Properties

Label 2400.4.a.bi.1.2
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.115636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 69x - 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(9.32800\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -2.13303 q^{7} +9.00000 q^{9} +24.4450 q^{11} -34.0459 q^{13} +123.069 q^{17} +9.17896 q^{19} +6.39909 q^{21} +142.225 q^{23} -27.0000 q^{27} +140.491 q^{29} -158.711 q^{31} -73.3351 q^{33} -58.5783 q^{37} +102.138 q^{39} -108.895 q^{41} -246.565 q^{43} +466.056 q^{47} -338.450 q^{49} -369.207 q^{51} +312.757 q^{53} -27.5369 q^{57} -410.973 q^{59} -44.5685 q^{61} -19.1973 q^{63} -368.079 q^{67} -426.675 q^{69} +108.097 q^{71} +627.753 q^{73} -52.1419 q^{77} -196.404 q^{79} +81.0000 q^{81} -107.596 q^{83} -421.473 q^{87} +685.708 q^{89} +72.6210 q^{91} +476.134 q^{93} -73.7529 q^{97} +220.005 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 3 q^{7} + 27 q^{9} - 44 q^{11} - 13 q^{13} + 36 q^{17} - 71 q^{19} - 9 q^{21} - 160 q^{23} - 81 q^{27} - 184 q^{29} + 59 q^{31} + 132 q^{33} + 350 q^{37} + 39 q^{39} + 166 q^{41} - 341 q^{43}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.13303 −0.115173 −0.0575864 0.998341i \(-0.518340\pi\)
−0.0575864 + 0.998341i \(0.518340\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 24.4450 0.670041 0.335020 0.942211i \(-0.391257\pi\)
0.335020 + 0.942211i \(0.391257\pi\)
\(12\) 0 0
\(13\) −34.0459 −0.726357 −0.363179 0.931720i \(-0.618308\pi\)
−0.363179 + 0.931720i \(0.618308\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 123.069 1.75580 0.877900 0.478843i \(-0.158944\pi\)
0.877900 + 0.478843i \(0.158944\pi\)
\(18\) 0 0
\(19\) 9.17896 0.110831 0.0554157 0.998463i \(-0.482352\pi\)
0.0554157 + 0.998463i \(0.482352\pi\)
\(20\) 0 0
\(21\) 6.39909 0.0664950
\(22\) 0 0
\(23\) 142.225 1.28939 0.644695 0.764440i \(-0.276984\pi\)
0.644695 + 0.764440i \(0.276984\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 140.491 0.899605 0.449803 0.893128i \(-0.351494\pi\)
0.449803 + 0.893128i \(0.351494\pi\)
\(30\) 0 0
\(31\) −158.711 −0.919529 −0.459764 0.888041i \(-0.652066\pi\)
−0.459764 + 0.888041i \(0.652066\pi\)
\(32\) 0 0
\(33\) −73.3351 −0.386848
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −58.5783 −0.260276 −0.130138 0.991496i \(-0.541542\pi\)
−0.130138 + 0.991496i \(0.541542\pi\)
\(38\) 0 0
\(39\) 102.138 0.419362
\(40\) 0 0
\(41\) −108.895 −0.414793 −0.207396 0.978257i \(-0.566499\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(42\) 0 0
\(43\) −246.565 −0.874436 −0.437218 0.899356i \(-0.644036\pi\)
−0.437218 + 0.899356i \(0.644036\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 466.056 1.44641 0.723204 0.690634i \(-0.242668\pi\)
0.723204 + 0.690634i \(0.242668\pi\)
\(48\) 0 0
\(49\) −338.450 −0.986735
\(50\) 0 0
\(51\) −369.207 −1.01371
\(52\) 0 0
\(53\) 312.757 0.810576 0.405288 0.914189i \(-0.367171\pi\)
0.405288 + 0.914189i \(0.367171\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −27.5369 −0.0639886
\(58\) 0 0
\(59\) −410.973 −0.906849 −0.453425 0.891295i \(-0.649798\pi\)
−0.453425 + 0.891295i \(0.649798\pi\)
\(60\) 0 0
\(61\) −44.5685 −0.0935478 −0.0467739 0.998906i \(-0.514894\pi\)
−0.0467739 + 0.998906i \(0.514894\pi\)
\(62\) 0 0
\(63\) −19.1973 −0.0383909
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −368.079 −0.671164 −0.335582 0.942011i \(-0.608933\pi\)
−0.335582 + 0.942011i \(0.608933\pi\)
\(68\) 0 0
\(69\) −426.675 −0.744430
\(70\) 0 0
\(71\) 108.097 0.180687 0.0903434 0.995911i \(-0.471204\pi\)
0.0903434 + 0.995911i \(0.471204\pi\)
\(72\) 0 0
\(73\) 627.753 1.00648 0.503239 0.864147i \(-0.332141\pi\)
0.503239 + 0.864147i \(0.332141\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −52.1419 −0.0771705
\(78\) 0 0
\(79\) −196.404 −0.279711 −0.139856 0.990172i \(-0.544664\pi\)
−0.139856 + 0.990172i \(0.544664\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −107.596 −0.142292 −0.0711460 0.997466i \(-0.522666\pi\)
