Properties

Label 2400.4.a.bn.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.28724.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 19x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.66165\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.18460 q^{7} +9.00000 q^{9} -1.46201 q^{11} -30.9398 q^{13} -116.603 q^{17} -149.266 q^{19} -18.5538 q^{21} +99.6477 q^{23} -27.0000 q^{27} +150.818 q^{29} -217.792 q^{31} +4.38604 q^{33} +321.542 q^{37} +92.8195 q^{39} -192.388 q^{41} -168.930 q^{43} +115.968 q^{47} -304.751 q^{49} +349.810 q^{51} -162.724 q^{53} +447.797 q^{57} +493.021 q^{59} +239.785 q^{61} +55.6614 q^{63} +720.968 q^{67} -298.943 q^{69} +179.198 q^{71} -512.622 q^{73} -9.04197 q^{77} +240.014 q^{79} +81.0000 q^{81} +631.000 q^{83} -452.455 q^{87} +501.502 q^{89} -191.350 q^{91} +653.376 q^{93} -512.059 q^{97} -13.1581 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 19 q^{7} + 27 q^{9} + 48 q^{11} + 63 q^{13} + 16 q^{17} + 21 q^{19} - 57 q^{21} + 140 q^{23} - 81 q^{27} + 92 q^{29} + 179 q^{31} - 144 q^{33} + 550 q^{37} - 189 q^{39} - 206 q^{41} + 279 q^{43}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.18460 0.333937 0.166968 0.985962i \(-0.446602\pi\)
0.166968 + 0.985962i \(0.446602\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −1.46201 −0.0400740 −0.0200370 0.999799i \(-0.506378\pi\)
−0.0200370 + 0.999799i \(0.506378\pi\)
\(12\) 0 0
\(13\) −30.9398 −0.660090 −0.330045 0.943965i \(-0.607064\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −116.603 −1.66356 −0.831778 0.555108i \(-0.812677\pi\)
−0.831778 + 0.555108i \(0.812677\pi\)
\(18\) 0 0
\(19\) −149.266 −1.80231 −0.901155 0.433496i \(-0.857280\pi\)
−0.901155 + 0.433496i \(0.857280\pi\)
\(20\) 0 0
\(21\) −18.5538 −0.192799
\(22\) 0 0
\(23\) 99.6477 0.903390 0.451695 0.892172i \(-0.350820\pi\)
0.451695 + 0.892172i \(0.350820\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 150.818 0.965734 0.482867 0.875694i \(-0.339595\pi\)
0.482867 + 0.875694i \(0.339595\pi\)
\(30\) 0 0
\(31\) −217.792 −1.26183 −0.630913 0.775854i \(-0.717319\pi\)
−0.630913 + 0.775854i \(0.717319\pi\)
\(32\) 0 0
\(33\) 4.38604 0.0231367
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 321.542 1.42868 0.714340 0.699798i \(-0.246727\pi\)
0.714340 + 0.699798i \(0.246727\pi\)
\(38\) 0 0
\(39\) 92.8195 0.381103
\(40\) 0 0
\(41\) −192.388 −0.732829 −0.366414 0.930452i \(-0.619415\pi\)
−0.366414 + 0.930452i \(0.619415\pi\)
\(42\) 0 0
\(43\) −168.930 −0.599107 −0.299554 0.954079i \(-0.596838\pi\)
−0.299554 + 0.954079i \(0.596838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 115.968 0.359909 0.179955 0.983675i \(-0.442405\pi\)
0.179955 + 0.983675i \(0.442405\pi\)
\(48\) 0 0
\(49\) −304.751 −0.888486
\(50\) 0 0
\(51\) 349.810 0.960455
\(52\) 0 0
\(53\) −162.724 −0.421732 −0.210866 0.977515i \(-0.567628\pi\)
−0.210866 + 0.977515i \(0.567628\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 447.797 1.04056
\(58\) 0 0
\(59\) 493.021 1.08790 0.543948 0.839119i \(-0.316929\pi\)
0.543948 + 0.839119i \(0.316929\pi\)
\(60\) 0 0
\(61\) 239.785 0.503301 0.251651 0.967818i \(-0.419027\pi\)
0.251651 + 0.967818i \(0.419027\pi\)
\(62\) 0 0
\(63\) 55.6614 0.111312
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 720.968 1.31463 0.657315 0.753616i \(-0.271692\pi\)
0.657315 + 0.753616i \(0.271692\pi\)
\(68\) 0 0
\(69\) −298.943 −0.521573
\(70\) 0 0
\(71\) 179.198 0.299534 0.149767 0.988721i \(-0.452148\pi\)
0.149767 + 0.988721i \(0.452148\pi\)
\(72\) 0 0
\(73\) −512.622 −0.821889 −0.410944 0.911660i \(-0.634801\pi\)
−0.410944 + 0.911660i \(0.634801\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.04197 −0.0133822
\(78\) 0 0
\(79\) 240.014 0.341819 0.170910 0.985287i \(-0.445329\pi\)
0.170910 + 0.985287i \(0.445329\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 631.000 0.834472 0.417236 0.908798i \(-0.362999\pi\)
0.417236 + 0.908798i \(0.362999\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −452.455 −0.557567
