Properties

Label 2400.4.a.bm.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.28724.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 19x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.467558\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +32.4330 q^{7} +9.00000 q^{9} -41.5628 q^{11} -19.3893 q^{13} -132.073 q^{17} -80.4669 q^{19} -97.2990 q^{21} -134.420 q^{23} -27.0000 q^{27} +217.123 q^{29} -129.375 q^{31} +124.688 q^{33} -239.828 q^{37} +58.1679 q^{39} +371.270 q^{41} +476.442 q^{43} +44.5275 q^{47} +708.900 q^{49} +396.220 q^{51} +14.7052 q^{53} +241.401 q^{57} -186.711 q^{59} -609.872 q^{61} +291.897 q^{63} +332.142 q^{67} +403.261 q^{69} +386.062 q^{71} +1136.65 q^{73} -1348.01 q^{77} +1313.21 q^{79} +81.0000 q^{81} -430.813 q^{83} -651.368 q^{87} -1525.80 q^{89} -628.853 q^{91} +388.126 q^{93} +462.295 q^{97} -374.065 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 19 q^{7} + 27 q^{9} - 48 q^{11} - 63 q^{13} - 16 q^{17} - 21 q^{19} - 57 q^{21} + 140 q^{23} - 81 q^{27} + 92 q^{29} - 179 q^{31} + 144 q^{33} - 550 q^{37} + 189 q^{39} - 206 q^{41} + 279 q^{43}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 32.4330 1.75122 0.875609 0.483021i \(-0.160460\pi\)
0.875609 + 0.483021i \(0.160460\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −41.5628 −1.13924 −0.569620 0.821908i \(-0.692910\pi\)
−0.569620 + 0.821908i \(0.692910\pi\)
\(12\) 0 0
\(13\) −19.3893 −0.413663 −0.206832 0.978377i \(-0.566315\pi\)
−0.206832 + 0.978377i \(0.566315\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −132.073 −1.88427 −0.942133 0.335240i \(-0.891183\pi\)
−0.942133 + 0.335240i \(0.891183\pi\)
\(18\) 0 0
\(19\) −80.4669 −0.971599 −0.485800 0.874070i \(-0.661472\pi\)
−0.485800 + 0.874070i \(0.661472\pi\)
\(20\) 0 0
\(21\) −97.2990 −1.01107
\(22\) 0 0
\(23\) −134.420 −1.21863 −0.609317 0.792927i \(-0.708556\pi\)
−0.609317 + 0.792927i \(0.708556\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 217.123 1.39030 0.695150 0.718865i \(-0.255338\pi\)
0.695150 + 0.718865i \(0.255338\pi\)
\(30\) 0 0
\(31\) −129.375 −0.749564 −0.374782 0.927113i \(-0.622282\pi\)
−0.374782 + 0.927113i \(0.622282\pi\)
\(32\) 0 0
\(33\) 124.688 0.657741
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −239.828 −1.06561 −0.532804 0.846239i \(-0.678862\pi\)
−0.532804 + 0.846239i \(0.678862\pi\)
\(38\) 0 0
\(39\) 58.1679 0.238829
\(40\) 0 0
\(41\) 371.270 1.41421 0.707104 0.707109i \(-0.250001\pi\)
0.707104 + 0.707109i \(0.250001\pi\)
\(42\) 0 0
\(43\) 476.442 1.68969 0.844845 0.535011i \(-0.179693\pi\)
0.844845 + 0.535011i \(0.179693\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 44.5275 0.138192 0.0690958 0.997610i \(-0.477989\pi\)
0.0690958 + 0.997610i \(0.477989\pi\)
\(48\) 0 0
\(49\) 708.900 2.06676
\(50\) 0 0
\(51\) 396.220 1.08788
\(52\) 0 0
\(53\) 14.7052 0.0381115 0.0190558 0.999818i \(-0.493934\pi\)
0.0190558 + 0.999818i \(0.493934\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 241.401 0.560953
\(58\) 0 0
\(59\) −186.711 −0.411994 −0.205997 0.978553i \(-0.566044\pi\)
−0.205997 + 0.978553i \(0.566044\pi\)
\(60\) 0 0
\(61\) −609.872 −1.28010 −0.640050 0.768333i \(-0.721086\pi\)
−0.640050 + 0.768333i \(0.721086\pi\)
\(62\) 0 0
\(63\) 291.897 0.583739
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 332.142 0.605636 0.302818 0.953048i \(-0.402073\pi\)
0.302818 + 0.953048i \(0.402073\pi\)
\(68\) 0 0
\(69\) 403.261 0.703579
\(70\) 0 0
\(71\) 386.062 0.645312 0.322656 0.946516i \(-0.395424\pi\)
0.322656 + 0.946516i \(0.395424\pi\)
\(72\) 0 0
\(73\) 1136.65 1.82239 0.911194 0.411977i \(-0.135162\pi\)
0.911194 + 0.411977i \(0.135162\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1348.01 −1.99506
\(78\) 0 0
\(79\) 1313.21 1.87023 0.935114 0.354346i \(-0.115297\pi\)
0.935114 + 0.354346i \(0.115297\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −430.813 −0.569733 −0.284867 0.958567i \(-0.591949\pi\)
−0.284867 + 0.958567i \(0.591949\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −651.368 −0.802690