−0.0711460 + 0.997466i \(0.522666\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −421.473 −0.519387
\(88\) 0 0
\(89\) 685.708 0.816684 0.408342 0.912829i \(-0.366107\pi\)
0.408342 + 0.912829i \(0.366107\pi\)
\(90\) 0 0
\(91\) 72.6210 0.0836566
\(92\) 0 0
\(93\) 476.134 0.530890
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −73.7529 −0.0772007 −0.0386003 0.999255i \(-0.512290\pi\)
−0.0386003 + 0.999255i \(0.512290\pi\)
\(98\) 0 0
\(99\) 220.005 0.223347
\(100\) 0 0
\(101\) 120.869 0.119078 0.0595389 0.998226i \(-0.481037\pi\)
0.0595389 + 0.998226i \(0.481037\pi\)
\(102\) 0 0
\(103\) −1136.78 −1.08748 −0.543740 0.839254i \(-0.682992\pi\)
−0.543740 + 0.839254i \(0.682992\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1043.08 0.942414 0.471207 0.882023i \(-0.343819\pi\)
0.471207 + 0.882023i \(0.343819\pi\)
\(108\) 0 0
\(109\) 1903.91 1.67304 0.836521 0.547935i \(-0.184586\pi\)
0.836521 + 0.547935i \(0.184586\pi\)
\(110\) 0 0
\(111\) 175.735 0.150270
\(112\) 0 0
\(113\) −553.984 −0.461190 −0.230595 0.973050i \(-0.574067\pi\)
−0.230595 + 0.973050i \(0.574067\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −306.413 −0.242119
\(118\) 0 0
\(119\) −262.510 −0.202220
\(120\) 0 0
\(121\) −733.441 −0.551045
\(122\) 0 0
\(123\) 326.684 0.239481
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 887.643 0.620201 0.310101 0.950704i \(-0.399637\pi\)
0.310101 + 0.950704i \(0.399637\pi\)
\(128\) 0 0
\(129\) 739.694 0.504856
\(130\) 0 0
\(131\) −2320.16 −1.54743 −0.773716 0.633533i \(-0.781604\pi\)
−0.773716 + 0.633533i \(0.781604\pi\)
\(132\) 0 0
\(133\) −19.5790 −0.0127648
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1841.31 1.14828 0.574139 0.818758i \(-0.305337\pi\)
0.574139 + 0.818758i \(0.305337\pi\)
\(138\) 0 0
\(139\) −686.396 −0.418844 −0.209422 0.977825i \(-0.567158\pi\)
−0.209422 + 0.977825i \(0.567158\pi\)
\(140\) 0 0
\(141\) −1398.17 −0.835084
\(142\) 0 0
\(143\) −832.253 −0.486689
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1015.35 0.569692
\(148\) 0 0
\(149\) 680.173 0.373973 0.186986 0.982363i \(-0.440128\pi\)
0.186986 + 0.982363i \(0.440128\pi\)
\(150\) 0 0
\(151\) −750.511 −0.404475 −0.202238 0.979336i \(-0.564821\pi\)
−0.202238 + 0.979336i \(0.564821\pi\)
\(152\) 0 0
\(153\) 1107.62 0.585267
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 941.269 0.478480 0.239240 0.970960i \(-0.423102\pi\)
0.239240 + 0.970960i \(0.423102\pi\)
\(158\) 0 0
\(159\) −938.272 −0.467986
\(160\) 0 0
\(161\) −303.370 −0.148503
\(162\) 0 0
\(163\) −745.142 −0.358062 −0.179031 0.983843i \(-0.557296\pi\)
−0.179031 + 0.983843i \(0.557296\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2744.97 −1.27193 −0.635965 0.771718i \(-0.719398\pi\)
−0.635965 + 0.771718i \(0.719398\pi\)
\(168\) 0 0
\(169\) −1037.87 −0.472405
\(170\) 0 0
\(171\) 82.6106 0.0369438
\(172\) 0 0
\(173\) 1891.42 0.831224 0.415612 0.909542i \(-0.363567\pi\)
0.415612 + 0.909542i \(0.363567\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1232.92 0.523570
\(178\) 0 0
\(179\) 1127.81 0.470930 0.235465 0.971883i \(-0.424339\pi\)
0.235465 + 0.971883i \(0.424339\pi\)
\(180\) 0 0
\(181\) −3421.68 −1.40515 −0.702574 0.711611i \(-0.747966\pi\)
−0.702574 + 0.711611i \(0.747966\pi\)
\(182\) 0 0
\(183\) 133.706 0.0540098
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3008.42 1.17646
\(188\) 0 0
\(189\) 57.5918 0.0221650
\(190\) 0 0
\(191\) −51.0506 −0.0193398 −0.00966988 0.999953i \(-0.503078\pi\)
−0.00966988 + 0.999953i \(0.503078\pi\)
\(192\) 0 0
\(193\) 5176.59 1.93067 0.965334 0.261016i \(-0.0840576\pi\)
0.965334 + 0.261016i \(0.0840576\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1867.19 −0.675287 −0.337644 0.941274i \(-0.609630\pi\)
−0.337644 + 0.941274i \(0.609630\pi\)
\(198\) 0 0
\(199\) 2891.08 1.02987 0.514933 0.857230i \(-0.327817\pi\)
0.514933 + 0.857230i \(0.327817\pi\)
\(200\) 0 0
\(201\) 1104.24 0.387497
\(202\) 0 0
\(203\) −299.672 −0.103610
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1280.03 0.429797
