Properties

Label 2400.4.a.bi.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.115636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 69x - 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-7.10600\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -21.6128 q^{7} +9.00000 q^{9} -21.8112 q^{11} +70.6495 q^{13} -54.6592 q^{17} -76.0368 q^{19} +64.8383 q^{21} -89.0560 q^{23} -27.0000 q^{27} -51.8305 q^{29} -110.045 q^{31} +65.4336 q^{33} +9.56818 q^{37} -211.949 q^{39} +317.184 q^{41} +374.312 q^{43} -347.142 q^{47} +124.112 q^{49} +163.978 q^{51} +159.395 q^{53} +228.110 q^{57} -693.462 q^{59} -684.924 q^{61} -194.515 q^{63} +559.521 q^{67} +267.168 q^{69} -517.600 q^{71} -745.471 q^{73} +471.401 q^{77} +120.093 q^{79} +81.0000 q^{81} -341.353 q^{83} +155.491 q^{87} -706.931 q^{89} -1526.93 q^{91} +330.134 q^{93} -171.217 q^{97} -196.301 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 3 q^{7} + 27 q^{9} - 44 q^{11} - 13 q^{13} + 36 q^{17} - 71 q^{19} - 9 q^{21} - 160 q^{23} - 81 q^{27} - 184 q^{29} + 59 q^{31} + 132 q^{33} + 350 q^{37} + 39 q^{39} + 166 q^{41} - 341 q^{43}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −21.6128 −1.16698 −0.583490 0.812120i \(-0.698313\pi\)
−0.583490 + 0.812120i \(0.698313\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −21.8112 −0.597848 −0.298924 0.954277i \(-0.596628\pi\)
−0.298924 + 0.954277i \(0.596628\pi\)
\(12\) 0 0
\(13\) 70.6495 1.50728 0.753641 0.657287i \(-0.228296\pi\)
0.753641 + 0.657287i \(0.228296\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −54.6592 −0.779812 −0.389906 0.920855i \(-0.627492\pi\)
−0.389906 + 0.920855i \(0.627492\pi\)
\(18\) 0 0
\(19\) −76.0368 −0.918107 −0.459053 0.888409i \(-0.651811\pi\)
−0.459053 + 0.888409i \(0.651811\pi\)
\(20\) 0 0
\(21\) 64.8383 0.673756
\(22\) 0 0
\(23\) −89.0560 −0.807368 −0.403684 0.914898i \(-0.632271\pi\)
−0.403684 + 0.914898i \(0.632271\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −51.8305 −0.331886 −0.165943 0.986135i \(-0.553067\pi\)
−0.165943 + 0.986135i \(0.553067\pi\)
\(30\) 0 0
\(31\) −110.045 −0.637568 −0.318784 0.947827i \(-0.603274\pi\)
−0.318784 + 0.947827i \(0.603274\pi\)
\(32\) 0 0
\(33\) 65.4336 0.345168
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.56818 0.0425135 0.0212567 0.999774i \(-0.493233\pi\)
0.0212567 + 0.999774i \(0.493233\pi\)
\(38\) 0 0
\(39\) −211.949 −0.870229
\(40\) 0 0
\(41\) 317.184 1.20819 0.604095 0.796912i \(-0.293535\pi\)
0.604095 + 0.796912i \(0.293535\pi\)
\(42\) 0 0
\(43\) 374.312 1.32749 0.663744 0.747960i \(-0.268966\pi\)
0.663744 + 0.747960i \(0.268966\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −347.142 −1.07736 −0.538679 0.842511i \(-0.681077\pi\)
−0.538679 + 0.842511i \(0.681077\pi\)
\(48\) 0 0
\(49\) 124.112 0.361843
\(50\) 0 0
\(51\) 163.978 0.450224
\(52\) 0 0
\(53\) 159.395 0.413106 0.206553 0.978435i \(-0.433775\pi\)
0.206553 + 0.978435i \(0.433775\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 228.110 0.530069
\(58\) 0 0
\(59\) −693.462 −1.53019 −0.765094 0.643919i \(-0.777307\pi\)
−0.765094 + 0.643919i \(0.777307\pi\)
\(60\) 0 0
\(61\) −684.924 −1.43763 −0.718816 0.695200i \(-0.755316\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(62\) 0 0
\(63\) −194.515 −0.388993
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 559.521 1.02025 0.510123 0.860102i \(-0.329600\pi\)
0.510123 + 0.860102i \(0.329600\pi\)
\(68\) 0 0
\(69\) 267.168 0.466134
\(70\) 0 0
\(71\) −517.600 −0.865180 −0.432590 0.901591i \(-0.642400\pi\)