\(88\) 0 0
\(89\) −1525.80 −1.81724 −0.908621 0.417622i \(-0.862864\pi\)
−0.908621 + 0.417622i \(0.862864\pi\)
\(90\) 0 0
\(91\) −628.853 −0.724415
\(92\) 0 0
\(93\) 388.126 0.432761
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 462.295 0.483906 0.241953 0.970288i \(-0.422212\pi\)
0.241953 + 0.970288i \(0.422212\pi\)
\(98\) 0 0
\(99\) −374.065 −0.379747
\(100\) 0 0
\(101\) −555.771 −0.547537 −0.273769 0.961796i \(-0.588270\pi\)
−0.273769 + 0.961796i \(0.588270\pi\)
\(102\) 0 0
\(103\) 861.117 0.823771 0.411885 0.911236i \(-0.364870\pi\)
0.411885 + 0.911236i \(0.364870\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 55.5126 0.0501551 0.0250776 0.999686i \(-0.492017\pi\)
0.0250776 + 0.999686i \(0.492017\pi\)
\(108\) 0 0
\(109\) −955.494 −0.839631 −0.419815 0.907610i \(-0.637905\pi\)
−0.419815 + 0.907610i \(0.637905\pi\)
\(110\) 0 0
\(111\) 719.484 0.615229
\(112\) 0 0
\(113\) 1389.52 1.15677 0.578387 0.815763i \(-0.303683\pi\)
0.578387 + 0.815763i \(0.303683\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −174.504 −0.137888
\(118\) 0 0
\(119\) −4283.54 −3.29976
\(120\) 0 0
\(121\) 396.465 0.297870
\(122\) 0 0
\(123\) −1113.81 −0.816494
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2465.40 1.72259 0.861295 0.508106i \(-0.169654\pi\)
0.861295 + 0.508106i \(0.169654\pi\)
\(128\) 0 0
\(129\) −1429.33 −0.975543
\(130\) 0 0
\(131\) 858.874 0.572826 0.286413 0.958106i \(-0.407537\pi\)
0.286413 + 0.958106i \(0.407537\pi\)
\(132\) 0 0
\(133\) −2609.79 −1.70148
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1812.82 1.13051 0.565253 0.824918i \(-0.308779\pi\)
0.565253 + 0.824918i \(0.308779\pi\)
\(138\) 0 0
\(139\) −409.704 −0.250004 −0.125002 0.992156i \(-0.539894\pi\)
−0.125002 + 0.992156i \(0.539894\pi\)
\(140\) 0 0
\(141\) −133.582 −0.0797849
\(142\) 0 0
\(143\) 805.873 0.471262
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2126.70 −1.19325
\(148\) 0 0
\(149\) −326.225 −0.179365 −0.0896824 0.995970i \(-0.528585\pi\)
−0.0896824 + 0.995970i \(0.528585\pi\)
\(150\) 0 0
\(151\) 744.061 0.400999 0.200499 0.979694i \(-0.435744\pi\)
0.200499 + 0.979694i \(0.435744\pi\)
\(152\) 0 0
\(153\) −1188.66 −0.628088
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −738.867 −0.375592 −0.187796 0.982208i \(-0.560134\pi\)
−0.187796 + 0.982208i \(0.560134\pi\)
\(158\) 0 0
\(159\) −44.1155 −0.0220037
\(160\) 0 0
\(161\) −4359.66 −2.13409
\(162\) 0 0
\(163\) 3805.76 1.82878 0.914388 0.404839i \(-0.132672\pi\)
0.914388 + 0.404839i \(0.132672\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −85.0480 −0.0394085 −0.0197042 0.999806i \(-0.506272\pi\)
−0.0197042 + 0.999806i \(0.506272\pi\)
\(168\) 0 0
\(169\) −1821.05 −0.828883
\(170\) 0 0
\(171\) −724.202 −0.323866
\(172\) 0 0
\(173\) −2036.93 −0.895171 −0.447585 0.894241i \(-0.647716\pi\)
−0.447585 + 0.894241i \(0.647716\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 560.132 0.237865
\(178\) 0 0
\(179\) 770.892 0.321895 0.160947 0.986963i \(-0.448545\pi\)
0.160947 + 0.986963i \(0.448545\pi\)
\(180\) 0 0
\(181\) −1771.66 −0.727551 −0.363775 0.931487i \(-0.618512\pi\)
−0.363775 + 0.931487i \(0.618512\pi\)
\(182\) 0 0
\(183\) 1829.62 0.739066
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5489.34 2.14663
\(188\) 0 0
\(189\) −875.691 −0.337022
\(190\) 0 0
\(191\) 2885.05 1.09296 0.546479 0.837473i \(-0.315968\pi\)
0.546479 + 0.837473i \(0.315968\pi\)
\(192\) 0 0
\(193\) 1467.60 0.547357 0.273678 0.961821i \(-0.411760\pi\)
0.273678 + 0.961821i \(0.411760\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4211.06 1.52297 0.761487 0.648180i \(-0.224470\pi\)
0.761487 + 0.648180i \(0.224470\pi\)
\(198\) 0 0
\(199\) 3373.36 1.20166 0.600832 0.799375i \(-0.294836\pi\)
0.600832 + 0.799375i \(0.294836\pi\)
\(200\) 0 0
\(201\) −996.427 −0.349664
\(202\) 0 0
\(203\) 7041.94 2.43472
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1209.78 −0.406211
\(208\) 0 0
\(209\) 3344.43 1.10689
