Properties

Label 2400.4.a.bl.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.32340.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 42x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-6.30716\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +27.0060 q^{7} +9.00000 q^{9} -1.66805 q^{11} -18.2287 q^{13} -39.2346 q^{17} +157.149 q^{19} -81.0179 q^{21} +115.910 q^{23} -27.0000 q^{27} -136.149 q^{29} -27.8848 q^{31} +5.00414 q^{33} +358.950 q^{37} +54.6860 q^{39} -30.3522 q^{41} +212.684 q^{43} -630.358 q^{47} +386.322 q^{49} +117.704 q^{51} +568.865 q^{53} -471.448 q^{57} +209.157 q^{59} +429.895 q^{61} +243.054 q^{63} -775.233 q^{67} -347.731 q^{69} +79.3623 q^{71} -271.435 q^{73} -45.0473 q^{77} +206.990 q^{79} +81.0000 q^{81} +354.931 q^{83} +408.448 q^{87} -529.361 q^{89} -492.282 q^{91} +83.6543 q^{93} +1255.77 q^{97} -15.0124 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 7 q^{7} + 27 q^{9} + 21 q^{13} + 32 q^{17} + 19 q^{19} - 21 q^{21} + 60 q^{23} - 81 q^{27} + 44 q^{29} - 151 q^{31} + 330 q^{37} - 63 q^{39} + 82 q^{41} + 367 q^{43} - 246 q^{47} - 42 q^{49}+ \cdots - 351 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 27.0060 1.45819 0.729093 0.684415i \(-0.239942\pi\)
0.729093 + 0.684415i \(0.239942\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −1.66805 −0.0457214 −0.0228607 0.999739i \(-0.507277\pi\)
−0.0228607 + 0.999739i \(0.507277\pi\)
\(12\) 0 0
\(13\) −18.2287 −0.388901 −0.194451 0.980912i \(-0.562292\pi\)
−0.194451 + 0.980912i \(0.562292\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −39.2346 −0.559753 −0.279876 0.960036i \(-0.590293\pi\)
−0.279876 + 0.960036i \(0.590293\pi\)
\(18\) 0 0
\(19\) 157.149 1.89750 0.948750 0.316027i \(-0.102349\pi\)
0.948750 + 0.316027i \(0.102349\pi\)
\(20\) 0 0
\(21\) −81.0179 −0.841884
\(22\) 0 0
\(23\) 115.910 1.05083 0.525413 0.850847i \(-0.323911\pi\)
0.525413 + 0.850847i \(0.323911\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −136.149 −0.871803 −0.435901 0.899994i \(-0.643570\pi\)
−0.435901 + 0.899994i \(0.643570\pi\)
\(30\) 0 0
\(31\) −27.8848 −0.161556 −0.0807782 0.996732i \(-0.525741\pi\)
−0.0807782 + 0.996732i \(0.525741\pi\)
\(32\) 0 0
\(33\) 5.00414 0.0263973
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 358.950 1.59489 0.797447 0.603389i \(-0.206183\pi\)
0.797447 + 0.603389i \(0.206183\pi\)
\(38\) 0 0
\(39\) 54.6860 0.224532
\(40\) 0 0
\(41\) −30.3522 −0.115615 −0.0578075 0.998328i \(-0.518411\pi\)
−0.0578075 + 0.998328i \(0.518411\pi\)
\(42\) 0 0
\(43\) 212.684 0.754278 0.377139 0.926157i \(-0.376908\pi\)
0.377139 + 0.926157i \(0.376908\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −630.358 −1.95632 −0.978162 0.207846i \(-0.933355\pi\)
−0.978162 + 0.207846i \(0.933355\pi\)
\(48\) 0 0
\(49\) 386.322 1.12630
\(50\) 0 0
\(51\) 117.704 0.323173
\(52\) 0 0
\(53\) 568.865 1.47433 0.737166 0.675712i \(-0.236164\pi\)
0.737166 + 0.675712i \(0.236164\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −471.448 −1.09552
\(58\) 0 0
\(59\) 209.157 0.461524 0.230762 0.973010i \(-0.425878\pi\)
0.230762 + 0.973010i \(0.425878\pi\)
\(60\) 0 0
\(61\) 429.895 0.902335 0.451168 0.892439i \(-0.351008\pi\)
0.451168 + 0.892439i \(0.351008\pi\)
\(62\) 0 0
\(63\) 243.054 0.486062
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −775.233 −1.41358 −0.706789 0.707424i \(-0.749857\pi\)
−0.706789 + 0.707424i \(0.749857\pi\)
\(68\) 0 0
\(69\) −347.731 −0.606695
\(70\) 0 0
\(71\) 79.3623 0.132656 0.0663279 0.997798i \(-0.478872\pi\)
0.0663279 + 0.997798i \(0.478872\pi\)
\(72\) 0 0
\(73\) −271.435 −0.435193 −0.217597 0.976039i \(-0.569822\pi\)
−0.217597 + 0.976039i \(0.569822\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −45.0473 −0.0666703
\(78\) 0 0
\(79\) 206.990 0.294787 0.147394 0.989078i \(-0.452912\pi\)
0.147394 + 0.989078i \(0.452912\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 354.931 0.469383 0.234691 0.972070i \(-0.424592\pi\)