\(208\) 0 0
\(209\) 224.380 0.0742616
\(210\) 0 0
\(211\) −122.931 −0.0401085 −0.0200543 0.999799i \(-0.506384\pi\)
−0.0200543 + 0.999799i \(0.506384\pi\)
\(212\) 0 0
\(213\) −324.291 −0.104320
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 338.536 0.105905
\(218\) 0 0
\(219\) −1883.26 −0.581091
\(220\) 0 0
\(221\) −4190.00 −1.27534
\(222\) 0 0
\(223\) 6307.07 1.89396 0.946979 0.321295i \(-0.104118\pi\)
0.946979 + 0.321295i \(0.104118\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2795.36 −0.817332 −0.408666 0.912684i \(-0.634006\pi\)
−0.408666 + 0.912684i \(0.634006\pi\)
\(228\) 0 0
\(229\) 1328.44 0.383343 0.191672 0.981459i \(-0.438609\pi\)
0.191672 + 0.981459i \(0.438609\pi\)
\(230\) 0 0
\(231\) 156.426 0.0445544
\(232\) 0 0
\(233\) 6117.63 1.72008 0.860041 0.510226i \(-0.170438\pi\)
0.860041 + 0.510226i \(0.170438\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 589.212 0.161491
\(238\) 0 0
\(239\) 1222.76 0.330936 0.165468 0.986215i \(-0.447087\pi\)
0.165468 + 0.986215i \(0.447087\pi\)
\(240\) 0 0
\(241\) 194.893 0.0520919 0.0260460 0.999661i \(-0.491708\pi\)
0.0260460 + 0.999661i \(0.491708\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −312.506 −0.0805032
\(248\) 0 0
\(249\) 322.789 0.0821523
\(250\) 0 0
\(251\) 348.453 0.0876262 0.0438131 0.999040i \(-0.486049\pi\)
0.0438131 + 0.999040i \(0.486049\pi\)
\(252\) 0 0
\(253\) 3476.70 0.863944
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3969.83 0.963544 0.481772 0.876296i \(-0.339993\pi\)
0.481772 + 0.876296i \(0.339993\pi\)
\(258\) 0 0
\(259\) 124.949 0.0299767
\(260\) 0 0
\(261\) 1264.42 0.299868
\(262\) 0 0
\(263\) 756.907 0.177463 0.0887317 0.996056i \(-0.471719\pi\)
0.0887317 + 0.996056i \(0.471719\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2057.12 −0.471513
\(268\) 0 0
\(269\) 6105.26 1.38381 0.691904 0.721989i \(-0.256772\pi\)
0.691904 + 0.721989i \(0.256772\pi\)
\(270\) 0 0
\(271\) 3824.23 0.857216 0.428608 0.903491i \(-0.359004\pi\)
0.428608 + 0.903491i \(0.359004\pi\)
\(272\) 0 0
\(273\) −217.863 −0.0482991
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1930.18 0.418676 0.209338 0.977843i \(-0.432869\pi\)
0.209338 + 0.977843i \(0.432869\pi\)
\(278\) 0 0
\(279\) −1428.40 −0.306510
\(280\) 0 0
\(281\) −2942.33 −0.624643 −0.312322 0.949976i \(-0.601107\pi\)
−0.312322 + 0.949976i \(0.601107\pi\)
\(282\) 0 0
\(283\) −8483.92 −1.78204 −0.891019 0.453967i \(-0.850008\pi\)
−0.891019 + 0.453967i \(0.850008\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 232.276 0.0477728
\(288\) 0 0
\(289\) 10233.0 2.08284
\(290\) 0 0
\(291\) 221.259 0.0445718
\(292\) 0 0
\(293\) 8526.45 1.70007 0.850035 0.526726i \(-0.176581\pi\)
0.850035 + 0.526726i \(0.176581\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −660.016 −0.128949
\(298\) 0 0
\(299\) −4842.19 −0.936558
\(300\) 0 0
\(301\) 525.929 0.100711
\(302\) 0 0
\(303\) −362.606 −0.0687497
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1977.34 0.367599 0.183800 0.982964i \(-0.441160\pi\)
0.183800 + 0.982964i \(0.441160\pi\)
\(308\) 0 0
\(309\) 3410.34 0.627856
\(310\) 0 0
\(311\) 5243.29 0.956012 0.478006 0.878356i \(-0.341360\pi\)
0.478006 + 0.878356i \(0.341360\pi\)
\(312\) 0 0
\(313\) −755.186 −0.136376 −0.0681879 0.997672i \(-0.521722\pi\)
−0.0681879 + 0.997672i \(0.521722\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4018.11 0.711922 0.355961 0.934501i \(-0.384154\pi\)
0.355961 + 0.934501i \(0.384154\pi\)
\(318\) 0 0
\(319\) 3434.31 0.602772
\(320\) 0 0
\(321\) −3129.24 −0.544103
\(322\) 0 0
\(323\) 1129.65 0.194598
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5711.73 −0.965931
\(328\) 0 0
\(329\) −994.110 −0.166587
\(330\) 0 0
\(331\) −5297.98 −0.879769 −0.439884 0.898054i \(-0.644981\pi\)
−0.439884 + 0.898054i \(0.644981\pi\)
\(332\) 0 0
\(333\) −527.204 −0.0867586
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9911.99 1.60220 0.801099 0.598532i \(-0.204249\pi\)
0.801099 + 0.598532i \(0.204249\pi\)