\(210\) 0 0
\(211\) 31.9571 0.0104266 0.00521331 0.999986i \(-0.498341\pi\)
0.00521331 + 0.999986i \(0.498341\pi\)
\(212\) 0 0
\(213\) −1158.19 −0.372571
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4196.03 −1.31265
\(218\) 0 0
\(219\) −3409.94 −1.05216
\(220\) 0 0
\(221\) 2560.81 0.779452
\(222\) 0 0
\(223\) 608.934 0.182857 0.0914287 0.995812i \(-0.470857\pi\)
0.0914287 + 0.995812i \(0.470857\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5737.79 −1.67767 −0.838833 0.544388i \(-0.816762\pi\)
−0.838833 + 0.544388i \(0.816762\pi\)
\(228\) 0 0
\(229\) −523.868 −0.151171 −0.0755856 0.997139i \(-0.524083\pi\)
−0.0755856 + 0.997139i \(0.524083\pi\)
\(230\) 0 0
\(231\) 4044.02 1.15185
\(232\) 0 0
\(233\) −2583.73 −0.726462 −0.363231 0.931699i \(-0.618326\pi\)
−0.363231 + 0.931699i \(0.618326\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3939.64 −1.07978
\(238\) 0 0
\(239\) −1364.75 −0.369364 −0.184682 0.982798i \(-0.559126\pi\)
−0.184682 + 0.982798i \(0.559126\pi\)
\(240\) 0 0
\(241\) −609.549 −0.162923 −0.0814616 0.996676i \(-0.525959\pi\)
−0.0814616 + 0.996676i \(0.525959\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1560.20 0.401915
\(248\) 0 0
\(249\) 1292.44 0.328936
\(250\) 0 0
\(251\) 2981.89 0.749862 0.374931 0.927053i \(-0.377666\pi\)
0.374931 + 0.927053i \(0.377666\pi\)
\(252\) 0 0
\(253\) 5586.88 1.38832
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 81.7584 0.0198442 0.00992208 0.999951i \(-0.496842\pi\)
0.00992208 + 0.999951i \(0.496842\pi\)
\(258\) 0 0
\(259\) −7778.34 −1.86611
\(260\) 0 0
\(261\) 1954.10 0.463433
\(262\) 0 0
\(263\) −2777.11 −0.651118 −0.325559 0.945522i \(-0.605552\pi\)
−0.325559 + 0.945522i \(0.605552\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4577.40 1.04919
\(268\) 0 0
\(269\) −1858.78 −0.421307 −0.210654 0.977561i \(-0.567559\pi\)
−0.210654 + 0.977561i \(0.567559\pi\)
\(270\) 0 0
\(271\) 124.578 0.0279247 0.0139623 0.999903i \(-0.495556\pi\)
0.0139623 + 0.999903i \(0.495556\pi\)
\(272\) 0 0
\(273\) 1886.56 0.418241
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −570.149 −0.123671 −0.0618356 0.998086i \(-0.519695\pi\)
−0.0618356 + 0.998086i \(0.519695\pi\)
\(278\) 0 0
\(279\) −1164.38 −0.249855
\(280\) 0 0
\(281\) 2281.46 0.484344 0.242172 0.970233i \(-0.422140\pi\)
0.242172 + 0.970233i \(0.422140\pi\)
\(282\) 0 0
\(283\) 5726.88 1.20292 0.601462 0.798901i \(-0.294585\pi\)
0.601462 + 0.798901i \(0.294585\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12041.4 2.47659
\(288\) 0 0
\(289\) 12530.4 2.55046
\(290\) 0 0
\(291\) −1386.88 −0.279383
\(292\) 0 0
\(293\) 6061.02 1.20849 0.604247 0.796797i \(-0.293474\pi\)
0.604247 + 0.796797i \(0.293474\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1122.20 0.219247
\(298\) 0 0
\(299\) 2606.32 0.504104
\(300\) 0 0
\(301\) 15452.4 2.95902
\(302\) 0 0
\(303\) 1667.31 0.316121
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3224.65 0.599480 0.299740 0.954021i \(-0.403100\pi\)
0.299740 + 0.954021i \(0.403100\pi\)
\(308\) 0 0
\(309\) −2583.35 −0.475604
\(310\) 0 0
\(311\) 3698.99 0.674438 0.337219 0.941426i \(-0.390514\pi\)
0.337219 + 0.941426i \(0.390514\pi\)
\(312\) 0 0
\(313\) −2624.15 −0.473885 −0.236942 0.971524i \(-0.576145\pi\)
−0.236942 + 0.971524i \(0.576145\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8976.36 −1.59042 −0.795209 0.606335i \(-0.792639\pi\)
−0.795209 + 0.606335i \(0.792639\pi\)
\(318\) 0 0
\(319\) −9024.22 −1.58389
\(320\) 0 0
\(321\) −166.538 −0.0289571
\(322\) 0 0
\(323\) 10627.5 1.83075
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2866.48 0.484761
\(328\) 0 0
\(329\) 1444.16 0.242004
\(330\) 0 0
\(331\) 6008.69 0.997787 0.498893 0.866663i \(-0.333740\pi\)
0.498893 + 0.866663i \(0.333740\pi\)
\(332\) 0 0
\(333\) −2158.45 −0.355202
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10418.4 1.68406 0.842029 0.539432i \(-0.181361\pi\)
0.842029 + 0.539432i \(0.181361\pi\)
\(338\) 0 0
\(339\) −4168.57 −0.667863