−0.432590 + 0.901591i \(0.642400\pi\)
\(72\) 0 0
\(73\) −745.471 −1.19522 −0.597608 0.801788i \(-0.703882\pi\)
−0.597608 + 0.801788i \(0.703882\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 471.401 0.697677
\(78\) 0 0
\(79\) 120.093 0.171032 0.0855158 0.996337i \(-0.472746\pi\)
0.0855158 + 0.996337i \(0.472746\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −341.353 −0.451426 −0.225713 0.974194i \(-0.572471\pi\)
−0.225713 + 0.974194i \(0.572471\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 155.491 0.191614
\(88\) 0 0
\(89\) −706.931 −0.841961 −0.420980 0.907070i \(-0.638314\pi\)
−0.420980 + 0.907070i \(0.638314\pi\)
\(90\) 0 0
\(91\) −1526.93 −1.75897
\(92\) 0 0
\(93\) 330.134 0.368100
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −171.217 −0.179221 −0.0896106 0.995977i \(-0.528562\pi\)
−0.0896106 + 0.995977i \(0.528562\pi\)
\(98\) 0 0
\(99\) −196.301 −0.199283
\(100\) 0 0
\(101\) −1658.89 −1.63431 −0.817157 0.576416i \(-0.804451\pi\)
−0.817157 + 0.576416i \(0.804451\pi\)
\(102\) 0 0
\(103\) 684.412 0.654729 0.327365 0.944898i \(-0.393839\pi\)
0.327365 + 0.944898i \(0.393839\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 115.479 0.104334 0.0521670 0.998638i \(-0.483387\pi\)
0.0521670 + 0.998638i \(0.483387\pi\)
\(108\) 0 0
\(109\) 1740.97 1.52986 0.764930 0.644113i \(-0.222773\pi\)
0.764930 + 0.644113i \(0.222773\pi\)
\(110\) 0 0
\(111\) −28.7045 −0.0245452
\(112\) 0 0
\(113\) 1715.05 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 635.846 0.502427
\(118\) 0 0
\(119\) 1181.34 0.910025
\(120\) 0 0
\(121\) −855.271 −0.642578
\(122\) 0 0
\(123\) −951.551 −0.697549
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 892.595 0.623661 0.311831 0.950138i \(-0.399058\pi\)
0.311831 + 0.950138i \(0.399058\pi\)
\(128\) 0 0
\(129\) −1122.93 −0.766425
\(130\) 0 0
\(131\) −48.6563 −0.0324513 −0.0162256 0.999868i \(-0.505165\pi\)
−0.0162256 + 0.999868i \(0.505165\pi\)
\(132\) 0 0
\(133\) 1643.37 1.07141
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.2998 0.00954121 0.00477061 0.999989i \(-0.498481\pi\)
0.00477061 + 0.999989i \(0.498481\pi\)
\(138\) 0 0
\(139\) 2069.83 1.26302 0.631512 0.775366i \(-0.282435\pi\)
0.631512 + 0.775366i \(0.282435\pi\)
\(140\) 0 0
\(141\) 1041.43 0.622013
\(142\) 0 0
\(143\) −1540.95 −0.901125
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −372.336 −0.208910
\(148\) 0 0
\(149\) 1176.74 0.646997 0.323498 0.946229i \(-0.395141\pi\)
0.323498 + 0.946229i \(0.395141\pi\)
\(150\) 0 0
\(151\) 982.925 0.529730 0.264865 0.964285i \(-0.414673\pi\)
0.264865 + 0.964285i \(0.414673\pi\)
\(152\) 0 0
\(153\) −491.933 −0.259937
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3886.91 −1.97585 −0.987926 0.154925i \(-0.950487\pi\)
−0.987926 + 0.154925i \(0.950487\pi\)
\(158\) 0 0
\(159\) −478.185 −0.238507
\(160\) 0 0
\(161\) 1924.75 0.942183
\(162\) 0 0
\(163\) −3080.24 −1.48014 −0.740070 0.672530i \(-0.765207\pi\)
−0.740070 + 0.672530i \(0.765207\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3183.64 1.47520 0.737598 0.675240i \(-0.235960\pi\)
0.737598 + 0.675240i \(0.235960\pi\)
\(168\) 0 0
\(169\) 2794.36 1.27190
\(170\) 0 0
\(171\) −684.331 −0.306036
\(172\) 0 0
\(173\) 2375.87 1.04413 0.522064 0.852907i \(-0.325162\pi\)
0.522064 + 0.852907i \(0.325162\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2080.39 0.883454
\(178\) 0 0
\(179\) −1555.05 −0.649329 −0.324665 0.945829i \(-0.605251\pi\)
−0.324665 + 0.945829i \(0.605251\pi\)
\(180\) 0 0
\(181\) −468.515 −0.192400 −0.0962002 0.995362i \(-0.530669\pi\)