\(88\) 0 0
\(89\) 501.502 0.597293 0.298646 0.954364i \(-0.403465\pi\)
0.298646 + 0.954364i \(0.403465\pi\)
\(90\) 0 0
\(91\) −191.350 −0.220428
\(92\) 0 0
\(93\) 653.376 0.728515
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −512.059 −0.535997 −0.267998 0.963419i \(-0.586362\pi\)
−0.267998 + 0.963419i \(0.586362\pi\)
\(98\) 0 0
\(99\) −13.1581 −0.0133580
\(100\) 0 0
\(101\) −1558.82 −1.53573 −0.767863 0.640614i \(-0.778680\pi\)
−0.767863 + 0.640614i \(0.778680\pi\)
\(102\) 0 0
\(103\) 636.521 0.608915 0.304458 0.952526i \(-0.401525\pi\)
0.304458 + 0.952526i \(0.401525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1214.36 −1.09716 −0.548580 0.836098i \(-0.684832\pi\)
−0.548580 + 0.836098i \(0.684832\pi\)
\(108\) 0 0
\(109\) 284.921 0.250371 0.125186 0.992133i \(-0.460047\pi\)
0.125186 + 0.992133i \(0.460047\pi\)
\(110\) 0 0
\(111\) −964.626 −0.824849
\(112\) 0 0
\(113\) −634.021 −0.527820 −0.263910 0.964547i \(-0.585012\pi\)
−0.263910 + 0.964547i \(0.585012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −278.459 −0.220030
\(118\) 0 0
\(119\) −721.144 −0.555523
\(120\) 0 0
\(121\) −1328.86 −0.998394
\(122\) 0 0
\(123\) 577.164 0.423099
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −190.261 −0.132937 −0.0664684 0.997789i \(-0.521173\pi\)
−0.0664684 + 0.997789i \(0.521173\pi\)
\(128\) 0 0
\(129\) 506.791 0.345895
\(130\) 0 0
\(131\) −1538.27 −1.02595 −0.512975 0.858404i \(-0.671457\pi\)
−0.512975 + 0.858404i \(0.671457\pi\)
\(132\) 0 0
\(133\) −923.148 −0.601858
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 586.299 0.365627 0.182814 0.983148i \(-0.441480\pi\)
0.182814 + 0.983148i \(0.441480\pi\)
\(138\) 0 0
\(139\) 1226.37 0.748343 0.374171 0.927360i \(-0.377927\pi\)
0.374171 + 0.927360i \(0.377927\pi\)
\(140\) 0 0
\(141\) −347.905 −0.207794
\(142\) 0 0
\(143\) 45.2345 0.0264524
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 914.252 0.512968
\(148\) 0 0
\(149\) −3164.73 −1.74003 −0.870016 0.493023i \(-0.835892\pi\)
−0.870016 + 0.493023i \(0.835892\pi\)
\(150\) 0 0
\(151\) 108.000 0.0582048 0.0291024 0.999576i \(-0.490735\pi\)
0.0291024 + 0.999576i \(0.490735\pi\)
\(152\) 0 0
\(153\) −1049.43 −0.554519
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2092.95 1.06392 0.531959 0.846770i \(-0.321456\pi\)
0.531959 + 0.846770i \(0.321456\pi\)
\(158\) 0 0
\(159\) 488.171 0.243487
\(160\) 0 0
\(161\) 616.281 0.301675
\(162\) 0 0
\(163\) 3803.83 1.82785 0.913924 0.405886i \(-0.133037\pi\)
0.913924 + 0.405886i \(0.133037\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3534.64 1.63784 0.818919 0.573909i \(-0.194574\pi\)
0.818919 + 0.573909i \(0.194574\pi\)
\(168\) 0 0
\(169\) −1239.73 −0.564282
\(170\) 0 0
\(171\) −1343.39 −0.600770
\(172\) 0 0
\(173\) 1636.70 0.719281 0.359641 0.933091i \(-0.382899\pi\)
0.359641 + 0.933091i \(0.382899\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1479.06 −0.628097
\(178\) 0 0
\(179\) 1896.64 0.791966 0.395983 0.918258i \(-0.370404\pi\)
0.395983 + 0.918258i \(0.370404\pi\)
\(180\) 0 0
\(181\) 848.277 0.348353 0.174177 0.984714i \(-0.444274\pi\)
0.174177 + 0.984714i \(0.444274\pi\)
\(182\) 0 0
\(183\) −719.356 −0.290581
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 170.476 0.0666653
\(188\) 0 0
\(189\) −166.984 −0.0642662
\(190\) 0 0
\(191\) −3265.20 −1.23697 −0.618487 0.785795i \(-0.712254\pi\)
−0.618487 + 0.785795i \(0.712254\pi\)
\(192\) 0 0
\(193\) 778.836 0.290476 0.145238 0.989397i \(-0.453605\pi\)
0.145238 + 0.989397i \(0.453605\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3262.24 1.17982 0.589912 0.807468i \(-0.299162\pi\)
0.589912 + 0.807468i \(0.299162\pi\)
\(198\) 0 0
\(199\) 1005.79 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(200\) 0 0
\(201\) −2162.90 −0.759002
\(202\) 0 0
\(203\) 932.751 0.322494
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 896.829 0.301130
\(208\) 0 0
\(209\) 218.229 0.0722258
\(210\) 0 0
\(211\) 1903.03 0.620900 0.310450 0.950590i \(-0.399520\pi\)