\(340\) 0 0
\(341\) 5377.20 0.853934
\(342\) 0 0
\(343\) 11867.2 1.86814
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7282.16 −1.12659 −0.563295 0.826256i \(-0.690467\pi\)
−0.563295 + 0.826256i \(0.690467\pi\)
\(348\) 0 0
\(349\) 9693.32 1.48674 0.743369 0.668881i \(-0.233227\pi\)
0.743369 + 0.668881i \(0.233227\pi\)
\(350\) 0 0
\(351\) 523.511 0.0796096
\(352\) 0 0
\(353\) −2310.21 −0.348329 −0.174164 0.984717i \(-0.555722\pi\)
−0.174164 + 0.984717i \(0.555722\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12850.6 1.90512
\(358\) 0 0
\(359\) −5461.69 −0.802944 −0.401472 0.915871i \(-0.631501\pi\)
−0.401472 + 0.915871i \(0.631501\pi\)
\(360\) 0 0
\(361\) −384.071 −0.0559952
\(362\) 0 0
\(363\) −1189.39 −0.171975
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7719.14 −1.09792 −0.548959 0.835849i \(-0.684976\pi\)
−0.548959 + 0.835849i \(0.684976\pi\)
\(368\) 0 0
\(369\) 3341.43 0.471403
\(370\) 0 0
\(371\) 476.933 0.0667416
\(372\) 0 0
\(373\) 13893.4 1.92862 0.964310 0.264775i \(-0.0852978\pi\)
0.964310 + 0.264775i \(0.0852978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4209.86 −0.575116
\(378\) 0 0
\(379\) −11232.3 −1.52233 −0.761165 0.648558i \(-0.775372\pi\)
−0.761165 + 0.648558i \(0.775372\pi\)
\(380\) 0 0
\(381\) −7396.20 −0.994538
\(382\) 0 0
\(383\) 9634.60 1.28539 0.642696 0.766121i \(-0.277816\pi\)
0.642696 + 0.766121i \(0.277816\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4287.98 0.563230
\(388\) 0 0
\(389\) −8090.48 −1.05451 −0.527254 0.849708i \(-0.676778\pi\)
−0.527254 + 0.849708i \(0.676778\pi\)
\(390\) 0 0
\(391\) 17753.4 2.29623
\(392\) 0 0
\(393\) −2576.62 −0.330721
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9653.73 −1.22042 −0.610210 0.792240i \(-0.708915\pi\)
−0.610210 + 0.792240i \(0.708915\pi\)
\(398\) 0 0
\(399\) 7829.36 0.982351
\(400\) 0 0
\(401\) 1285.98 0.160147 0.0800734 0.996789i \(-0.474485\pi\)
0.0800734 + 0.996789i \(0.474485\pi\)
\(402\) 0 0
\(403\) 2508.50 0.310067
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9967.91 1.21398
\(408\) 0 0
\(409\) −8627.56 −1.04304 −0.521522 0.853238i \(-0.674636\pi\)
−0.521522 + 0.853238i \(0.674636\pi\)
\(410\) 0 0
\(411\) −5438.45 −0.652698
\(412\) 0 0
\(413\) −6055.59 −0.721492
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1229.11 0.144340
\(418\) 0 0
\(419\) 5097.58 0.594352 0.297176 0.954823i \(-0.403955\pi\)
0.297176 + 0.954823i \(0.403955\pi\)
\(420\) 0 0
\(421\) −12069.2 −1.39718 −0.698592 0.715520i \(-0.746190\pi\)
−0.698592 + 0.715520i \(0.746190\pi\)
\(422\) 0 0
\(423\) 400.747 0.0460638
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −19780.0 −2.24173
\(428\) 0 0
\(429\) −2417.62 −0.272083
\(430\) 0 0
\(431\) 13667.3 1.52745 0.763723 0.645545i \(-0.223370\pi\)
0.763723 + 0.645545i \(0.223370\pi\)
\(432\) 0 0
\(433\) −10004.1 −1.11032 −0.555160 0.831744i \(-0.687343\pi\)
−0.555160 + 0.831744i \(0.687343\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10816.4 1.18402
\(438\) 0 0
\(439\) 4222.00 0.459009 0.229505 0.973308i \(-0.426289\pi\)
0.229505 + 0.973308i \(0.426289\pi\)
\(440\) 0 0
\(441\) 6380.10 0.688921
\(442\) 0 0
\(443\) 13188.3 1.41444 0.707220 0.706994i \(-0.249949\pi\)
0.707220 + 0.706994i \(0.249949\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 978.674 0.103556
\(448\) 0 0
\(449\) −147.427 −0.0154956 −0.00774780 0.999970i \(-0.502466\pi\)
−0.00774780 + 0.999970i \(0.502466\pi\)
\(450\) 0 0
\(451\) −15431.0 −1.61112
\(452\) 0 0
\(453\) −2232.18 −0.231517
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5076.79 −0.519654 −0.259827 0.965655i \(-0.583666\pi\)
−0.259827 + 0.965655i \(0.583666\pi\)
\(458\) 0 0
\(459\) 3565.98 0.362627
\(460\) 0 0
\(461\) −5915.32 −0.597622 −0.298811 0.954312i \(-0.596590\pi\)
−0.298811 + 0.954312i \(0.596590\pi\)
\(462\) 0 0
\(463\) −11149.7 −1.11916 −0.559581 0.828775i \(-0.689038\pi\)
−0.559581 + 0.828775i \(0.689038\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9833.80 0.974420 0.487210 0.873285i \(-0.338015\pi\)