0.234691 + 0.972070i \(0.424592\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 408.448 0.503335
\(88\) 0 0
\(89\) −529.361 −0.630474 −0.315237 0.949013i \(-0.602084\pi\)
−0.315237 + 0.949013i \(0.602084\pi\)
\(90\) 0 0
\(91\) −492.282 −0.567090
\(92\) 0 0
\(93\) 83.6543 0.0932747
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1255.77 1.31448 0.657238 0.753683i \(-0.271724\pi\)
0.657238 + 0.753683i \(0.271724\pi\)
\(98\) 0 0
\(99\) −15.0124 −0.0152405
\(100\) 0 0
\(101\) 633.505 0.624119 0.312060 0.950062i \(-0.398981\pi\)
0.312060 + 0.950062i \(0.398981\pi\)
\(102\) 0 0
\(103\) 13.2297 0.0126559 0.00632795 0.999980i \(-0.497986\pi\)
0.00632795 + 0.999980i \(0.497986\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1339.38 1.21012 0.605059 0.796181i \(-0.293149\pi\)
0.605059 + 0.796181i \(0.293149\pi\)
\(108\) 0 0
\(109\) 352.397 0.309665 0.154833 0.987941i \(-0.450516\pi\)
0.154833 + 0.987941i \(0.450516\pi\)
\(110\) 0 0
\(111\) −1076.85 −0.920813
\(112\) 0 0
\(113\) −1040.37 −0.866108 −0.433054 0.901368i \(-0.642564\pi\)
−0.433054 + 0.901368i \(0.642564\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −164.058 −0.129634
\(118\) 0 0
\(119\) −1059.57 −0.816223
\(120\) 0 0
\(121\) −1328.22 −0.997910
\(122\) 0 0
\(123\) 91.0565 0.0667503
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 600.967 0.419899 0.209950 0.977712i \(-0.432670\pi\)
0.209950 + 0.977712i \(0.432670\pi\)
\(128\) 0 0
\(129\) −638.051 −0.435483
\(130\) 0 0
\(131\) −1388.30 −0.925924 −0.462962 0.886378i \(-0.653213\pi\)
−0.462962 + 0.886378i \(0.653213\pi\)
\(132\) 0 0
\(133\) 4243.97 2.76691
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2037.68 −1.27074 −0.635369 0.772208i \(-0.719152\pi\)
−0.635369 + 0.772208i \(0.719152\pi\)
\(138\) 0 0
\(139\) −1060.28 −0.646992 −0.323496 0.946229i \(-0.604858\pi\)
−0.323496 + 0.946229i \(0.604858\pi\)
\(140\) 0 0
\(141\) 1891.07 1.12948
\(142\) 0 0
\(143\) 30.4063 0.0177811
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1158.97 −0.650272
\(148\) 0 0
\(149\) −1792.57 −0.985589 −0.492795 0.870146i \(-0.664025\pi\)
−0.492795 + 0.870146i \(0.664025\pi\)
\(150\) 0 0
\(151\) −2151.86 −1.15971 −0.579855 0.814720i \(-0.696891\pi\)
−0.579855 + 0.814720i \(0.696891\pi\)
\(152\) 0 0
\(153\) −353.112 −0.186584
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2935.85 1.49239 0.746197 0.665725i \(-0.231877\pi\)
0.746197 + 0.665725i \(0.231877\pi\)
\(158\) 0 0
\(159\) −1706.59 −0.851205
\(160\) 0 0
\(161\) 3130.27 1.53230
\(162\) 0 0
\(163\) −308.456 −0.148222 −0.0741109 0.997250i \(-0.523612\pi\)
−0.0741109 + 0.997250i \(0.523612\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1895.45 −0.878290 −0.439145 0.898416i \(-0.644718\pi\)
−0.439145 + 0.898416i \(0.644718\pi\)
\(168\) 0 0
\(169\) −1864.72 −0.848756
\(170\) 0 0
\(171\) 1414.34 0.632500
\(172\) 0 0
\(173\) 1101.94 0.484269 0.242135 0.970243i \(-0.422152\pi\)
0.242135 + 0.970243i \(0.422152\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −627.471 −0.266461
\(178\) 0 0
\(179\) −3262.39 −1.36225 −0.681125 0.732167i \(-0.738509\pi\)
−0.681125 + 0.732167i \(0.738509\pi\)
\(180\) 0 0
\(181\) −2421.01 −0.994212 −0.497106 0.867690i \(-0.665604\pi\)
−0.497106 + 0.867690i \(0.665604\pi\)
\(182\) 0 0
\(183\) −1289.69 −0.520964
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 65.4452 0.0255927
\(188\) 0 0
\(189\) −729.161 −0.280628
\(190\) 0 0
\(191\) −1303.37 −0.493761 −0.246881 0.969046i \(-0.579406\pi\)
−0.246881 + 0.969046i \(0.579406\pi\)
\(192\) 0 0
\(193\) 4312.21 1.60829 0.804144 0.594434i \(-0.202624\pi\)
0.804144 + 0.594434i \(0.202624\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2549.49 0.922050 0.461025 0.887387i \(-0.347482\pi\)
0.461025 + 0.887387i \(0.347482\pi\)
\(198\) 0 0
\(199\) −2220.15 −0.790865 −0.395433 0.918495i \(-0.629405\pi\)
−0.395433 + 0.918495i \(0.629405\pi\)
\(200\) 0 0
\(201\) 2325.70 0.816130
\(202\) 0 0
\(203\) −3676.84 −1.27125
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1043.19 0.350275