0.310450 + 0.950590i \(0.399520\pi\)
\(212\) 0 0
\(213\) −537.594 −0.172936
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1346.96 −0.421370
\(218\) 0 0
\(219\) 1537.87 0.474518
\(220\) 0 0
\(221\) 3607.69 1.09810
\(222\) 0 0
\(223\) 4060.30 1.21927 0.609636 0.792682i \(-0.291316\pi\)
0.609636 + 0.792682i \(0.291316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 341.242 0.0997756 0.0498878 0.998755i \(-0.484114\pi\)
0.0498878 + 0.998755i \(0.484114\pi\)
\(228\) 0 0
\(229\) 4503.67 1.29961 0.649806 0.760100i \(-0.274850\pi\)
0.649806 + 0.760100i \(0.274850\pi\)
\(230\) 0 0
\(231\) 27.1259 0.00772621
\(232\) 0 0
\(233\) 1200.67 0.337589 0.168795 0.985651i \(-0.446013\pi\)
0.168795 + 0.985651i \(0.446013\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −720.043 −0.197350
\(238\) 0 0
\(239\) 6422.87 1.73833 0.869165 0.494522i \(-0.164657\pi\)
0.869165 + 0.494522i \(0.164657\pi\)
\(240\) 0 0
\(241\) −2105.29 −0.562711 −0.281356 0.959604i \(-0.590784\pi\)
−0.281356 + 0.959604i \(0.590784\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4618.26 1.18969
\(248\) 0 0
\(249\) −1893.00 −0.481783
\(250\) 0 0
\(251\) 1521.25 0.382551 0.191275 0.981536i \(-0.438738\pi\)
0.191275 + 0.981536i \(0.438738\pi\)
\(252\) 0 0
\(253\) −145.686 −0.0362024
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4392.25 −1.06607 −0.533037 0.846092i \(-0.678949\pi\)
−0.533037 + 0.846092i \(0.678949\pi\)
\(258\) 0 0
\(259\) 1988.61 0.477089
\(260\) 0 0
\(261\) 1357.37 0.321911
\(262\) 0 0
\(263\) 7995.63 1.87464 0.937322 0.348464i \(-0.113297\pi\)
0.937322 + 0.348464i \(0.113297\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1504.50 −0.344847
\(268\) 0 0
\(269\) −262.524 −0.0595031 −0.0297516 0.999557i \(-0.509472\pi\)
−0.0297516 + 0.999557i \(0.509472\pi\)
\(270\) 0 0
\(271\) −8782.03 −1.96853 −0.984263 0.176710i \(-0.943455\pi\)
−0.984263 + 0.176710i \(0.943455\pi\)
\(272\) 0 0
\(273\) 574.051 0.127264
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1946.87 −0.422297 −0.211148 0.977454i \(-0.567720\pi\)
−0.211148 + 0.977454i \(0.567720\pi\)
\(278\) 0 0
\(279\) −1960.13 −0.420609
\(280\) 0 0
\(281\) −939.459 −0.199443 −0.0997214 0.995015i \(-0.531795\pi\)
−0.0997214 + 0.995015i \(0.531795\pi\)
\(282\) 0 0
\(283\) 4353.15 0.914373 0.457187 0.889371i \(-0.348857\pi\)
0.457187 + 0.889371i \(0.348857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1189.84 −0.244719
\(288\) 0 0
\(289\) 8683.33 1.76742
\(290\) 0 0
\(291\) 1536.18 0.309458
\(292\) 0 0
\(293\) −4418.82 −0.881059 −0.440530 0.897738i \(-0.645209\pi\)
−0.440530 + 0.897738i \(0.645209\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 39.4744 0.00771224
\(298\) 0 0
\(299\) −3083.08 −0.596318
\(300\) 0 0
\(301\) −1044.77 −0.200064
\(302\) 0 0
\(303\) 4676.46 0.886652
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1822.92 −0.338890 −0.169445 0.985540i \(-0.554198\pi\)
−0.169445 + 0.985540i \(0.554198\pi\)
\(308\) 0 0
\(309\) −1909.56 −0.351557
\(310\) 0 0
\(311\) −6883.95 −1.25515 −0.627577 0.778554i \(-0.715953\pi\)
−0.627577 + 0.778554i \(0.715953\pi\)
\(312\) 0 0
\(313\) −3831.83 −0.691973 −0.345987 0.938239i \(-0.612456\pi\)
−0.345987 + 0.938239i \(0.612456\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2202.07 −0.390160 −0.195080 0.980787i \(-0.562497\pi\)
−0.195080 + 0.980787i \(0.562497\pi\)
\(318\) 0 0
\(319\) −220.499 −0.0387008
\(320\) 0 0
\(321\) 3643.07 0.633446
\(322\) 0 0
\(323\) 17404.9 2.99824
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −854.762 −0.144552
\(328\) 0 0
\(329\) 717.218 0.120187
\(330\) 0 0
\(331\) −4628.98 −0.768675 −0.384338 0.923193i \(-0.625570\pi\)
−0.384338 + 0.923193i \(0.625570\pi\)
\(332\) 0 0
\(333\) 2893.88 0.476227
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8122.20 1.31289 0.656446 0.754373i \(-0.272059\pi\)
0.656446 + 0.754373i \(0.272059\pi\)
\(338\) 0 0
\(339\) 1902.06 0.304737
\(340\) 0 0
\(341\) 318.415 0.0505664