\(338\) 0 0
\(339\) 1661.95 0.266268
\(340\) 0 0
\(341\) −3879.70 −0.616122
\(342\) 0 0
\(343\) 1453.55 0.228818
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4218.61 0.652643 0.326321 0.945259i \(-0.394191\pi\)
0.326321 + 0.945259i \(0.394191\pi\)
\(348\) 0 0
\(349\) 2128.88 0.326522 0.163261 0.986583i \(-0.447799\pi\)
0.163261 + 0.986583i \(0.447799\pi\)
\(350\) 0 0
\(351\) 919.240 0.139787
\(352\) 0 0
\(353\) 8492.19 1.28044 0.640218 0.768194i \(-0.278844\pi\)
0.640218 + 0.768194i \(0.278844\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 787.529 0.116752
\(358\) 0 0
\(359\) −6606.71 −0.971277 −0.485639 0.874160i \(-0.661413\pi\)
−0.485639 + 0.874160i \(0.661413\pi\)
\(360\) 0 0
\(361\) −6774.75 −0.987716
\(362\) 0 0
\(363\) 2200.32 0.318146
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7180.57 −1.02132 −0.510658 0.859784i \(-0.670598\pi\)
−0.510658 + 0.859784i \(0.670598\pi\)
\(368\) 0 0
\(369\) −980.053 −0.138264
\(370\) 0 0
\(371\) −667.120 −0.0933562
\(372\) 0 0
\(373\) 7436.71 1.03233 0.516164 0.856490i \(-0.327359\pi\)
0.516164 + 0.856490i \(0.327359\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4783.15 −0.653435
\(378\) 0 0
\(379\) 11591.3 1.57099 0.785496 0.618867i \(-0.212408\pi\)
0.785496 + 0.618867i \(0.212408\pi\)
\(380\) 0 0
\(381\) −2662.93 −0.358073
\(382\) 0 0
\(383\) 7706.49 1.02815 0.514077 0.857744i \(-0.328134\pi\)
0.514077 + 0.857744i \(0.328134\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2219.08 −0.291479
\(388\) 0 0
\(389\) 2067.75 0.269509 0.134755 0.990879i \(-0.456975\pi\)
0.134755 + 0.990879i \(0.456975\pi\)
\(390\) 0 0
\(391\) 17503.5 2.26391
\(392\) 0 0
\(393\) 6960.49 0.893410
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11330.1 −1.43235 −0.716175 0.697921i \(-0.754109\pi\)
−0.716175 + 0.697921i \(0.754109\pi\)
\(398\) 0 0
\(399\) 58.7370 0.00736974
\(400\) 0 0
\(401\) −8551.98 −1.06500 −0.532500 0.846430i \(-0.678747\pi\)
−0.532500 + 0.846430i \(0.678747\pi\)
\(402\) 0 0
\(403\) 5403.47 0.667906
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1431.95 −0.174395
\(408\) 0 0
\(409\) 448.744 0.0542517 0.0271259 0.999632i \(-0.491365\pi\)
0.0271259 + 0.999632i \(0.491365\pi\)
\(410\) 0 0
\(411\) −5523.94 −0.662958
\(412\) 0 0
\(413\) 876.617 0.104444
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2059.19 0.241820
\(418\) 0 0
\(419\) −5153.24 −0.600841 −0.300420 0.953807i \(-0.597127\pi\)
−0.300420 + 0.953807i \(0.597127\pi\)
\(420\) 0 0
\(421\) −12633.7 −1.46254 −0.731269 0.682089i \(-0.761072\pi\)
−0.731269 + 0.682089i \(0.761072\pi\)
\(422\) 0 0
\(423\) 4194.50 0.482136
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 95.0660 0.0107742
\(428\) 0 0
\(429\) 2496.76 0.280990
\(430\) 0 0
\(431\) 9746.12 1.08922 0.544610 0.838689i \(-0.316678\pi\)
0.544610 + 0.838689i \(0.316678\pi\)
\(432\) 0 0
\(433\) 12953.8 1.43768 0.718842 0.695173i \(-0.244672\pi\)
0.718842 + 0.695173i \(0.244672\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1305.48 0.142905
\(438\) 0 0
\(439\) 11877.5 1.29130 0.645649 0.763634i \(-0.276587\pi\)
0.645649 + 0.763634i \(0.276587\pi\)
\(440\) 0 0
\(441\) −3046.05 −0.328912
\(442\) 0 0
\(443\) 1165.96 0.125049 0.0625243 0.998043i \(-0.480085\pi\)
0.0625243 + 0.998043i \(0.480085\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2040.52 −0.215913
\(448\) 0 0
\(449\) 1415.70 0.148799 0.0743996 0.997229i \(-0.476296\pi\)
0.0743996 + 0.997229i \(0.476296\pi\)
\(450\) 0 0
\(451\) −2661.94 −0.277928
\(452\) 0 0
\(453\) 2251.53 0.233524
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12279.3 1.25690 0.628449 0.777851i \(-0.283690\pi\)
0.628449 + 0.777851i \(0.283690\pi\)
\(458\) 0 0
\(459\) −3322.86 −0.337904
\(460\) 0 0
\(461\) −5591.54 −0.564911 −0.282455 0.959280i \(-0.591149\pi\)
−0.282455 + 0.959280i \(0.591149\pi\)
\(462\) 0 0
\(463\) −18810.7 −1.88813 −0.944067 0.329755i \(-0.893034\pi\)
−0.944067 + 0.329755i \(0.893034\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6580.13 0.652017 0.326008 0.945367i \(-0.394296\pi\)