\(208\) 0 0
\(209\) −262.132 −0.0867564
\(210\) 0 0
\(211\) 3440.21 1.12243 0.561217 0.827668i \(-0.310333\pi\)
0.561217 + 0.827668i \(0.310333\pi\)
\(212\) 0 0
\(213\) −238.087 −0.0765889
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −753.055 −0.235579
\(218\) 0 0
\(219\) 814.306 0.251259
\(220\) 0 0
\(221\) 715.194 0.217689
\(222\) 0 0
\(223\) 2113.47 0.634655 0.317328 0.948316i \(-0.397215\pi\)
0.317328 + 0.948316i \(0.397215\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3561.84 1.04144 0.520721 0.853727i \(-0.325663\pi\)
0.520721 + 0.853727i \(0.325663\pi\)
\(228\) 0 0
\(229\) 1267.88 0.365870 0.182935 0.983125i \(-0.441440\pi\)
0.182935 + 0.983125i \(0.441440\pi\)
\(230\) 0 0
\(231\) 135.142 0.0384921
\(232\) 0 0
\(233\) 6588.59 1.85250 0.926251 0.376906i \(-0.123012\pi\)
0.926251 + 0.376906i \(0.123012\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −620.970 −0.170195
\(238\) 0 0
\(239\) 6253.76 1.69256 0.846280 0.532738i \(-0.178837\pi\)
0.846280 + 0.532738i \(0.178837\pi\)
\(240\) 0 0
\(241\) 2916.51 0.779539 0.389770 0.920912i \(-0.372555\pi\)
0.389770 + 0.920912i \(0.372555\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2864.62 −0.737940
\(248\) 0 0
\(249\) −1064.79 −0.270998
\(250\) 0 0
\(251\) −111.138 −0.0279480 −0.0139740 0.999902i \(-0.504448\pi\)
−0.0139740 + 0.999902i \(0.504448\pi\)
\(252\) 0 0
\(253\) −193.344 −0.0480452
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4396.61 1.06713 0.533566 0.845759i \(-0.320852\pi\)
0.533566 + 0.845759i \(0.320852\pi\)
\(258\) 0 0
\(259\) 9693.80 2.32565
\(260\) 0 0
\(261\) −1225.34 −0.290601
\(262\) 0 0
\(263\) 7892.81 1.85054 0.925269 0.379311i \(-0.123839\pi\)
0.925269 + 0.379311i \(0.123839\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1588.08 0.364004
\(268\) 0 0
\(269\) −2774.18 −0.628791 −0.314395 0.949292i \(-0.601802\pi\)
−0.314395 + 0.949292i \(0.601802\pi\)
\(270\) 0 0
\(271\) 1260.84 0.282623 0.141311 0.989965i \(-0.454868\pi\)
0.141311 + 0.989965i \(0.454868\pi\)
\(272\) 0 0
\(273\) 1476.85 0.327410
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7001.56 1.51871 0.759356 0.650676i \(-0.225514\pi\)
0.759356 + 0.650676i \(0.225514\pi\)
\(278\) 0 0
\(279\) −250.963 −0.0538522
\(280\) 0 0
\(281\) 6544.58 1.38938 0.694692 0.719307i \(-0.255541\pi\)
0.694692 + 0.719307i \(0.255541\pi\)
\(282\) 0 0
\(283\) 2671.27 0.561097 0.280548 0.959840i \(-0.409484\pi\)
0.280548 + 0.959840i \(0.409484\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −819.690 −0.168588
\(288\) 0 0
\(289\) −3373.64 −0.686677
\(290\) 0 0
\(291\) −3767.31 −0.758914
\(292\) 0 0
\(293\) 4921.09 0.981204 0.490602 0.871384i \(-0.336777\pi\)
0.490602 + 0.871384i \(0.336777\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 45.0373 0.00879909
\(298\) 0 0
\(299\) −2112.89 −0.408668
\(300\) 0 0
\(301\) 5743.73 1.09988
\(302\) 0 0
\(303\) −1900.51 −0.360336
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −849.353 −0.157899 −0.0789497 0.996879i \(-0.525157\pi\)
−0.0789497 + 0.996879i \(0.525157\pi\)
\(308\) 0 0
\(309\) −39.6890 −0.00730688
\(310\) 0 0
\(311\) 1484.27 0.270628 0.135314 0.990803i \(-0.456796\pi\)
0.135314 + 0.990803i \(0.456796\pi\)
\(312\) 0 0
\(313\) 4592.01 0.829251 0.414625 0.909992i \(-0.363913\pi\)
0.414625 + 0.909992i \(0.363913\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4853.05 −0.859857 −0.429928 0.902863i \(-0.641461\pi\)
−0.429928 + 0.902863i \(0.641461\pi\)
\(318\) 0 0
\(319\) 227.103 0.0398600
\(320\) 0 0
\(321\) −4018.14 −0.698662
\(322\) 0 0
\(323\) −6165.69 −1.06213
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1057.19 −0.178785
\(328\) 0 0
\(329\) −17023.4 −2.85268
\(330\) 0 0
\(331\) 9865.09 1.63817 0.819085 0.573672i \(-0.194482\pi\)
0.819085 + 0.573672i \(0.194482\pi\)
\(332\) 0 0
\(333\) 3230.55 0.531631
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4453.35 0.719850 0.359925 0.932981i \(-0.382802\pi\)
0.359925 + 0.932981i \(0.382802\pi\)