\(342\) 0 0
\(343\) −4006.08 −0.630635
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6603.58 1.02161 0.510805 0.859696i \(-0.329347\pi\)
0.510805 + 0.859696i \(0.329347\pi\)
\(348\) 0 0
\(349\) −7941.66 −1.21807 −0.609036 0.793142i \(-0.708444\pi\)
−0.609036 + 0.793142i \(0.708444\pi\)
\(350\) 0 0
\(351\) 835.376 0.127034
\(352\) 0 0
\(353\) 5576.09 0.840751 0.420376 0.907350i \(-0.361898\pi\)
0.420376 + 0.907350i \(0.361898\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2163.43 0.320731
\(358\) 0 0
\(359\) 6048.44 0.889205 0.444602 0.895728i \(-0.353345\pi\)
0.444602 + 0.895728i \(0.353345\pi\)
\(360\) 0 0
\(361\) 15421.3 2.24832
\(362\) 0 0
\(363\) 3986.59 0.576423
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10719.0 1.52460 0.762298 0.647227i \(-0.224071\pi\)
0.762298 + 0.647227i \(0.224071\pi\)
\(368\) 0 0
\(369\) −1731.49 −0.244276
\(370\) 0 0
\(371\) −1006.38 −0.140832
\(372\) 0 0
\(373\) 10144.6 1.40823 0.704115 0.710086i \(-0.251344\pi\)
0.704115 + 0.710086i \(0.251344\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4666.30 −0.637471
\(378\) 0 0
\(379\) 14272.9 1.93443 0.967216 0.253957i \(-0.0817322\pi\)
0.967216 + 0.253957i \(0.0817322\pi\)
\(380\) 0 0
\(381\) 570.784 0.0767511
\(382\) 0 0
\(383\) −11654.0 −1.55480 −0.777401 0.629005i \(-0.783462\pi\)
−0.777401 + 0.629005i \(0.783462\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1520.37 −0.199702
\(388\) 0 0
\(389\) 2532.78 0.330121 0.165061 0.986283i \(-0.447218\pi\)
0.165061 + 0.986283i \(0.447218\pi\)
\(390\) 0 0
\(391\) −11619.2 −1.50284
\(392\) 0 0
\(393\) 4614.81 0.592332
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7635.48 0.965273 0.482637 0.875821i \(-0.339679\pi\)
0.482637 + 0.875821i \(0.339679\pi\)
\(398\) 0 0
\(399\) 2769.44 0.347483
\(400\) 0 0
\(401\) −9890.62 −1.23171 −0.615853 0.787861i \(-0.711188\pi\)
−0.615853 + 0.787861i \(0.711188\pi\)
\(402\) 0 0
\(403\) 6738.45 0.832918
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −470.099 −0.0572529
\(408\) 0 0
\(409\) 11704.6 1.41504 0.707522 0.706691i \(-0.249813\pi\)
0.707522 + 0.706691i \(0.249813\pi\)
\(410\) 0 0
\(411\) −1758.90 −0.211095
\(412\) 0 0
\(413\) 3049.14 0.363289
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3679.12 −0.432056
\(418\) 0 0
\(419\) 15336.9 1.78821 0.894103 0.447862i \(-0.147814\pi\)
0.894103 + 0.447862i \(0.147814\pi\)
\(420\) 0 0
\(421\) 14291.7 1.65448 0.827239 0.561850i \(-0.189910\pi\)
0.827239 + 0.561850i \(0.189910\pi\)
\(422\) 0 0
\(423\) 1043.72 0.119970
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1482.98 0.168071
\(428\) 0 0
\(429\) −135.703 −0.0152723
\(430\) 0 0
\(431\) −6508.14 −0.727345 −0.363673 0.931527i \(-0.618477\pi\)
−0.363673 + 0.931527i \(0.618477\pi\)
\(432\) 0 0
\(433\) −10144.7 −1.12592 −0.562962 0.826482i \(-0.690338\pi\)
−0.562962 + 0.826482i \(0.690338\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14874.0 −1.62819
\(438\) 0 0
\(439\) 1137.25 0.123640 0.0618199 0.998087i \(-0.480310\pi\)
0.0618199 + 0.998087i \(0.480310\pi\)
\(440\) 0 0
\(441\) −2742.76 −0.296162
\(442\) 0 0
\(443\) 7794.17 0.835919 0.417960 0.908466i \(-0.362745\pi\)
0.417960 + 0.908466i \(0.362745\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9494.19 1.00461
\(448\) 0 0
\(449\) −5182.89 −0.544756 −0.272378 0.962190i \(-0.587810\pi\)
−0.272378 + 0.962190i \(0.587810\pi\)
\(450\) 0 0
\(451\) 281.274 0.0293674
\(452\) 0 0
\(453\) −324.000 −0.0336046
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5982.62 −0.612374 −0.306187 0.951971i \(-0.599053\pi\)
−0.306187 + 0.951971i \(0.599053\pi\)
\(458\) 0 0
\(459\) 3148.29 0.320152
\(460\) 0 0
\(461\) 2540.96 0.256713 0.128356 0.991728i \(-0.459030\pi\)
0.128356 + 0.991728i \(0.459030\pi\)
\(462\) 0 0
\(463\) 15902.7 1.59625 0.798123 0.602494i \(-0.205826\pi\)
0.798123 + 0.602494i \(0.205826\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2931.74 −0.290503 −0.145251 0.989395i \(-0.546399\pi\)
−0.145251 + 0.989395i \(0.546399\pi\)