0.487210 + 0.873285i \(0.338015\pi\)
\(468\) 0 0
\(469\) 10772.4 1.06060
\(470\) 0 0
\(471\) 2216.60 0.216848
\(472\) 0 0
\(473\) −19802.2 −1.92496
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 132.347 0.0127038
\(478\) 0 0
\(479\) −8465.11 −0.807476 −0.403738 0.914875i \(-0.632289\pi\)
−0.403738 + 0.914875i \(0.632289\pi\)
\(480\) 0 0
\(481\) 4650.10 0.440803
\(482\) 0 0
\(483\) 13079.0 1.23212
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7987.08 0.743181 0.371590 0.928397i \(-0.378813\pi\)
0.371590 + 0.928397i \(0.378813\pi\)
\(488\) 0 0
\(489\) −11417.3 −1.05584
\(490\) 0 0
\(491\) −7316.92 −0.672521 −0.336261 0.941769i \(-0.609162\pi\)
−0.336261 + 0.941769i \(0.609162\pi\)
\(492\) 0 0
\(493\) −28676.1 −2.61969
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12521.2 1.13008
\(498\) 0 0
\(499\) −12522.5 −1.12342 −0.561709 0.827335i \(-0.689856\pi\)
−0.561709 + 0.827335i \(0.689856\pi\)
\(500\) 0 0
\(501\) 255.144 0.0227525
\(502\) 0 0
\(503\) 6666.15 0.590912 0.295456 0.955356i \(-0.404528\pi\)
0.295456 + 0.955356i \(0.404528\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5463.16 0.478556
\(508\) 0 0
\(509\) −20896.1 −1.81965 −0.909826 0.414991i \(-0.863785\pi\)
−0.909826 + 0.414991i \(0.863785\pi\)
\(510\) 0 0
\(511\) 36864.9 3.19140
\(512\) 0 0
\(513\) 2172.61 0.186984
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1850.69 −0.157433
\(518\) 0 0
\(519\) 6110.78 0.516827
\(520\) 0 0
\(521\) 2513.34 0.211346 0.105673 0.994401i \(-0.466300\pi\)
0.105673 + 0.994401i \(0.466300\pi\)
\(522\) 0 0
\(523\) −1587.26 −0.132708 −0.0663540 0.997796i \(-0.521137\pi\)
−0.0663540 + 0.997796i \(0.521137\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17087.0 1.41238
\(528\) 0 0
\(529\) 5901.84 0.485069
\(530\) 0 0
\(531\) −1680.40 −0.137331
\(532\) 0 0
\(533\) −7198.66 −0.585007
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2312.68 −0.185846
\(538\) 0 0
\(539\) −29463.9 −2.35454
\(540\) 0 0
\(541\) 6560.86 0.521393 0.260696 0.965421i \(-0.416048\pi\)
0.260696 + 0.965421i \(0.416048\pi\)
\(542\) 0 0
\(543\) 5314.99 0.420052
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −34.5479 −0.00270048 −0.00135024 0.999999i \(-0.500430\pi\)
−0.00135024 + 0.999999i \(0.500430\pi\)
\(548\) 0 0
\(549\) −5488.85 −0.426700
\(550\) 0 0
\(551\) −17471.2 −1.35081
\(552\) 0 0
\(553\) 42591.5 3.27518
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19210.6 1.46136 0.730682 0.682718i \(-0.239202\pi\)
0.730682 + 0.682718i \(0.239202\pi\)
\(558\) 0 0
\(559\) −9237.87 −0.698963
\(560\) 0 0
\(561\) −16468.0 −1.23936
\(562\) 0 0
\(563\) 9681.71 0.724752 0.362376 0.932032i \(-0.381966\pi\)
0.362376 + 0.932032i \(0.381966\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2627.07 0.194580
\(568\) 0 0
\(569\) −15583.4 −1.14813 −0.574067 0.818808i \(-0.694635\pi\)
−0.574067 + 0.818808i \(0.694635\pi\)
\(570\) 0 0
\(571\) 3486.63 0.255536 0.127768 0.991804i \(-0.459219\pi\)
0.127768 + 0.991804i \(0.459219\pi\)
\(572\) 0 0
\(573\) −8655.15 −0.631019
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4525.47 −0.326512 −0.163256 0.986584i \(-0.552200\pi\)
−0.163256 + 0.986584i \(0.552200\pi\)
\(578\) 0 0
\(579\) −4402.79 −0.316017
\(580\) 0 0
\(581\) −13972.6 −0.997727
\(582\) 0 0
\(583\) −611.188 −0.0434182
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13553.4 0.952995 0.476498 0.879176i \(-0.341906\pi\)
0.476498 + 0.879176i \(0.341906\pi\)
\(588\) 0 0
\(589\) 10410.4 0.728276
\(590\) 0 0
\(591\) −12633.2 −0.879289
\(592\) 0 0
\(593\) 19931.6 1.38026 0.690130 0.723686i \(-0.257554\pi\)
0.690130 + 0.723686i \(0.257554\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −10120.1 −0.693781
\(598\) 0 0
\(599\) 13496.2 0.920601 0.460300 0.887763i \(-0.347742\pi\)
0.460300 + 0.887763i \(0.347742\pi\)
\(600\) 0 0
\(601\) 5435.31 0.368903 0.184452 0.982842i \(-0.440949\pi\)
0.184452 + 0.982842i \(0.440949\pi\)
\(602\) 0 0