\(338\) 0 0
\(339\) 3121.12 0.500048
\(340\) 0 0
\(341\) 46.5131 0.00738659
\(342\) 0 0
\(343\) 1169.96 0.184175
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2101.65 −0.325137 −0.162569 0.986697i \(-0.551978\pi\)
−0.162569 + 0.986697i \(0.551978\pi\)
\(348\) 0 0
\(349\) −5443.35 −0.834888 −0.417444 0.908703i \(-0.637074\pi\)
−0.417444 + 0.908703i \(0.637074\pi\)
\(350\) 0 0
\(351\) 492.174 0.0748441
\(352\) 0 0
\(353\) 10730.2 1.61788 0.808938 0.587894i \(-0.200043\pi\)
0.808938 + 0.587894i \(0.200043\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3178.71 0.471246
\(358\) 0 0
\(359\) 4030.33 0.592514 0.296257 0.955108i \(-0.404262\pi\)
0.296257 + 0.955108i \(0.404262\pi\)
\(360\) 0 0
\(361\) 17836.9 2.60051
\(362\) 0 0
\(363\) 3984.65 0.576143
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6297.32 −0.895688 −0.447844 0.894112i \(-0.647808\pi\)
−0.447844 + 0.894112i \(0.647808\pi\)
\(368\) 0 0
\(369\) −273.170 −0.0385383
\(370\) 0 0
\(371\) 15362.7 2.14985
\(372\) 0 0
\(373\) 4574.31 0.634984 0.317492 0.948261i \(-0.397159\pi\)
0.317492 + 0.948261i \(0.397159\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2481.82 0.339045
\(378\) 0 0
\(379\) 9053.69 1.22706 0.613531 0.789670i \(-0.289748\pi\)
0.613531 + 0.789670i \(0.289748\pi\)
\(380\) 0 0
\(381\) −1802.90 −0.242429
\(382\) 0 0
\(383\) −6892.26 −0.919525 −0.459763 0.888042i \(-0.652065\pi\)
−0.459763 + 0.888042i \(0.652065\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1914.15 0.251426
\(388\) 0 0
\(389\) 14484.3 1.88787 0.943936 0.330128i \(-0.107092\pi\)
0.943936 + 0.330128i \(0.107092\pi\)
\(390\) 0 0
\(391\) −4547.70 −0.588203
\(392\) 0 0
\(393\) 4164.89 0.534582
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12584.4 −1.59091 −0.795456 0.606011i \(-0.792769\pi\)
−0.795456 + 0.606011i \(0.792769\pi\)
\(398\) 0 0
\(399\) −12731.9 −1.59747
\(400\) 0 0
\(401\) −5566.51 −0.693212 −0.346606 0.938011i \(-0.612666\pi\)
−0.346606 + 0.938011i \(0.612666\pi\)
\(402\) 0 0
\(403\) 508.302 0.0628295
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −598.747 −0.0729208
\(408\) 0 0
\(409\) −7892.04 −0.954123 −0.477061 0.878870i \(-0.658298\pi\)
−0.477061 + 0.878870i \(0.658298\pi\)
\(410\) 0 0
\(411\) 6113.05 0.733661
\(412\) 0 0
\(413\) 5648.49 0.672988
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3180.85 0.373541
\(418\) 0 0
\(419\) −11875.8 −1.38465 −0.692327 0.721584i \(-0.743414\pi\)
−0.692327 + 0.721584i \(0.743414\pi\)
\(420\) 0 0
\(421\) 7770.34 0.899533 0.449767 0.893146i \(-0.351507\pi\)
0.449767 + 0.893146i \(0.351507\pi\)
\(422\) 0 0
\(423\) −5673.22 −0.652108
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11609.7 1.31577
\(428\) 0 0
\(429\) −91.2188 −0.0102659
\(430\) 0 0
\(431\) −8405.48 −0.939391 −0.469695 0.882828i \(-0.655636\pi\)
−0.469695 + 0.882828i \(0.655636\pi\)
\(432\) 0 0
\(433\) 3626.22 0.402460 0.201230 0.979544i \(-0.435506\pi\)
0.201230 + 0.979544i \(0.435506\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18215.2 1.99394
\(438\) 0 0
\(439\) 5034.00 0.547288 0.273644 0.961831i \(-0.411771\pi\)
0.273644 + 0.961831i \(0.411771\pi\)
\(440\) 0 0
\(441\) 3476.90 0.375435
\(442\) 0 0
\(443\) −14078.8 −1.50994 −0.754970 0.655760i \(-0.772348\pi\)
−0.754970 + 0.655760i \(0.772348\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5377.70 0.569030
\(448\) 0 0
\(449\) 4853.93 0.510181 0.255091 0.966917i \(-0.417895\pi\)
0.255091 + 0.966917i \(0.417895\pi\)
\(450\) 0 0
\(451\) 50.6289 0.00528608
\(452\) 0 0
\(453\) 6455.59 0.669559
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12007.5 −1.22908 −0.614538 0.788888i \(-0.710657\pi\)
−0.614538 + 0.788888i \(0.710657\pi\)
\(458\) 0 0
\(459\) 1059.33 0.107724
\(460\) 0 0
\(461\) 651.462 0.0658169 0.0329085 0.999458i \(-0.489523\pi\)
0.0329085 + 0.999458i \(0.489523\pi\)
\(462\) 0 0
\(463\) 7378.45 0.740617 0.370308 0.928909i \(-0.379252\pi\)