\(468\) 0 0
\(469\) 4458.90 0.439004
\(470\) 0 0
\(471\) −6278.84 −0.614254
\(472\) 0 0
\(473\) 246.978 0.0240086
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1464.51 −0.140577
\(478\) 0 0
\(479\) −14722.5 −1.40436 −0.702179 0.712001i \(-0.747789\pi\)
−0.702179 + 0.712001i \(0.747789\pi\)
\(480\) 0 0
\(481\) −9948.46 −0.943058
\(482\) 0 0
\(483\) −1848.84 −0.174172
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9604.32 −0.893662 −0.446831 0.894618i \(-0.647447\pi\)
−0.446831 + 0.894618i \(0.647447\pi\)
\(488\) 0 0
\(489\) −11411.5 −1.05531
\(490\) 0 0
\(491\) 12095.5 1.11174 0.555870 0.831269i \(-0.312385\pi\)
0.555870 + 0.831269i \(0.312385\pi\)
\(492\) 0 0
\(493\) −17585.9 −1.60655
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1108.27 0.100025
\(498\) 0 0
\(499\) −348.001 −0.0312198 −0.0156099 0.999878i \(-0.504969\pi\)
−0.0156099 + 0.999878i \(0.504969\pi\)
\(500\) 0 0
\(501\) −10603.9 −0.945606
\(502\) 0 0
\(503\) 8767.40 0.777175 0.388587 0.921412i \(-0.372963\pi\)
0.388587 + 0.921412i \(0.372963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3719.18 0.325788
\(508\) 0 0
\(509\) 1405.66 0.122406 0.0612031 0.998125i \(-0.480506\pi\)
0.0612031 + 0.998125i \(0.480506\pi\)
\(510\) 0 0
\(511\) −3170.36 −0.274459
\(512\) 0 0
\(513\) 4030.17 0.346855
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −169.547 −0.0144230
\(518\) 0 0
\(519\) −4910.09 −0.415277
\(520\) 0 0
\(521\) 5431.44 0.456729 0.228364 0.973576i \(-0.426662\pi\)
0.228364 + 0.973576i \(0.426662\pi\)
\(522\) 0 0
\(523\) 18655.4 1.55974 0.779868 0.625944i \(-0.215286\pi\)
0.779868 + 0.625944i \(0.215286\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25395.3 2.09912
\(528\) 0 0
\(529\) −2237.34 −0.183886
\(530\) 0 0
\(531\) 4437.19 0.362632
\(532\) 0 0
\(533\) 5952.46 0.483733
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5689.93 −0.457242
\(538\) 0 0
\(539\) 445.550 0.0356052
\(540\) 0 0
\(541\) −17070.1 −1.35656 −0.678281 0.734803i \(-0.737275\pi\)
−0.678281 + 0.734803i \(0.737275\pi\)
\(542\) 0 0
\(543\) −2544.83 −0.201122
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −17569.2 −1.37331 −0.686657 0.726981i \(-0.740923\pi\)
−0.686657 + 0.726981i \(0.740923\pi\)
\(548\) 0 0
\(549\) 2158.07 0.167767
\(550\) 0 0
\(551\) −22512.0 −1.74055
\(552\) 0 0
\(553\) 1484.39 0.114146
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12574.2 0.956529 0.478264 0.878216i \(-0.341266\pi\)
0.478264 + 0.878216i \(0.341266\pi\)
\(558\) 0 0
\(559\) 5226.67 0.395465
\(560\) 0 0
\(561\) −511.427 −0.0384892
\(562\) 0 0
\(563\) 2946.14 0.220541 0.110271 0.993902i \(-0.464828\pi\)
0.110271 + 0.993902i \(0.464828\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 500.952 0.0371041
\(568\) 0 0
\(569\) −12393.3 −0.913098 −0.456549 0.889698i \(-0.650915\pi\)
−0.456549 + 0.889698i \(0.650915\pi\)
\(570\) 0 0
\(571\) 20840.7 1.52742 0.763708 0.645562i \(-0.223377\pi\)
0.763708 + 0.645562i \(0.223377\pi\)
\(572\) 0 0
\(573\) 9795.61 0.714167
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6808.37 0.491224 0.245612 0.969368i \(-0.421011\pi\)
0.245612 + 0.969368i \(0.421011\pi\)
\(578\) 0 0
\(579\) −2336.51 −0.167706
\(580\) 0 0
\(581\) 3902.48 0.278661
\(582\) 0 0
\(583\) 237.904 0.0169005
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21014.4 −1.47761 −0.738804 0.673920i \(-0.764609\pi\)
−0.738804 + 0.673920i \(0.764609\pi\)
\(588\) 0 0
\(589\) 32508.9 2.27420
\(590\) 0 0
\(591\) −9786.73 −0.681172
\(592\) 0 0
\(593\) 20550.4 1.42311 0.711554 0.702632i \(-0.247992\pi\)
0.711554 + 0.702632i \(0.247992\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3017.37 −0.206856
\(598\) 0 0
\(599\) 7083.42 0.483173 0.241586 0.970379i \(-0.422332\pi\)
0.241586 + 0.970379i \(0.422332\pi\)
\(600\) 0 0
\(601\) 19174.3 1.30139 0.650696 0.759338i \(-0.274477\pi\)
0.650696 + 0.759338i \(0.274477\pi\)
\(602\) 0 0
\(603\) 6488.71 0.438210