\(603\) 2989.28 0.201879
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3262.62 0.218164 0.109082 0.994033i \(-0.465209\pi\)
0.109082 + 0.994033i \(0.465209\pi\)
\(608\) 0 0
\(609\) −21125.8 −1.40568
\(610\) 0 0
\(611\) −863.357 −0.0571648
\(612\) 0 0
\(613\) 14063.3 0.926611 0.463305 0.886199i \(-0.346663\pi\)
0.463305 + 0.886199i \(0.346663\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −282.414 −0.0184272 −0.00921358 0.999958i \(-0.502933\pi\)
−0.00921358 + 0.999958i \(0.502933\pi\)
\(618\) 0 0
\(619\) 5009.10 0.325255 0.162627 0.986688i \(-0.448003\pi\)
0.162627 + 0.986688i \(0.448003\pi\)
\(620\) 0 0
\(621\) 3629.35 0.234526
\(622\) 0 0
\(623\) −49486.3 −3.18239
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −10033.3 −0.639061
\(628\) 0 0
\(629\) 31674.9 2.00789
\(630\) 0 0
\(631\) 7151.52 0.451184 0.225592 0.974222i \(-0.427568\pi\)
0.225592 + 0.974222i \(0.427568\pi\)
\(632\) 0 0
\(633\) −95.8713 −0.00601981
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −13745.1 −0.854945
\(638\) 0 0
\(639\) 3474.56 0.215104
\(640\) 0 0
\(641\) −16142.0 −0.994653 −0.497326 0.867564i \(-0.665685\pi\)
−0.497326 + 0.867564i \(0.665685\pi\)
\(642\) 0 0
\(643\) 30122.8 1.84748 0.923739 0.383022i \(-0.125117\pi\)
0.923739 + 0.383022i \(0.125117\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21556.4 −1.30985 −0.654923 0.755696i \(-0.727299\pi\)
−0.654923 + 0.755696i \(0.727299\pi\)
\(648\) 0 0
\(649\) 7760.22 0.469361
\(650\) 0 0
\(651\) 12588.1 0.757859
\(652\) 0 0
\(653\) 16249.1 0.973779 0.486890 0.873464i \(-0.338131\pi\)
0.486890 + 0.873464i \(0.338131\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10229.8 0.607463
\(658\) 0 0
\(659\) 11872.5 0.701802 0.350901 0.936413i \(-0.385875\pi\)
0.350901 + 0.936413i \(0.385875\pi\)
\(660\) 0 0
\(661\) −666.152 −0.0391986 −0.0195993 0.999808i \(-0.506239\pi\)
−0.0195993 + 0.999808i \(0.506239\pi\)
\(662\) 0 0
\(663\) −7682.44 −0.450017
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −29185.7 −1.69427
\(668\) 0 0
\(669\) −1826.80 −0.105573
\(670\) 0 0
\(671\) 25348.0 1.45834
\(672\) 0 0
\(673\) 13054.4 0.747711 0.373855 0.927487i \(-0.378036\pi\)
0.373855 + 0.927487i \(0.378036\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 637.818 0.0362088 0.0181044 0.999836i \(-0.494237\pi\)
0.0181044 + 0.999836i \(0.494237\pi\)
\(678\) 0 0
\(679\) 14993.6 0.847425
\(680\) 0 0
\(681\) 17213.4 0.968601
\(682\) 0 0
\(683\) 16617.1 0.930947 0.465474 0.885062i \(-0.345884\pi\)
0.465474 + 0.885062i \(0.345884\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1571.60 0.0872787
\(688\) 0 0
\(689\) −285.123 −0.0157654
\(690\) 0 0
\(691\) −10972.7 −0.604083 −0.302041 0.953295i \(-0.597668\pi\)
−0.302041 + 0.953295i \(0.597668\pi\)
\(692\) 0 0
\(693\) −12132.1 −0.665020
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −49034.8 −2.66474
\(698\) 0 0
\(699\) 7751.18 0.419423
\(700\) 0 0
\(701\) −9279.63 −0.499981 −0.249990 0.968248i \(-0.580427\pi\)
−0.249990 + 0.968248i \(0.580427\pi\)
\(702\) 0 0
\(703\) 19298.2 1.03534
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18025.3 −0.958857
\(708\) 0 0
\(709\) 24908.0 1.31938 0.659691 0.751537i \(-0.270687\pi\)
0.659691 + 0.751537i \(0.270687\pi\)
\(710\) 0 0
\(711\) 11818.9 0.623410
\(712\) 0 0
\(713\) 17390.7 0.913445
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4094.24 0.213253
\(718\) 0 0
\(719\) 10625.1 0.551110 0.275555 0.961285i \(-0.411138\pi\)
0.275555 + 0.961285i \(0.411138\pi\)
\(720\) 0 0
\(721\) 27928.6 1.44260
\(722\) 0 0
\(723\) 1828.65 0.0940638
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33844.7 1.72659 0.863295 0.504700i \(-0.168397\pi\)
0.863295 + 0.504700i \(0.168397\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −62925.3 −3.18382
\(732\) 0 0
\(733\) 16748.1 0.843937 0.421969 0.906610i \(-0.361339\pi\)
0.421969 + 0.906610i \(0.361339\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13804.8 −0.689966
\(738\) 0 0