0.370308 + 0.928909i \(0.379252\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18671.3 1.85011 0.925057 0.379829i \(-0.124017\pi\)
0.925057 + 0.379829i \(0.124017\pi\)
\(468\) 0 0
\(469\) −20935.9 −2.06126
\(470\) 0 0
\(471\) −8807.54 −0.861635
\(472\) 0 0
\(473\) −354.767 −0.0344866
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5119.78 0.491444
\(478\) 0 0
\(479\) −12448.6 −1.18746 −0.593729 0.804665i \(-0.702345\pi\)
−0.593729 + 0.804665i \(0.702345\pi\)
\(480\) 0 0
\(481\) −6543.18 −0.620257
\(482\) 0 0
\(483\) −9390.82 −0.884673
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −786.923 −0.0732216 −0.0366108 0.999330i \(-0.511656\pi\)
−0.0366108 + 0.999330i \(0.511656\pi\)
\(488\) 0 0
\(489\) 925.368 0.0855759
\(490\) 0 0
\(491\) −7315.99 −0.672436 −0.336218 0.941784i \(-0.609148\pi\)
−0.336218 + 0.941784i \(0.609148\pi\)
\(492\) 0 0
\(493\) 5341.76 0.487994
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2143.25 0.193437
\(498\) 0 0
\(499\) 6696.78 0.600779 0.300390 0.953817i \(-0.402883\pi\)
0.300390 + 0.953817i \(0.402883\pi\)
\(500\) 0 0
\(501\) 5686.35 0.507081
\(502\) 0 0
\(503\) 18197.2 1.61307 0.806533 0.591188i \(-0.201341\pi\)
0.806533 + 0.591188i \(0.201341\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5594.15 0.490029
\(508\) 0 0
\(509\) −18891.5 −1.64509 −0.822544 0.568702i \(-0.807446\pi\)
−0.822544 + 0.568702i \(0.807446\pi\)
\(510\) 0 0
\(511\) −7330.37 −0.634592
\(512\) 0 0
\(513\) −4243.03 −0.365174
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1051.47 0.0894458
\(518\) 0 0
\(519\) −3305.81 −0.279593
\(520\) 0 0
\(521\) 14531.9 1.22199 0.610993 0.791636i \(-0.290770\pi\)
0.610993 + 0.791636i \(0.290770\pi\)
\(522\) 0 0
\(523\) −12281.0 −1.02679 −0.513395 0.858153i \(-0.671612\pi\)
−0.513395 + 0.858153i \(0.671612\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1094.05 0.0904317
\(528\) 0 0
\(529\) 1268.23 0.104236
\(530\) 0 0
\(531\) 1882.41 0.153841
\(532\) 0 0
\(533\) 553.279 0.0449628
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9787.18 0.786495
\(538\) 0 0
\(539\) −644.404 −0.0514962
\(540\) 0 0
\(541\) 6062.86 0.481817 0.240908 0.970548i \(-0.422555\pi\)
0.240908 + 0.970548i \(0.422555\pi\)
\(542\) 0 0
\(543\) 7263.03 0.574008
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −19428.1 −1.51862 −0.759309 0.650730i \(-0.774463\pi\)
−0.759309 + 0.650730i \(0.774463\pi\)
\(548\) 0 0
\(549\) 3869.06 0.300778
\(550\) 0 0
\(551\) −21395.7 −1.65425
\(552\) 0 0
\(553\) 5589.96 0.429854
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3044.47 0.231595 0.115797 0.993273i \(-0.463058\pi\)
0.115797 + 0.993273i \(0.463058\pi\)
\(558\) 0 0
\(559\) −3876.94 −0.293340
\(560\) 0 0
\(561\) −196.336 −0.0147759
\(562\) 0 0
\(563\) 534.536 0.0400142 0.0200071 0.999800i \(-0.493631\pi\)
0.0200071 + 0.999800i \(0.493631\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2187.48 0.162021
\(568\) 0 0
\(569\) 17651.6 1.30051 0.650257 0.759715i \(-0.274661\pi\)
0.650257 + 0.759715i \(0.274661\pi\)
\(570\) 0 0
\(571\) 25083.6 1.83838 0.919189 0.393816i \(-0.128845\pi\)
0.919189 + 0.393816i \(0.128845\pi\)
\(572\) 0 0
\(573\) 3910.10 0.285073
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1471.14 −0.106143 −0.0530713 0.998591i \(-0.516901\pi\)
−0.0530713 + 0.998591i \(0.516901\pi\)
\(578\) 0 0
\(579\) −12936.6 −0.928546
\(580\) 0 0
\(581\) 9585.26 0.684447
\(582\) 0 0
\(583\) −948.893 −0.0674085
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9374.53 0.659162 0.329581 0.944127i \(-0.393092\pi\)
0.329581 + 0.944127i \(0.393092\pi\)
\(588\) 0 0
\(589\) −4382.07 −0.306553
\(590\) 0 0
\(591\) −7648.48 −0.532346
\(592\) 0 0
\(593\) 17508.2 1.21244 0.606218 0.795298i \(-0.292686\pi\)
0.606218 + 0.795298i \(0.292686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6660.44 0.456606
\(598\) 0 0
\(599\) −23357.9 −1.59329 −0.796644 0.604449i \(-0.793393\pi\)
−0.796644 + 0.604449i \(0.793393\pi\)
\(600\) 0 0
\(601\) −14646.9 −0.994109 −0.497055 0.867719i \(-0.665585\pi\)