0.326008 + 0.945367i \(0.394296\pi\)
\(468\) 0 0
\(469\) 785.123 0.0772998
\(470\) 0 0
\(471\) −2823.81 −0.276251
\(472\) 0 0
\(473\) −6027.27 −0.585908
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2814.81 0.270192
\(478\) 0 0
\(479\) 12089.0 1.15316 0.576578 0.817042i \(-0.304388\pi\)
0.576578 + 0.817042i \(0.304388\pi\)
\(480\) 0 0
\(481\) 1994.35 0.189053
\(482\) 0 0
\(483\) 910.111 0.0857381
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7259.45 0.675477 0.337738 0.941240i \(-0.390338\pi\)
0.337738 + 0.941240i \(0.390338\pi\)
\(488\) 0 0
\(489\) 2235.43 0.206727
\(490\) 0 0
\(491\) −16499.5 −1.51652 −0.758260 0.651953i \(-0.773950\pi\)
−0.758260 + 0.651953i \(0.773950\pi\)
\(492\) 0 0
\(493\) 17290.1 1.57953
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −230.574 −0.0208102
\(498\) 0 0
\(499\) −10733.6 −0.962932 −0.481466 0.876465i \(-0.659895\pi\)
−0.481466 + 0.876465i \(0.659895\pi\)
\(500\) 0 0
\(501\) 8234.92 0.734349
\(502\) 0 0
\(503\) 17777.5 1.57586 0.787930 0.615764i \(-0.211153\pi\)
0.787930 + 0.615764i \(0.211153\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3113.62 0.272743
\(508\) 0 0
\(509\) 11995.3 1.04456 0.522279 0.852775i \(-0.325082\pi\)
0.522279 + 0.852775i \(0.325082\pi\)
\(510\) 0 0
\(511\) −1339.02 −0.115919
\(512\) 0 0
\(513\) −247.832 −0.0213295
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11392.7 0.969153
\(518\) 0 0
\(519\) −5674.25 −0.479907
\(520\) 0 0
\(521\) 18050.7 1.51788 0.758938 0.651162i \(-0.225718\pi\)
0.758938 + 0.651162i \(0.225718\pi\)
\(522\) 0 0
\(523\) −12834.3 −1.07305 −0.536523 0.843886i \(-0.680262\pi\)
−0.536523 + 0.843886i \(0.680262\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19532.4 −1.61451
\(528\) 0 0
\(529\) 8060.98 0.662528
\(530\) 0 0
\(531\) −3698.76 −0.302283
\(532\) 0 0
\(533\) 3707.42 0.301288
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3383.43 −0.271892
\(538\) 0 0
\(539\) −8273.42 −0.661153
\(540\) 0 0
\(541\) 6839.45 0.543532 0.271766 0.962363i \(-0.412392\pi\)
0.271766 + 0.962363i \(0.412392\pi\)
\(542\) 0 0
\(543\) 10265.0 0.811262
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24487.2 1.91407 0.957034 0.289976i \(-0.0936475\pi\)
0.957034 + 0.289976i \(0.0936475\pi\)
\(548\) 0 0
\(549\) −401.117 −0.0311826
\(550\) 0 0
\(551\) 1289.56 0.0997046
\(552\) 0 0
\(553\) 418.936 0.0322151
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21516.5 1.63677 0.818386 0.574669i \(-0.194869\pi\)
0.818386 + 0.574669i \(0.194869\pi\)
\(558\) 0 0
\(559\) 8394.52 0.635153
\(560\) 0 0
\(561\) −9025.27 −0.679229
\(562\) 0 0
\(563\) −14612.4 −1.09385 −0.546926 0.837181i \(-0.684202\pi\)
−0.546926 + 0.837181i \(0.684202\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −172.775 −0.0127970
\(568\) 0 0
\(569\) 17738.6 1.30693 0.653464 0.756958i \(-0.273315\pi\)
0.653464 + 0.756958i \(0.273315\pi\)
\(570\) 0 0
\(571\) 8033.63 0.588786 0.294393 0.955684i \(-0.404883\pi\)
0.294393 + 0.955684i \(0.404883\pi\)
\(572\) 0 0
\(573\) 153.152 0.0111658
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −20620.8 −1.48779 −0.743894 0.668297i \(-0.767023\pi\)
−0.743894 + 0.668297i \(0.767023\pi\)
\(578\) 0 0
\(579\) −15529.8 −1.11467
\(580\) 0 0
\(581\) 229.506 0.0163882
\(582\) 0 0
\(583\) 7645.36 0.543119
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10364.5 −0.728772 −0.364386 0.931248i \(-0.618721\pi\)
−0.364386 + 0.931248i \(0.618721\pi\)
\(588\) 0 0
\(589\) −1456.80 −0.101913
\(590\) 0 0
\(591\) 5601.56 0.389877
\(592\) 0 0
\(593\) 9074.45 0.628403 0.314202 0.949356i \(-0.398263\pi\)
0.314202 + 0.949356i \(0.398263\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8673.25 −0.594594
\(598\) 0 0
\(599\) 6917.00 0.471821 0.235911 0.971775i \(-0.424193\pi\)
0.235911 + 0.971775i \(0.424193\pi\)
\(600\) 0 0
\(601\) −16258.3 −1.10348 −0.551738 0.834017i \(-0.686035\pi\)
−0.551738 + 0.834017i \(0.686035\pi\)
\(602\) 0 0
