9 −1.00959
\(848\) 0 0
\(849\) −27758.9 −1.12213
\(850\) 0 0
\(851\) −1987.16 −0.0800458
\(852\) 0 0
\(853\) −8889.57 −0.356827 −0.178413 0.983956i \(-0.557096\pi\)
−0.178413 + 0.983956i \(0.557096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16548.6 −0.659614 −0.329807 0.944048i \(-0.606984\pi\)
−0.329807 + 0.944048i \(0.606984\pi\)
\(858\) 0 0
\(859\) 46480.6 1.84621 0.923107 0.384543i \(-0.125641\pi\)
0.923107 + 0.384543i \(0.125641\pi\)
\(860\) 0 0
\(861\) −22651.4 −0.896581
\(862\) 0 0
\(863\) 40478.2 1.59663 0.798316 0.602239i \(-0.205725\pi\)
0.798316 + 0.602239i \(0.205725\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14738.2 −0.577317
\(868\) 0 0
\(869\) 1715.71 0.0669751
\(870\) 0 0
\(871\) −37134.4 −1.44460
\(872\) 0 0
\(873\) −7968.18 −0.308914
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16898.6 −0.650657 −0.325329 0.945601i \(-0.605475\pi\)
−0.325329 + 0.945601i \(0.605475\pi\)
\(878\) 0 0
\(879\) −21029.5 −0.806949
\(880\) 0 0
\(881\) −50678.1 −1.93801 −0.969006 0.247037i \(-0.920543\pi\)
−0.969006 + 0.247037i \(0.920543\pi\)
\(882\) 0 0
\(883\) 19464.8 0.741839 0.370920 0.928665i \(-0.379043\pi\)
0.370920 + 0.928665i \(0.379043\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39554.0 −1.49729 −0.748644 0.662973i \(-0.769295\pi\)
−0.748644 + 0.662973i \(0.769295\pi\)
\(888\) 0 0
\(889\) 24544.3 0.925974
\(890\) 0 0
\(891\) 639.838 0.0240577
\(892\) 0 0
\(893\) −25997.1 −0.974200
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 39088.2 1.45498
\(898\) 0 0
\(899\) −73791.3 −2.73757
\(900\) 0 0
\(901\) −135.948 −0.00502672
\(902\) 0 0
\(903\) 1677.98 0.0618380
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12617.9 0.461929 0.230965 0.972962i \(-0.425812\pi\)
0.230965 + 0.972962i \(0.425812\pi\)
\(908\) 0 0
\(909\) 12893.3 0.470456
\(910\) 0 0
\(911\) 2570.05 0.0934683 0.0467341 0.998907i \(-0.485119\pi\)
0.0467341 + 0.998907i \(0.485119\pi\)
\(912\) 0 0
\(913\) −172.307 −0.00624594
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 46908.5 1.68927
\(918\) 0 0
\(919\) −29738.3 −1.06744 −0.533719 0.845662i \(-0.679206\pi\)
−0.533719 + 0.845662i \(0.679206\pi\)
\(920\) 0 0
\(921\) 23918.2 0.855734
\(922\) 0 0
\(923\) 56892.2 2.02885
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5601.26 −0.198457
\(928\) 0 0
\(929\) 17702.9 0.625203 0.312601 0.949884i \(-0.398800\pi\)
0.312601 + 0.949884i \(0.398800\pi\)
\(930\) 0 0
\(931\) 3758.13 0.132296
\(932\) 0 0
\(933\) −26325.2 −0.923738
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17692.0 −0.616833 −0.308416 0.951251i \(-0.599799\pi\)
−0.308416 + 0.951251i \(0.599799\pi\)
\(938\) 0 0
\(939\) 22786.0 0.791898
\(940\) 0 0
\(941\) 6445.10 0.223278 0.111639 0.993749i \(-0.464390\pi\)
0.111639 + 0.993749i \(0.464390\pi\)
\(942\) 0 0
\(943\) 67266.8 2.32291
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22687.6 0.778510 0.389255 0.921130i \(-0.372732\pi\)
0.389255 + 0.921130i \(0.372732\pi\)
\(948\) 0 0
\(949\) 69128.3 2.36460
\(950\) 0 0
\(951\) 16326.9 0.556713
\(952\) 0 0
\(953\) 21132.5 0.718310 0.359155 0.933278i \(-0.383065\pi\)
0.359155 + 0.933278i \(0.383065\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6539.17 −0.220879
\(958\) 0 0
\(959\) −11152.9 −0.375545
\(960\) 0 0
\(961\) 41720.7 1.40045
\(962\) 0 0
\(963\) −10843.6 −0.362855
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 54081.6 1.79850 0.899248 0.437438i \(-0.144114\pi\)
0.899248 + 0.437438i \(0.144114\pi\)
\(968\) 0 0
\(969\) −142.743 −0.00473227
\(970\) 0 0
\(971\) 59224.0 1.95735 0.978676 0.205409i \(-0.0658524\pi\)
0.978676 + 0.205409i \(0.0658524\pi\)
\(972\) 0 0
\(973\) 31700.5 1.04447
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31672.4 −1.03714 −0.518572 0.855034i \(-0.673536\pi\)
−0.518572 + 0.855034i \(0.673536\pi\)
\(978\) 0 0
\(979\) −1514.29 −0.0494351
\(980\) 0 0
\(981\) 986.161 0.0320955
\(982\) 0 0
\(983\) −16842.2 −0.546474 −0.273237 0.961947i \(-0.588094\pi\)
−0.273237 + 0.961947i \(0.588094\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −17038.1 −0.549473
\(988\) 0 0
\(989\) −4983.03 −0.160213
\(990\) 0 0
\(991\) −27973.5 −0.896678 −0.448339 0.893864i \(-0.647984\pi\)
−0.448339 + 0.893864i \(0.647984\pi\)
\(992\) 0 0
\(993\) 19625.0 0.627170
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21935.4 0.696792 0.348396 0.937347i \(-0.386726\pi\)
0.348396 + 0.937347i \(0.386726\pi\)
\(998\) 0 0
\(999\) 306.989 0.00972243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bp.1.3 yes 3
4.3 odd 2 2400.4.a.bm.1.1 3
5.4 even 2 2400.4.a.bn.1.1 yes 3
20.19 odd 2 2400.4.a.bo.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bm.1.1 3 4.3 odd 2
2400.4.a.bn.1.1 yes 3 5.4 even 2
2400.4.a.bo.1.3 yes 3 20.19 odd 2
2400.4.a.bp.1.3 yes 3 1.1 even 1 trivial