−0.497055 + 0.867719i \(0.665585\pi\)
\(602\) 0 0
\(603\) −6977.09 −0.471193
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18575.7 −1.24212 −0.621059 0.783764i \(-0.713297\pi\)
−0.621059 + 0.783764i \(0.713297\pi\)
\(608\) 0 0
\(609\) 11030.5 0.733956
\(610\) 0 0
\(611\) 11490.6 0.760817
\(612\) 0 0
\(613\) 21371.4 1.40813 0.704065 0.710135i \(-0.251366\pi\)
0.704065 + 0.710135i \(0.251366\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14646.6 0.955672 0.477836 0.878449i \(-0.341421\pi\)
0.477836 + 0.878449i \(0.341421\pi\)
\(618\) 0 0
\(619\) 9217.63 0.598527 0.299263 0.954171i \(-0.403259\pi\)
0.299263 + 0.954171i \(0.403259\pi\)
\(620\) 0 0
\(621\) −3129.58 −0.202232
\(622\) 0 0
\(623\) −14295.9 −0.919347
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 786.397 0.0500888
\(628\) 0 0
\(629\) −14083.3 −0.892746
\(630\) 0 0
\(631\) 2272.47 0.143368 0.0716842 0.997427i \(-0.477163\pi\)
0.0716842 + 0.997427i \(0.477163\pi\)
\(632\) 0 0
\(633\) −10320.6 −0.648038
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −7042.13 −0.438021
\(638\) 0 0
\(639\) 714.260 0.0442186
\(640\) 0 0
\(641\) −14679.5 −0.904535 −0.452267 0.891882i \(-0.649385\pi\)
−0.452267 + 0.891882i \(0.649385\pi\)
\(642\) 0 0
\(643\) 23423.6 1.43660 0.718301 0.695733i \(-0.244920\pi\)
0.718301 + 0.695733i \(0.244920\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24072.1 −1.46271 −0.731355 0.681997i \(-0.761112\pi\)
−0.731355 + 0.681997i \(0.761112\pi\)
\(648\) 0 0
\(649\) −348.884 −0.0211015
\(650\) 0 0
\(651\) 2259.17 0.136012
\(652\) 0 0
\(653\) −13053.1 −0.782248 −0.391124 0.920338i \(-0.627914\pi\)
−0.391124 + 0.920338i \(0.627914\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2442.92 −0.145064
\(658\) 0 0
\(659\) 29076.5 1.71876 0.859378 0.511340i \(-0.170851\pi\)
0.859378 + 0.511340i \(0.170851\pi\)
\(660\) 0 0
\(661\) 7462.35 0.439110 0.219555 0.975600i \(-0.429539\pi\)
0.219555 + 0.975600i \(0.429539\pi\)
\(662\) 0 0
\(663\) −2145.58 −0.125683
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15781.1 −0.916113
\(668\) 0 0
\(669\) −6340.40 −0.366418
\(670\) 0 0
\(671\) −717.086 −0.0412560
\(672\) 0 0
\(673\) −33073.2 −1.89432 −0.947161 0.320758i \(-0.896062\pi\)
−0.947161 + 0.320758i \(0.896062\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23156.5 −1.31459 −0.657295 0.753633i \(-0.728300\pi\)
−0.657295 + 0.753633i \(0.728300\pi\)
\(678\) 0 0
\(679\) 33913.3 1.91675
\(680\) 0 0
\(681\) −10685.5 −0.601277
\(682\) 0 0
\(683\) −6453.28 −0.361534 −0.180767 0.983526i \(-0.557858\pi\)
−0.180767 + 0.983526i \(0.557858\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3803.65 −0.211235
\(688\) 0 0
\(689\) −10369.6 −0.573369
\(690\) 0 0
\(691\) 3552.92 0.195600 0.0977998 0.995206i \(-0.468820\pi\)
0.0977998 + 0.995206i \(0.468820\pi\)
\(692\) 0 0
\(693\) −405.425 −0.0222234
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1190.86 0.0647158
\(698\) 0 0
\(699\) −19765.8 −1.06954
\(700\) 0 0
\(701\) 6727.75 0.362487 0.181244 0.983438i \(-0.441988\pi\)
0.181244 + 0.983438i \(0.441988\pi\)
\(702\) 0 0
\(703\) 56408.8 3.02631
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17108.4 0.910082
\(708\) 0 0
\(709\) 14027.2 0.743021 0.371510 0.928429i \(-0.378840\pi\)
0.371510 + 0.928429i \(0.378840\pi\)
\(710\) 0 0
\(711\) 1862.91 0.0982624
\(712\) 0 0
\(713\) −3232.14 −0.169768
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18761.3 −0.977200
\(718\) 0 0
\(719\) −7002.59 −0.363217 −0.181608 0.983371i \(-0.558130\pi\)
−0.181608 + 0.983371i \(0.558130\pi\)
\(720\) 0 0
\(721\) 357.280 0.0184546
\(722\) 0 0
\(723\) −8749.53 −0.450067
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −20405.7 −1.04100 −0.520498 0.853863i \(-0.674254\pi\)
−0.520498 + 0.853863i \(0.674254\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −8344.56 −0.422209
\(732\) 0 0
\(733\) −6494.30 −0.327248 −0.163624 0.986523i \(-0.552318\pi\)
−0.163624 + 0.986523i \(0.552318\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1293.13 0.0646308