\(603\) −3312.71 −0.223721
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1406.90 0.0940764 0.0470382 0.998893i \(-0.485022\pi\)
0.0470382 + 0.998893i \(0.485022\pi\)
\(608\) 0 0
\(609\) 899.015 0.0598193
\(610\) 0 0
\(611\) −15867.3 −1.05061
\(612\) 0 0
\(613\) −21539.2 −1.41918 −0.709592 0.704613i \(-0.751121\pi\)
−0.709592 + 0.704613i \(0.751121\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 798.965 0.0521314 0.0260657 0.999660i \(-0.491702\pi\)
0.0260657 + 0.999660i \(0.491702\pi\)
\(618\) 0 0
\(619\) 23307.9 1.51345 0.756724 0.653735i \(-0.226799\pi\)
0.756724 + 0.653735i \(0.226799\pi\)
\(620\) 0 0
\(621\) −3840.08 −0.248143
\(622\) 0 0
\(623\) −1462.63 −0.0940597
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −673.140 −0.0428750
\(628\) 0 0
\(629\) −7209.17 −0.456993
\(630\) 0 0
\(631\) 15480.0 0.976625 0.488312 0.872669i \(-0.337613\pi\)
0.488312 + 0.872669i \(0.337613\pi\)
\(632\) 0 0
\(633\) 368.792 0.0231567
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11522.9 0.716722
\(638\) 0 0
\(639\) 972.873 0.0602289
\(640\) 0 0
\(641\) −8650.11 −0.533009 −0.266505 0.963834i \(-0.585869\pi\)
−0.266505 + 0.963834i \(0.585869\pi\)
\(642\) 0 0
\(643\) −27769.2 −1.70313 −0.851563 0.524252i \(-0.824345\pi\)
−0.851563 + 0.524252i \(0.824345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15716.3 −0.954977 −0.477489 0.878638i \(-0.658453\pi\)
−0.477489 + 0.878638i \(0.658453\pi\)
\(648\) 0 0
\(649\) −10046.2 −0.607626
\(650\) 0 0
\(651\) −1015.61 −0.0611441
\(652\) 0 0
\(653\) 22537.5 1.35063 0.675313 0.737531i \(-0.264009\pi\)
0.675313 + 0.737531i \(0.264009\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5649.78 0.335493
\(658\) 0 0
\(659\) −18711.0 −1.10603 −0.553017 0.833170i \(-0.686523\pi\)
−0.553017 + 0.833170i \(0.686523\pi\)
\(660\) 0 0
\(661\) 14966.5 0.880678 0.440339 0.897832i \(-0.354858\pi\)
0.440339 + 0.897832i \(0.354858\pi\)
\(662\) 0 0
\(663\) 12570.0 0.736317
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19981.4 1.15994
\(668\) 0 0
\(669\) −18921.2 −1.09348
\(670\) 0 0
\(671\) −1089.48 −0.0626808
\(672\) 0 0
\(673\) 1398.61 0.0801075 0.0400538 0.999198i \(-0.487247\pi\)
0.0400538 + 0.999198i \(0.487247\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6643.40 −0.377144 −0.188572 0.982059i \(-0.560386\pi\)
−0.188572 + 0.982059i \(0.560386\pi\)
\(678\) 0 0
\(679\) 157.317 0.00889142
\(680\) 0 0
\(681\) 8386.07 0.471887
\(682\) 0 0
\(683\) −11293.0 −0.632673 −0.316337 0.948647i \(-0.602453\pi\)
−0.316337 + 0.948647i \(0.602453\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3985.31 −0.221323
\(688\) 0 0
\(689\) −10648.1 −0.588767
\(690\) 0 0
\(691\) −17827.1 −0.981438 −0.490719 0.871318i \(-0.663266\pi\)
−0.490719 + 0.871318i \(0.663266\pi\)
\(692\) 0 0
\(693\) −469.277 −0.0257235
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −13401.6 −0.728294
\(698\) 0 0
\(699\) −18352.9 −0.993089
\(700\) 0 0
\(701\) −27124.4 −1.46145 −0.730725 0.682672i \(-0.760818\pi\)
−0.730725 + 0.682672i \(0.760818\pi\)
\(702\) 0 0
\(703\) −537.687 −0.0288467
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −257.816 −0.0137145
\(708\) 0 0
\(709\) −11294.6 −0.598278 −0.299139 0.954210i \(-0.596699\pi\)
−0.299139 + 0.954210i \(0.596699\pi\)
\(710\) 0 0
\(711\) −1767.64 −0.0932371
\(712\) 0 0
\(713\) −22572.7 −1.18563
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3668.28 −0.191066
\(718\) 0 0
\(719\) −31113.8 −1.61384 −0.806920 0.590661i \(-0.798867\pi\)
−0.806920 + 0.590661i \(0.798867\pi\)
\(720\) 0 0
\(721\) 2424.79 0.125248
\(722\) 0 0
\(723\) −584.679 −0.0300753
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 8773.62 0.447587 0.223793 0.974637i \(-0.428156\pi\)
0.223793 + 0.974637i \(0.428156\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −30344.4 −1.53533
\(732\) 0 0
\(733\) −3745.09 −0.188715 −0.0943576 0.995538i \(-0.530080\pi\)
−0.0943576 + 0.995538i \(0.530080\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8997.70 −0.449707