\(739\) 26797.0 1.33389 0.666943 0.745109i \(-0.267602\pi\)
0.666943 + 0.745109i \(0.267602\pi\)
\(740\) 0 0
\(741\) −4680.59 −0.232046
\(742\) 0 0
\(743\) 1006.34 0.0496889 0.0248445 0.999691i \(-0.492091\pi\)
0.0248445 + 0.999691i \(0.492091\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3877.32 −0.189911
\(748\) 0 0
\(749\) 1800.44 0.0878326
\(750\) 0 0
\(751\) −24409.4 −1.18603 −0.593016 0.805190i \(-0.702063\pi\)
−0.593016 + 0.805190i \(0.702063\pi\)
\(752\) 0 0
\(753\) −8945.68 −0.432933
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −548.936 −0.0263559 −0.0131780 0.999913i \(-0.504195\pi\)
−0.0131780 + 0.999913i \(0.504195\pi\)
\(758\) 0 0
\(759\) −16760.7 −0.801546
\(760\) 0 0
\(761\) −5262.50 −0.250677 −0.125339 0.992114i \(-0.540002\pi\)
−0.125339 + 0.992114i \(0.540002\pi\)
\(762\) 0 0
\(763\) −30989.5 −1.47038
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3620.19 0.170427
\(768\) 0 0
\(769\) 21244.0 0.996202 0.498101 0.867119i \(-0.334031\pi\)
0.498101 + 0.867119i \(0.334031\pi\)
\(770\) 0 0
\(771\) −245.275 −0.0114570
\(772\) 0 0
\(773\) 8223.96 0.382659 0.191329 0.981526i \(-0.438720\pi\)
0.191329 + 0.981526i \(0.438720\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 23335.0 1.07740
\(778\) 0 0
\(779\) −29874.9 −1.37404
\(780\) 0 0
\(781\) −16045.8 −0.735166
\(782\) 0 0
\(783\) −5862.31 −0.267563
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9000.26 −0.407655 −0.203827 0.979007i \(-0.565338\pi\)
−0.203827 + 0.979007i \(0.565338\pi\)
\(788\) 0 0
\(789\) 8331.34 0.375923
\(790\) 0 0
\(791\) 45066.4 2.02576
\(792\) 0 0
\(793\) 11825.0 0.529531
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31608.0 −1.40478 −0.702391 0.711791i \(-0.747884\pi\)
−0.702391 + 0.711791i \(0.747884\pi\)
\(798\) 0 0
\(799\) −5880.90 −0.260390
\(800\) 0 0
\(801\) −13732.2 −0.605747
\(802\) 0 0
\(803\) −47242.2 −2.07614
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5576.33 0.243242
\(808\) 0 0
\(809\) −25647.4 −1.11460 −0.557301 0.830310i \(-0.688163\pi\)
−0.557301 + 0.830310i \(0.688163\pi\)
\(810\) 0 0
\(811\) −44184.0 −1.91308 −0.956541 0.291597i \(-0.905813\pi\)
−0.956541 + 0.291597i \(0.905813\pi\)
\(812\) 0 0
\(813\) −373.735 −0.0161223
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −38337.8 −1.64170
\(818\) 0 0
\(819\) −5659.68 −0.241472
\(820\) 0 0
\(821\) 30634.2 1.30224 0.651122 0.758973i \(-0.274299\pi\)
0.651122 + 0.758973i \(0.274299\pi\)
\(822\) 0 0
\(823\) −38535.0 −1.63213 −0.816067 0.577957i \(-0.803850\pi\)
−0.816067 + 0.577957i \(0.803850\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13462.0 −0.566045 −0.283022 0.959113i \(-0.591337\pi\)
−0.283022 + 0.959113i \(0.591337\pi\)
\(828\) 0 0
\(829\) 28650.0 1.20031 0.600155 0.799884i \(-0.295106\pi\)
0.600155 + 0.799884i \(0.295106\pi\)
\(830\) 0 0
\(831\) 1710.45 0.0714016
\(832\) 0 0
\(833\) −93626.9 −3.89433
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3493.13 0.144254
\(838\) 0 0
\(839\) 31639.5 1.30193 0.650964 0.759108i \(-0.274365\pi\)
0.650964 + 0.759108i \(0.274365\pi\)
\(840\) 0 0
\(841\) 22753.3 0.932932
\(842\) 0 0
\(843\) −6844.39 −0.279636
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 12858.5 0.521635
\(848\) 0 0
\(849\) −17180.6 −0.694508
\(850\) 0 0
\(851\) 32237.8 1.29859
\(852\) 0 0
\(853\) 31676.5 1.27149 0.635745 0.771899i \(-0.280693\pi\)
0.635745 + 0.771899i \(0.280693\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7503.48 0.299083 0.149542 0.988755i \(-0.452220\pi\)
0.149542 + 0.988755i \(0.452220\pi\)
\(858\) 0 0
\(859\) −4817.58 −0.191355 −0.0956773 0.995412i \(-0.530502\pi\)
−0.0956773 + 0.995412i \(0.530502\pi\)
\(860\) 0 0
\(861\) −36124.2 −1.42986
\(862\) 0 0
\(863\) 29704.2 1.17166 0.585829 0.810434i \(-0.300769\pi\)
0.585829 + 0.810434i \(0.300769\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −37591.2 −1.47251
\(868\) 0 0
\(869\) −54580.8 −2.13064
\(870\) 0 0
\(871\) −6440.01 −0.250530
\(872\) 0 0
\(873\) 4160.65 0.161302