\(738\) 0 0
\(739\) 36785.9 1.83111 0.915556 0.402191i \(-0.131751\pi\)
0.915556 + 0.402191i \(0.131751\pi\)
\(740\) 0 0
\(741\) 8593.85 0.426050
\(742\) 0 0
\(743\) 16321.4 0.805889 0.402945 0.915224i \(-0.367987\pi\)
0.402945 + 0.915224i \(0.367987\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3194.38 0.156461
\(748\) 0 0
\(749\) 36171.2 1.76458
\(750\) 0 0
\(751\) −32467.5 −1.57757 −0.788786 0.614668i \(-0.789290\pi\)
−0.788786 + 0.614668i \(0.789290\pi\)
\(752\) 0 0
\(753\) 333.413 0.0161358
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9188.72 0.441175 0.220588 0.975367i \(-0.429203\pi\)
0.220588 + 0.975367i \(0.429203\pi\)
\(758\) 0 0
\(759\) 580.033 0.0277389
\(760\) 0 0
\(761\) −10574.6 −0.503715 −0.251858 0.967764i \(-0.581041\pi\)
−0.251858 + 0.967764i \(0.581041\pi\)
\(762\) 0 0
\(763\) 9516.82 0.451549
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3812.65 −0.179487
\(768\) 0 0
\(769\) 26600.8 1.24740 0.623699 0.781665i \(-0.285629\pi\)
0.623699 + 0.781665i \(0.285629\pi\)
\(770\) 0 0
\(771\) −13189.8 −0.616109
\(772\) 0 0
\(773\) 17113.4 0.796281 0.398140 0.917325i \(-0.369656\pi\)
0.398140 + 0.917325i \(0.369656\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −29081.4 −1.34272
\(778\) 0 0
\(779\) −4769.82 −0.219379
\(780\) 0 0
\(781\) −132.380 −0.00606521
\(782\) 0 0
\(783\) 3676.03 0.167778
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12415.2 0.562332 0.281166 0.959659i \(-0.409279\pi\)
0.281166 + 0.959659i \(0.409279\pi\)
\(788\) 0 0
\(789\) −23678.4 −1.06841
\(790\) 0 0
\(791\) −28096.3 −1.26295
\(792\) 0 0
\(793\) −7836.41 −0.350919
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17080.1 −0.759106 −0.379553 0.925170i \(-0.623922\pi\)
−0.379553 + 0.925170i \(0.623922\pi\)
\(798\) 0 0
\(799\) 24731.9 1.09506
\(800\) 0 0
\(801\) −4764.25 −0.210158
\(802\) 0 0
\(803\) 452.767 0.0198976
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8322.54 0.363033
\(808\) 0 0
\(809\) −32230.3 −1.40069 −0.700344 0.713806i \(-0.746970\pi\)
−0.700344 + 0.713806i \(0.746970\pi\)
\(810\) 0 0
\(811\) 17394.1 0.753130 0.376565 0.926390i \(-0.377105\pi\)
0.376565 + 0.926390i \(0.377105\pi\)
\(812\) 0 0
\(813\) −3782.53 −0.163172
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 33423.1 1.43124
\(818\) 0 0
\(819\) −4430.54 −0.189030
\(820\) 0 0
\(821\) −31848.8 −1.35387 −0.676937 0.736041i \(-0.736693\pi\)
−0.676937 + 0.736041i \(0.736693\pi\)
\(822\) 0 0
\(823\) 31497.6 1.33407 0.667033 0.745028i \(-0.267564\pi\)
0.667033 + 0.745028i \(0.267564\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5371.24 0.225848 0.112924 0.993604i \(-0.463978\pi\)
0.112924 + 0.993604i \(0.463978\pi\)
\(828\) 0 0
\(829\) 20701.9 0.867320 0.433660 0.901077i \(-0.357222\pi\)
0.433660 + 0.901077i \(0.357222\pi\)
\(830\) 0 0
\(831\) −21004.7 −0.876829
\(832\) 0 0
\(833\) −15157.2 −0.630452
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 752.889 0.0310916
\(838\) 0 0
\(839\) −38044.1 −1.56547 −0.782734 0.622357i \(-0.786175\pi\)
−0.782734 + 0.622357i \(0.786175\pi\)
\(840\) 0 0
\(841\) −5852.39 −0.239960
\(842\) 0 0
\(843\) −19633.7 −0.802161
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −35869.8 −1.45514
\(848\) 0 0
\(849\) −8013.80 −0.323949
\(850\) 0 0
\(851\) 41606.1 1.67596
\(852\) 0 0
\(853\) −22333.4 −0.896461 −0.448231 0.893918i \(-0.647946\pi\)
−0.448231 + 0.893918i \(0.647946\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16346.4 −0.651554 −0.325777 0.945447i \(-0.605626\pi\)
−0.325777 + 0.945447i \(0.605626\pi\)
\(858\) 0 0
\(859\) 714.274 0.0283710 0.0141855 0.999899i \(-0.495484\pi\)
0.0141855 + 0.999899i \(0.495484\pi\)
\(860\) 0 0
\(861\) 2459.07 0.0973343
\(862\) 0 0
\(863\) −21577.0 −0.851089 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10120.9 0.396453
\(868\) 0 0
\(869\) −345.269 −0.0134781
\(870\) 0 0
\(871\) 14131.4 0.549743
\(872\) 0 0
\(873\) 11301.9 0.438159