\(738\) 0 0
\(739\) 14923.3 0.742844 0.371422 0.928464i \(-0.378870\pi\)
0.371422 + 0.928464i \(0.378870\pi\)
\(740\) 0 0
\(741\) 937.519 0.0464786
\(742\) 0 0
\(743\) −888.743 −0.0438827 −0.0219413 0.999759i \(-0.506985\pi\)
−0.0219413 + 0.999759i \(0.506985\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −968.367 −0.0474307
\(748\) 0 0
\(749\) −2224.92 −0.108540
\(750\) 0 0
\(751\) 29588.6 1.43769 0.718843 0.695172i \(-0.244672\pi\)
0.718843 + 0.695172i \(0.244672\pi\)
\(752\) 0 0
\(753\) −1045.36 −0.0505910
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8485.87 0.407429 0.203715 0.979030i \(-0.434698\pi\)
0.203715 + 0.979030i \(0.434698\pi\)
\(758\) 0 0
\(759\) −10430.1 −0.498799
\(760\) 0 0
\(761\) 9803.23 0.466974 0.233487 0.972360i \(-0.424986\pi\)
0.233487 + 0.972360i \(0.424986\pi\)
\(762\) 0 0
\(763\) −4061.10 −0.192689
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13992.0 0.658696
\(768\) 0 0
\(769\) −1920.45 −0.0900561 −0.0450281 0.998986i \(-0.514338\pi\)
−0.0450281 + 0.998986i \(0.514338\pi\)
\(770\) 0 0
\(771\) −11909.5 −0.556303
\(772\) 0 0
\(773\) −9679.15 −0.450368 −0.225184 0.974316i \(-0.572298\pi\)
−0.225184 + 0.974316i \(0.572298\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −374.847 −0.0173070
\(778\) 0 0
\(779\) −999.541 −0.0459721
\(780\) 0 0
\(781\) 2642.43 0.121067
\(782\) 0 0
\(783\) −3793.26 −0.173129
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16275.2 0.737165 0.368582 0.929595i \(-0.379843\pi\)
0.368582 + 0.929595i \(0.379843\pi\)
\(788\) 0 0
\(789\) −2270.72 −0.102459
\(790\) 0 0
\(791\) 1181.67 0.0531165
\(792\) 0 0
\(793\) 1517.38 0.0679491
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9219.64 −0.409757 −0.204879 0.978787i \(-0.565680\pi\)
−0.204879 + 0.978787i \(0.565680\pi\)
\(798\) 0 0
\(799\) 57357.0 2.53961
\(800\) 0 0
\(801\) 6171.37 0.272228
\(802\) 0 0
\(803\) 15345.4 0.674382
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18315.8 −0.798942
\(808\) 0 0
\(809\) −5045.18 −0.219257 −0.109629 0.993973i \(-0.534966\pi\)
−0.109629 + 0.993973i \(0.534966\pi\)
\(810\) 0 0
\(811\) −45242.3 −1.95890 −0.979452 0.201677i \(-0.935361\pi\)
−0.979452 + 0.201677i \(0.935361\pi\)
\(812\) 0 0
\(813\) −11472.7 −0.494914
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2263.21 −0.0969150
\(818\) 0 0
\(819\) 653.589 0.0278855
\(820\) 0 0
\(821\) 25431.0 1.08106 0.540528 0.841326i \(-0.318225\pi\)
0.540528 + 0.841326i \(0.318225\pi\)
\(822\) 0 0
\(823\) −6907.29 −0.292555 −0.146278 0.989244i \(-0.546729\pi\)
−0.146278 + 0.989244i \(0.546729\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38201.5 1.60628 0.803141 0.595789i \(-0.203160\pi\)
0.803141 + 0.595789i \(0.203160\pi\)
\(828\) 0 0
\(829\) 20573.4 0.861933 0.430966 0.902368i \(-0.358173\pi\)
0.430966 + 0.902368i \(0.358173\pi\)
\(830\) 0 0
\(831\) −5790.53 −0.241722
\(832\) 0 0
\(833\) −41652.7 −1.73251
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4285.20 0.176963
\(838\) 0 0
\(839\) −16604.9 −0.683272 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(840\) 0 0
\(841\) −4651.24 −0.190710
\(842\) 0 0
\(843\) 8826.99 0.360638
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1564.45 0.0634654
\(848\) 0 0
\(849\) 25451.7 1.02886
\(850\) 0 0
\(851\) −8331.30 −0.335597
\(852\) 0 0
\(853\) −39897.4 −1.60148 −0.800739 0.599013i \(-0.795560\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14165.4 −0.564623 −0.282311 0.959323i \(-0.591101\pi\)
−0.282311 + 0.959323i \(0.591101\pi\)
\(858\) 0 0
\(859\) 18842.9 0.748441 0.374220 0.927340i \(-0.377910\pi\)
0.374220 + 0.927340i \(0.377910\pi\)
\(860\) 0 0
\(861\) −696.827 −0.0275817
\(862\) 0 0
\(863\) 35799.2 1.41207 0.706037 0.708175i \(-0.250481\pi\)
0.706037 + 0.708175i \(0.250481\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −30698.9 −1.20253
\(868\) 0 0
\(869\) −4801.10 −0.187418
\(870\) 0 0
\(871\) 12531.6 0.487505
\(872\) 0 0
\(873\) −663.776 −0.0257336