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7315.15 0.489148 0.244574 0.969631i \(-0.421352\pi\)
0.244574 + 0.969631i \(0.421352\pi\)
\(608\) 0 0
\(609\) −2798.25 −0.186192
\(610\) 0 0
\(611\) −3588.04 −0.237572
\(612\) 0 0
\(613\) −21302.2 −1.40357 −0.701786 0.712388i \(-0.747614\pi\)
−0.701786 + 0.712388i \(0.747614\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24210.1 1.57968 0.789839 0.613314i \(-0.210164\pi\)
0.789839 + 0.613314i \(0.210164\pi\)
\(618\) 0 0
\(619\) 8667.47 0.562803 0.281401 0.959590i \(-0.409201\pi\)
0.281401 + 0.959590i \(0.409201\pi\)
\(620\) 0 0
\(621\) −2690.49 −0.173858
\(622\) 0 0
\(623\) 3101.58 0.199458
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −654.686 −0.0416996
\(628\) 0 0
\(629\) −37492.9 −2.37669
\(630\) 0 0
\(631\) −4831.15 −0.304794 −0.152397 0.988319i \(-0.548699\pi\)
−0.152397 + 0.988319i \(0.548699\pi\)
\(632\) 0 0
\(633\) −5709.08 −0.358477
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9428.94 0.586481
\(638\) 0 0
\(639\) 1612.78 0.0998445
\(640\) 0 0
\(641\) −205.527 −0.0126643 −0.00633216 0.999980i \(-0.502016\pi\)
−0.00633216 + 0.999980i \(0.502016\pi\)
\(642\) 0 0
\(643\) −5324.60 −0.326566 −0.163283 0.986579i \(-0.552208\pi\)
−0.163283 + 0.986579i \(0.552208\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20996.4 1.27582 0.637908 0.770113i \(-0.279800\pi\)
0.637908 + 0.770113i \(0.279800\pi\)
\(648\) 0 0
\(649\) −720.804 −0.0435963
\(650\) 0 0
\(651\) 4040.87 0.243278
\(652\) 0 0
\(653\) 3441.98 0.206271 0.103136 0.994667i \(-0.467112\pi\)
0.103136 + 0.994667i \(0.467112\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4613.60 −0.273963
\(658\) 0 0
\(659\) 57.3161 0.00338804 0.00169402 0.999999i \(-0.499461\pi\)
0.00169402 + 0.999999i \(0.499461\pi\)
\(660\) 0 0
\(661\) −196.228 −0.0115467 −0.00577335 0.999983i \(-0.501838\pi\)
−0.00577335 + 0.999983i \(0.501838\pi\)
\(662\) 0 0
\(663\) −10823.1 −0.633986
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15028.7 0.872434
\(668\) 0 0
\(669\) −12180.9 −0.703947
\(670\) 0 0
\(671\) −350.570 −0.0201693
\(672\) 0 0
\(673\) −21773.5 −1.24711 −0.623556 0.781779i \(-0.714312\pi\)
−0.623556 + 0.781779i \(0.714312\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14527.9 −0.824748 −0.412374 0.911015i \(-0.635300\pi\)
−0.412374 + 0.911015i \(0.635300\pi\)
\(678\) 0 0
\(679\) −3166.88 −0.178989
\(680\) 0 0
\(681\) −1023.73 −0.0576054
\(682\) 0 0
\(683\) −2333.00 −0.130703 −0.0653513 0.997862i \(-0.520817\pi\)
−0.0653513 + 0.997862i \(0.520817\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −13511.0 −0.750331
\(688\) 0 0
\(689\) 5034.64 0.278381
\(690\) 0 0
\(691\) 10962.4 0.603517 0.301759 0.953384i \(-0.402426\pi\)
0.301759 + 0.953384i \(0.402426\pi\)
\(692\) 0 0
\(693\) −81.3777 −0.00446073
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 22433.1 1.21910
\(698\) 0 0
\(699\) −3602.00 −0.194907
\(700\) 0 0
\(701\) −15041.6 −0.810433 −0.405216 0.914221i \(-0.632804\pi\)
−0.405216 + 0.914221i \(0.632804\pi\)
\(702\) 0 0
\(703\) −47995.2 −2.57493
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9640.67 −0.512836
\(708\) 0 0
\(709\) 35670.3 1.88946 0.944729 0.327852i \(-0.106325\pi\)
0.944729 + 0.327852i \(0.106325\pi\)
\(710\) 0 0
\(711\) 2160.13 0.113940
\(712\) 0 0
\(713\) −21702.5 −1.13992
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19268.6 −1.00363
\(718\) 0 0
\(719\) −6897.57 −0.357769 −0.178884 0.983870i \(-0.557249\pi\)
−0.178884 + 0.983870i \(0.557249\pi\)
\(720\) 0 0
\(721\) 3936.63 0.203339
\(722\) 0 0
\(723\) 6315.86 0.324882
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 19188.3 0.978894 0.489447 0.872033i \(-0.337199\pi\)
0.489447 + 0.872033i \(0.337199\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 19697.8 0.996649
\(732\) 0 0
\(733\) 18810.8 0.947876 0.473938 0.880558i \(-0.342832\pi\)
0.473938 + 0.880558i \(0.342832\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1054.07 −0.0526825
\(738\) 0 0
\(739\) −7662.10 −0.381400 −0.190700 0.981648i \(-0.561076\pi\)