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 27429.4 1.05613 0.528065 0.849204i \(-0.322918\pi\)
0.528065 + 0.849204i \(0.322918\pi\)
\(878\) 0 0
\(879\) −18183.1 −0.697724
\(880\) 0 0
\(881\) −42751.1 −1.63487 −0.817434 0.576022i \(-0.804604\pi\)
−0.817434 + 0.576022i \(0.804604\pi\)
\(882\) 0 0
\(883\) 9697.41 0.369585 0.184793 0.982778i \(-0.440839\pi\)
0.184793 + 0.982778i \(0.440839\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19990.8 −0.756736 −0.378368 0.925655i \(-0.623515\pi\)
−0.378368 + 0.925655i \(0.623515\pi\)
\(888\) 0 0
\(889\) 79960.3 3.01663
\(890\) 0 0
\(891\) −3366.59 −0.126582
\(892\) 0 0
\(893\) −3582.99 −0.134267
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −7818.95 −0.291045
\(898\) 0 0
\(899\) −28090.3 −1.04212
\(900\) 0 0
\(901\) −1942.16 −0.0718122
\(902\) 0 0
\(903\) −46357.3 −1.70839
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 47525.0 1.73985 0.869923 0.493187i \(-0.164168\pi\)
0.869923 + 0.493187i \(0.164168\pi\)
\(908\) 0 0
\(909\) −5001.94 −0.182512
\(910\) 0 0
\(911\) 20992.8 0.763470 0.381735 0.924272i \(-0.375327\pi\)
0.381735 + 0.924272i \(0.375327\pi\)
\(912\) 0 0
\(913\) 17905.8 0.649063
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 27855.9 1.00314
\(918\) 0 0
\(919\) 8141.30 0.292227 0.146113 0.989268i \(-0.453324\pi\)
0.146113 + 0.989268i \(0.453324\pi\)
\(920\) 0 0
\(921\) −9673.95 −0.346110
\(922\) 0 0
\(923\) −7485.48 −0.266942
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7750.05 0.274590
\(928\) 0 0
\(929\) −5796.81 −0.204723 −0.102361 0.994747i \(-0.532640\pi\)
−0.102361 + 0.994747i \(0.532640\pi\)
\(930\) 0 0
\(931\) −57043.0 −2.00807
\(932\) 0 0
\(933\) −11097.0 −0.389387
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 42608.3 1.48554 0.742771 0.669545i \(-0.233511\pi\)
0.742771 + 0.669545i \(0.233511\pi\)
\(938\) 0 0
\(939\) 7872.46 0.273597
\(940\) 0 0
\(941\) −4263.36 −0.147696 −0.0738478 0.997270i \(-0.523528\pi\)
−0.0738478 + 0.997270i \(0.523528\pi\)
\(942\) 0 0
\(943\) −49906.2 −1.72340
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −39212.3 −1.34554 −0.672771 0.739851i \(-0.734896\pi\)
−0.672771 + 0.739851i \(0.734896\pi\)
\(948\) 0 0
\(949\) −22038.8 −0.753856
\(950\) 0 0
\(951\) 26929.1 0.918228
\(952\) 0 0
\(953\) −34874.5 −1.18541 −0.592705 0.805419i \(-0.701940\pi\)
−0.592705 + 0.805419i \(0.701940\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 27072.7 0.914457
\(958\) 0 0
\(959\) 58795.1 1.97976
\(960\) 0 0
\(961\) −13053.0 −0.438153
\(962\) 0 0
\(963\) 499.613 0.0167184
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 35343.7 1.17536 0.587682 0.809092i \(-0.300040\pi\)
0.587682 + 0.809092i \(0.300040\pi\)
\(968\) 0 0
\(969\) −31882.6 −1.05698
\(970\) 0 0
\(971\) −47231.9 −1.56101 −0.780507 0.625147i \(-0.785039\pi\)
−0.780507 + 0.625147i \(0.785039\pi\)
\(972\) 0 0
\(973\) −13287.9 −0.437812
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18439.1 −0.603807 −0.301903 0.953339i \(-0.597622\pi\)
−0.301903 + 0.953339i \(0.597622\pi\)
\(978\) 0 0
\(979\) 63416.5 2.07028
\(980\) 0 0
\(981\) −8599.45 −0.279877
\(982\) 0 0
\(983\) −30278.7 −0.982443 −0.491222 0.871035i \(-0.663449\pi\)
−0.491222 + 0.871035i \(0.663449\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −4332.48 −0.139721
\(988\) 0 0
\(989\) −64043.5 −2.05911
\(990\) 0 0
\(991\) −46613.9 −1.49419 −0.747094 0.664718i \(-0.768552\pi\)
−0.747094 + 0.664718i \(0.768552\pi\)
\(992\) 0 0
\(993\) −18026.1 −0.576072
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −44805.8 −1.42328 −0.711642 0.702543i \(-0.752048\pi\)
−0.711642 + 0.702543i \(0.752048\pi\)
\(998\) 0 0
\(999\) 6475.35 0.205076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bm.1.3 3
4.3 odd 2 2400.4.a.bp.1.1 yes 3
5.4 even 2 2400.4.a.bo.1.1 yes 3
20.19 odd 2 2400.4.a.bn.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bm.1.3 3 1.1 even 1 trivial
2400.4.a.bn.1.3 yes 3 20.19 odd 2
2400.4.a.bo.1.1 yes 3 5.4 even 2
2400.4.a.bp.1.1 yes 3 4.3 odd 2