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17739.1 −0.683019 −0.341510 0.939878i \(-0.610938\pi\)
−0.341510 + 0.939878i \(0.610938\pi\)
\(878\) 0 0
\(879\) −25579.3 −0.981536
\(880\) 0 0
\(881\) 19788.8 0.756757 0.378379 0.925651i \(-0.376482\pi\)
0.378379 + 0.925651i \(0.376482\pi\)
\(882\) 0 0
\(883\) −15831.4 −0.603363 −0.301682 0.953409i \(-0.597548\pi\)
−0.301682 + 0.953409i \(0.597548\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30374.8 −1.14981 −0.574907 0.818219i \(-0.694962\pi\)
−0.574907 + 0.818219i \(0.694962\pi\)
\(888\) 0 0
\(889\) −1893.37 −0.0714303
\(890\) 0 0
\(891\) 1980.05 0.0744490
\(892\) 0 0
\(893\) 4277.91 0.160308
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14526.6 0.540722
\(898\) 0 0
\(899\) −22297.5 −0.827213
\(900\) 0 0
\(901\) 38490.7 1.42321
\(902\) 0 0
\(903\) −1577.79 −0.0581456
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 35591.3 1.30297 0.651483 0.758664i \(-0.274147\pi\)
0.651483 + 0.758664i \(0.274147\pi\)
\(908\) 0 0
\(909\) 1087.82 0.0396926
\(910\) 0 0
\(911\) 53121.1 1.93192 0.965961 0.258689i \(-0.0832904\pi\)
0.965961 + 0.258689i \(0.0832904\pi\)
\(912\) 0 0
\(913\) −2630.19 −0.0953415
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4948.98 0.178222
\(918\) 0 0
\(919\) 23275.5 0.835461 0.417731 0.908571i \(-0.362826\pi\)
0.417731 + 0.908571i \(0.362826\pi\)
\(920\) 0 0
\(921\) −5932.03 −0.212234
\(922\) 0 0
\(923\) −3680.26 −0.131243
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10231.0 −0.362493
\(928\) 0 0
\(929\) −37535.8 −1.32563 −0.662814 0.748784i \(-0.730638\pi\)
−0.662814 + 0.748784i \(0.730638\pi\)
\(930\) 0 0
\(931\) −3106.62 −0.109361
\(932\) 0 0
\(933\) −15729.9 −0.551954
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5622.57 −0.196031 −0.0980156 0.995185i \(-0.531250\pi\)
−0.0980156 + 0.995185i \(0.531250\pi\)
\(938\) 0 0
\(939\) 2265.56 0.0787367
\(940\) 0 0
\(941\) 53452.3 1.85175 0.925875 0.377831i \(-0.123330\pi\)
0.925875 + 0.377831i \(0.123330\pi\)
\(942\) 0 0
\(943\) −15487.6 −0.534830
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20301.2 −0.696622 −0.348311 0.937379i \(-0.613245\pi\)
−0.348311 + 0.937379i \(0.613245\pi\)
\(948\) 0 0
\(949\) −21372.4 −0.731063
\(950\) 0 0
\(951\) −12054.3 −0.411028
\(952\) 0 0
\(953\) −46002.1 −1.56365 −0.781823 0.623500i \(-0.785710\pi\)
−0.781823 + 0.623500i \(0.785710\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −10302.9 −0.348011
\(958\) 0 0
\(959\) −3927.58 −0.132250
\(960\) 0 0
\(961\) −4601.73 −0.154467
\(962\) 0 0
\(963\) 9387.71 0.314138
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −12199.2 −0.405688 −0.202844 0.979211i \(-0.565018\pi\)
−0.202844 + 0.979211i \(0.565018\pi\)
\(968\) 0 0
\(969\) −3388.94 −0.112351
\(970\) 0 0
\(971\) 37476.7 1.23860 0.619302 0.785153i \(-0.287416\pi\)
0.619302 + 0.785153i \(0.287416\pi\)
\(972\) 0 0
\(973\) 1464.10 0.0482394
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14592.7 −0.477851 −0.238926 0.971038i \(-0.576795\pi\)
−0.238926 + 0.971038i \(0.576795\pi\)
\(978\) 0 0
\(979\) 16762.1 0.547212
\(980\) 0 0
\(981\) 17135.2 0.557680
\(982\) 0 0
\(983\) 28500.9 0.924758 0.462379 0.886682i \(-0.346996\pi\)
0.462379 + 0.886682i \(0.346996\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2982.33 0.0961790
\(988\) 0 0
\(989\) −35067.7 −1.12749
\(990\) 0 0
\(991\) 38654.0 1.23904 0.619518 0.784982i \(-0.287328\pi\)
0.619518 + 0.784982i \(0.287328\pi\)
\(992\) 0 0
\(993\) 15893.9 0.507935
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −25637.7 −0.814398 −0.407199 0.913339i \(-0.633494\pi\)
−0.407199 + 0.913339i \(0.633494\pi\)
\(998\) 0 0
\(999\) 1581.61 0.0500901
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bi.1.2 3
4.3 odd 2 2400.4.a.bt.1.2 yes 3
5.4 even 2 2400.4.a.bs.1.2 yes 3
20.19 odd 2 2400.4.a.bj.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bi.1.2 3 1.1 even 1 trivial
2400.4.a.bj.1.2 yes 3 20.19 odd 2
2400.4.a.bs.1.2 yes 3 5.4 even 2
2400.4.a.bt.1.2 yes 3 4.3 odd 2