−0.190700 + 0.981648i \(0.561076\pi\)
\(740\) 0 0
\(741\) −13854.8 −0.686866
\(742\) 0 0
\(743\) −5156.24 −0.254595 −0.127297 0.991865i \(-0.540630\pi\)
−0.127297 + 0.991865i \(0.540630\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5679.00 0.278157
\(748\) 0 0
\(749\) −7510.30 −0.366382
\(750\) 0 0
\(751\) −28137.3 −1.36717 −0.683586 0.729870i \(-0.739581\pi\)
−0.683586 + 0.729870i \(0.739581\pi\)
\(752\) 0 0
\(753\) −4563.74 −0.220866
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 17662.8 0.848039 0.424020 0.905653i \(-0.360619\pi\)
0.424020 + 0.905653i \(0.360619\pi\)
\(758\) 0 0
\(759\) 437.059 0.0209015
\(760\) 0 0
\(761\) −41190.7 −1.96211 −0.981053 0.193742i \(-0.937938\pi\)
−0.981053 + 0.193742i \(0.937938\pi\)
\(762\) 0 0
\(763\) 1762.12 0.0836081
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15254.0 −0.718109
\(768\) 0 0
\(769\) 19122.6 0.896720 0.448360 0.893853i \(-0.352008\pi\)
0.448360 + 0.893853i \(0.352008\pi\)
\(770\) 0 0
\(771\) 13176.8 0.615498
\(772\) 0 0
\(773\) −27745.0 −1.29097 −0.645484 0.763774i \(-0.723344\pi\)
−0.645484 + 0.763774i \(0.723344\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5965.82 −0.275448
\(778\) 0 0
\(779\) 28717.0 1.32079
\(780\) 0 0
\(781\) −261.990 −0.0120035
\(782\) 0 0
\(783\) −4072.10 −0.185856
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −12025.5 −0.544680 −0.272340 0.962201i \(-0.587798\pi\)
−0.272340 + 0.962201i \(0.587798\pi\)
\(788\) 0 0
\(789\) −23986.9 −1.08233
\(790\) 0 0
\(791\) −3921.17 −0.176259
\(792\) 0 0
\(793\) −7418.92 −0.332224
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28403.9 −1.26238 −0.631190 0.775628i \(-0.717433\pi\)
−0.631190 + 0.775628i \(0.717433\pi\)
\(798\) 0 0
\(799\) −13522.3 −0.598729
\(800\) 0 0
\(801\) 4513.51 0.199098
\(802\) 0 0
\(803\) 749.461 0.0329364
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 787.571 0.0343541
\(808\) 0 0
\(809\) 411.382 0.0178782 0.00893908 0.999960i \(-0.497155\pi\)
0.00893908 + 0.999960i \(0.497155\pi\)
\(810\) 0 0
\(811\) 469.428 0.0203254 0.0101627 0.999948i \(-0.496765\pi\)
0.0101627 + 0.999948i \(0.496765\pi\)
\(812\) 0 0
\(813\) 26346.1 1.13653
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25215.5 1.07978
\(818\) 0 0
\(819\) −1722.15 −0.0734761
\(820\) 0 0
\(821\) −10910.5 −0.463799 −0.231899 0.972740i \(-0.574494\pi\)
−0.231899 + 0.972740i \(0.574494\pi\)
\(822\) 0 0
\(823\) −14117.9 −0.597958 −0.298979 0.954260i \(-0.596646\pi\)
−0.298979 + 0.954260i \(0.596646\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19048.5 −0.800943 −0.400472 0.916309i \(-0.631154\pi\)
−0.400472 + 0.916309i \(0.631154\pi\)
\(828\) 0 0
\(829\) 22284.8 0.933635 0.466818 0.884354i \(-0.345400\pi\)
0.466818 + 0.884354i \(0.345400\pi\)
\(830\) 0 0
\(831\) 5840.62 0.243813
\(832\) 0 0
\(833\) 35534.9 1.47805
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5880.38 0.242838
\(838\) 0 0
\(839\) −39588.2 −1.62901 −0.814503 0.580159i \(-0.802990\pi\)
−0.814503 + 0.580159i \(0.802990\pi\)
\(840\) 0 0
\(841\) −1642.79 −0.0673579
\(842\) 0 0
\(843\) 2818.38 0.115148
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8218.48 −0.333401
\(848\) 0 0
\(849\) −13059.4 −0.527914
\(850\) 0 0
\(851\) 32040.9 1.29066
\(852\) 0 0
\(853\) −36096.1 −1.44889 −0.724447 0.689330i \(-0.757905\pi\)
−0.724447 + 0.689330i \(0.757905\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22517.1 −0.897515 −0.448757 0.893654i \(-0.648133\pi\)
−0.448757 + 0.893654i \(0.648133\pi\)
\(858\) 0 0
\(859\) −20070.2 −0.797190 −0.398595 0.917127i \(-0.630502\pi\)
−0.398595 + 0.917127i \(0.630502\pi\)
\(860\) 0 0
\(861\) 3569.53 0.141288
\(862\) 0 0
\(863\) −45334.0 −1.78817 −0.894083 0.447902i \(-0.852172\pi\)
−0.894083 + 0.447902i \(0.852172\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −26050.0 −1.02042
\(868\) 0 0
\(869\) −350.905 −0.0136981
\(870\) 0 0
\(871\) −22306.6 −0.867774
\(872\) 0 0
\(873\) −4608.53 −0.178666