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 28659.7 1.10350 0.551750 0.834010i \(-0.313960\pi\)
0.551750 + 0.834010i \(0.313960\pi\)
\(878\) 0 0
\(879\) −14763.3 −0.566499
\(880\) 0 0
\(881\) 29709.1 1.13612 0.568062 0.822986i \(-0.307693\pi\)
0.568062 + 0.822986i \(0.307693\pi\)
\(882\) 0 0
\(883\) −30726.3 −1.17103 −0.585517 0.810660i \(-0.699108\pi\)
−0.585517 + 0.810660i \(0.699108\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1675.35 −0.0634192 −0.0317096 0.999497i \(-0.510095\pi\)
−0.0317096 + 0.999497i \(0.510095\pi\)
\(888\) 0 0
\(889\) 16229.7 0.612291
\(890\) 0 0
\(891\) −135.112 −0.00508016
\(892\) 0 0
\(893\) −99060.3 −3.71212
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6338.67 0.235944
\(898\) 0 0
\(899\) 3796.49 0.140845
\(900\) 0 0
\(901\) −22319.2 −0.825261
\(902\) 0 0
\(903\) −17231.2 −0.635014
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 27201.4 0.995817 0.497909 0.867230i \(-0.334102\pi\)
0.497909 + 0.867230i \(0.334102\pi\)
\(908\) 0 0
\(909\) 5701.54 0.208040
\(910\) 0 0
\(911\) −22130.5 −0.804846 −0.402423 0.915454i \(-0.631832\pi\)
−0.402423 + 0.915454i \(0.631832\pi\)
\(912\) 0 0
\(913\) −592.042 −0.0214608
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −37492.3 −1.35017
\(918\) 0 0
\(919\) 19655.9 0.705536 0.352768 0.935711i \(-0.385240\pi\)
0.352768 + 0.935711i \(0.385240\pi\)
\(920\) 0 0
\(921\) 2548.06 0.0911633
\(922\) 0 0
\(923\) −1446.67 −0.0515901
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 119.067 0.00421863
\(928\) 0 0
\(929\) 23519.5 0.830624 0.415312 0.909679i \(-0.363672\pi\)
0.415312 + 0.909679i \(0.363672\pi\)
\(930\) 0 0
\(931\) 60710.3 2.13716
\(932\) 0 0
\(933\) −4452.82 −0.156247
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27724.7 0.966623 0.483312 0.875448i \(-0.339434\pi\)
0.483312 + 0.875448i \(0.339434\pi\)
\(938\) 0 0
\(939\) −13776.0 −0.478768
\(940\) 0 0
\(941\) −32499.2 −1.12587 −0.562936 0.826501i \(-0.690328\pi\)
−0.562936 + 0.826501i \(0.690328\pi\)
\(942\) 0 0
\(943\) −3518.13 −0.121491
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27339.4 −0.938133 −0.469067 0.883163i \(-0.655410\pi\)
−0.469067 + 0.883163i \(0.655410\pi\)
\(948\) 0 0
\(949\) 4947.90 0.169247
\(950\) 0 0
\(951\) 14559.2 0.496438
\(952\) 0 0
\(953\) 28992.7 0.985484 0.492742 0.870175i \(-0.335995\pi\)
0.492742 + 0.870175i \(0.335995\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −681.310 −0.0230132
\(958\) 0 0
\(959\) −55029.7 −1.85297
\(960\) 0 0
\(961\) −29013.4 −0.973900
\(962\) 0 0
\(963\) 12054.4 0.403373
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −59944.6 −1.99347 −0.996737 0.0807168i \(-0.974279\pi\)
−0.996737 + 0.0807168i \(0.974279\pi\)
\(968\) 0 0
\(969\) 18497.1 0.613221
\(970\) 0 0
\(971\) −18266.4 −0.603703 −0.301851 0.953355i \(-0.597605\pi\)
−0.301851 + 0.953355i \(0.597605\pi\)
\(972\) 0 0
\(973\) −28633.9 −0.943435
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26506.0 −0.867964 −0.433982 0.900922i \(-0.642892\pi\)
−0.433982 + 0.900922i \(0.642892\pi\)
\(978\) 0 0
\(979\) 882.999 0.0288261
\(980\) 0 0
\(981\) 3171.57 0.103222
\(982\) 0 0
\(983\) −41980.3 −1.36212 −0.681060 0.732228i \(-0.738481\pi\)
−0.681060 + 0.732228i \(0.738481\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 51070.3 1.64700
\(988\) 0 0
\(989\) 24652.3 0.792615
\(990\) 0 0
\(991\) 7778.08 0.249323 0.124661 0.992199i \(-0.460216\pi\)
0.124661 + 0.992199i \(0.460216\pi\)
\(992\) 0 0
\(993\) −29595.3 −0.945798
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −25875.3 −0.821944 −0.410972 0.911648i \(-0.634811\pi\)
−0.410972 + 0.911648i \(0.634811\pi\)
\(998\) 0 0
\(999\) −9691.66 −0.306938
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bl.1.3 yes 3
4.3 odd 2 2400.4.a.br.1.1 yes 3
5.4 even 2 2400.4.a.bq.1.1 yes 3
20.19 odd 2 2400.4.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bk.1.3 3 20.19 odd 2
2400.4.a.bl.1.3 yes 3 1.1 even 1 trivial
2400.4.a.bq.1.1 yes 3 5.4 even 2
2400.4.a.br.1.1 yes 3 4.3 odd 2