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25479.8 0.981061 0.490531 0.871424i \(-0.336803\pi\)
0.490531 + 0.871424i \(0.336803\pi\)
\(878\) 0 0
\(879\) 13256.5 0.508680
\(880\) 0 0
\(881\) 26865.2 1.02737 0.513683 0.857980i \(-0.328281\pi\)
0.513683 + 0.857980i \(0.328281\pi\)
\(882\) 0 0
\(883\) 31954.4 1.21784 0.608920 0.793232i \(-0.291603\pi\)
0.608920 + 0.793232i \(0.291603\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27421.2 −1.03801 −0.519005 0.854771i \(-0.673697\pi\)
−0.519005 + 0.854771i \(0.673697\pi\)
\(888\) 0 0
\(889\) −1176.69 −0.0443925
\(890\) 0 0
\(891\) −118.423 −0.00445267
\(892\) 0 0
\(893\) −17310.1 −0.648668
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9249.25 0.344285
\(898\) 0 0
\(899\) −32847.1 −1.21859
\(900\) 0 0
\(901\) 18974.1 0.701575
\(902\) 0 0
\(903\) 3134.30 0.115507
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −27087.1 −0.991634 −0.495817 0.868427i \(-0.665131\pi\)
−0.495817 + 0.868427i \(0.665131\pi\)
\(908\) 0 0
\(909\) −14029.4 −0.511909
\(910\) 0 0
\(911\) 11780.7 0.428444 0.214222 0.976785i \(-0.431278\pi\)
0.214222 + 0.976785i \(0.431278\pi\)
\(912\) 0 0
\(913\) −922.530 −0.0334406
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9513.59 −0.342602
\(918\) 0 0
\(919\) −54875.4 −1.96972 −0.984860 0.173351i \(-0.944541\pi\)
−0.984860 + 0.173351i \(0.944541\pi\)
\(920\) 0 0
\(921\) 5468.75 0.195658
\(922\) 0 0
\(923\) −5544.35 −0.197719
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 5728.69 0.202972
\(928\) 0 0
\(929\) −14186.1 −0.501002 −0.250501 0.968116i \(-0.580595\pi\)
−0.250501 + 0.968116i \(0.580595\pi\)
\(930\) 0 0
\(931\) 45488.8 1.60133
\(932\) 0 0
\(933\) 20651.9 0.724664
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5461.34 0.190410 0.0952049 0.995458i \(-0.469649\pi\)
0.0952049 + 0.995458i \(0.469649\pi\)
\(938\) 0 0
\(939\) 11495.5 0.399511
\(940\) 0 0
\(941\) 13692.3 0.474341 0.237170 0.971468i \(-0.423780\pi\)
0.237170 + 0.971468i \(0.423780\pi\)
\(942\) 0 0
\(943\) −19171.0 −0.662030
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8167.92 0.280276 0.140138 0.990132i \(-0.455245\pi\)
0.140138 + 0.990132i \(0.455245\pi\)
\(948\) 0 0
\(949\) 15860.4 0.542520
\(950\) 0 0
\(951\) 6606.22 0.225259
\(952\) 0 0
\(953\) 46746.0 1.58893 0.794465 0.607309i \(-0.207751\pi\)
0.794465 + 0.607309i \(0.207751\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 661.496 0.0223439
\(958\) 0 0
\(959\) 3626.02 0.122096
\(960\) 0 0
\(961\) 17642.4 0.592204
\(962\) 0 0
\(963\) −10929.2 −0.365720
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 23433.9 0.779299 0.389649 0.920963i \(-0.372596\pi\)
0.389649 + 0.920963i \(0.372596\pi\)
\(968\) 0 0
\(969\) −52214.6 −1.73104
\(970\) 0 0
\(971\) 20510.1 0.677857 0.338929 0.940812i \(-0.389935\pi\)
0.338929 + 0.940812i \(0.389935\pi\)
\(972\) 0 0
\(973\) 7584.63 0.249899
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14429.5 −0.472508 −0.236254 0.971691i \(-0.575920\pi\)
−0.236254 + 0.971691i \(0.575920\pi\)
\(978\) 0 0
\(979\) −733.202 −0.0239359
\(980\) 0 0
\(981\) 2564.29 0.0834570
\(982\) 0 0
\(983\) −55279.5 −1.79363 −0.896817 0.442402i \(-0.854127\pi\)
−0.896817 + 0.442402i \(0.854127\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2151.65 −0.0693899
\(988\) 0 0
\(989\) −16833.5 −0.541228
\(990\) 0 0
\(991\) 46458.6 1.48921 0.744604 0.667506i \(-0.232638\pi\)
0.744604 + 0.667506i \(0.232638\pi\)
\(992\) 0 0
\(993\) 13886.9 0.443795
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21047.6 0.668591 0.334295 0.942468i \(-0.391502\pi\)
0.334295 + 0.942468i \(0.391502\pi\)
\(998\) 0 0
\(999\) −8681.64 −0.274950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bn.1.2 yes 3
4.3 odd 2 2400.4.a.bo.1.2 yes 3
5.4 even 2 2400.4.a.bp.1.2 yes 3
20.19 odd 2 2400.4.a.bm.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bm.1.2 3 20.19 odd 2
2400.4.a.bn.1.2 yes 3 1.1 even 1 trivial
2400.4.a.bo.1.2 yes 3 4.3 odd 2
2400.4.a.bp.1.2 yes 3 5.4 even 2