−0.0962002 + 0.995362i \(0.530669\pi\)
\(182\) 0 0
\(183\) 2054.77 0.830017
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1192.18 0.466209
\(188\) 0 0
\(189\) 583.545 0.224585
\(190\) 0 0
\(191\) 1816.53 0.688165 0.344082 0.938939i \(-0.388190\pi\)
0.344082 + 0.938939i \(0.388190\pi\)
\(192\) 0 0
\(193\) 2556.92 0.953634 0.476817 0.879003i \(-0.341790\pi\)
0.476817 + 0.879003i \(0.341790\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3625.58 1.31123 0.655614 0.755097i \(-0.272410\pi\)
0.655614 + 0.755097i \(0.272410\pi\)
\(198\) 0 0
\(199\) −1681.18 −0.598874 −0.299437 0.954116i \(-0.596799\pi\)
−0.299437 + 0.954116i \(0.596799\pi\)
\(200\) 0 0
\(201\) −1678.56 −0.589039
\(202\) 0 0
\(203\) 1120.20 0.387304
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −801.504 −0.269123
\(208\) 0 0
\(209\) 1658.45 0.548888
\(210\) 0 0
\(211\) 1087.29 0.354749 0.177375 0.984143i \(-0.443240\pi\)
0.177375 + 0.984143i \(0.443240\pi\)
\(212\) 0 0
\(213\) 1552.80 0.499512
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2378.37 0.744029
\(218\) 0 0
\(219\) 2236.41 0.690058
\(220\) 0 0
\(221\) −3861.65 −1.17540
\(222\) 0 0
\(223\) −4220.26 −1.26731 −0.633654 0.773617i \(-0.718446\pi\)
−0.633654 + 0.773617i \(0.718446\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −494.926 −0.144711 −0.0723555 0.997379i \(-0.523052\pi\)
−0.0723555 + 0.997379i \(0.523052\pi\)
\(228\) 0 0
\(229\) 2070.82 0.597570 0.298785 0.954320i \(-0.403419\pi\)
0.298785 + 0.954320i \(0.403419\pi\)
\(230\) 0 0
\(231\) −1414.20 −0.402804
\(232\) 0 0
\(233\) 3690.67 1.03770 0.518850 0.854865i \(-0.326360\pi\)
0.518850 + 0.854865i \(0.326360\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −360.278 −0.0987451
\(238\) 0 0
\(239\) 655.698 0.177463 0.0887313 0.996056i \(-0.471719\pi\)
0.0887313 + 0.996056i \(0.471719\pi\)
\(240\) 0 0
\(241\) −4806.12 −1.28460 −0.642302 0.766452i \(-0.722021\pi\)
−0.642302 + 0.766452i \(0.722021\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5371.96 −1.38385
\(248\) 0 0
\(249\) 1024.06 0.260631
\(250\) 0 0
\(251\) −6493.30 −1.63288 −0.816441 0.577428i \(-0.804056\pi\)
−0.816441 + 0.577428i \(0.804056\pi\)
\(252\) 0 0
\(253\) 1942.42 0.482683
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6662.85 1.61719 0.808594 0.588367i \(-0.200229\pi\)
0.808594 + 0.588367i \(0.200229\pi\)
\(258\) 0 0
\(259\) −206.795 −0.0496124
\(260\) 0 0
\(261\) −466.474 −0.110629
\(262\) 0 0
\(263\) 6203.15 1.45438 0.727192 0.686434i \(-0.240825\pi\)
0.727192 + 0.686434i \(0.240825\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2120.79 0.486106
\(268\) 0 0
\(269\) 1569.29 0.355692 0.177846 0.984058i \(-0.443087\pi\)
0.177846 + 0.984058i \(0.443087\pi\)
\(270\) 0 0
\(271\) 3259.38 0.730603 0.365301 0.930889i \(-0.380966\pi\)
0.365301 + 0.930889i \(0.380966\pi\)
\(272\) 0 0
\(273\) 4580.80 1.01554
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1475.24 0.319995 0.159997 0.987117i \(-0.448851\pi\)
0.159997 + 0.987117i \(0.448851\pi\)
\(278\) 0 0
\(279\) −990.401 −0.212523
\(280\) 0 0
\(281\) −3948.50 −0.838249 −0.419124 0.907929i \(-0.637663\pi\)
−0.419124 + 0.907929i \(0.637663\pi\)
\(282\) 0 0
\(283\) 808.764 0.169880 0.0849400 0.996386i \(-0.472930\pi\)
0.0849400 + 0.996386i \(0.472930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6855.22 −1.40993
\(288\) 0 0
\(289\) −1925.37 −0.391894
\(290\) 0 0
\(291\) 513.651 0.103473
\(292\) 0 0
\(293\) −1665.17 −0.332014 −0.166007 0.986125i \(-0.553087\pi\)
−0.166007 + 0.986125i \(0.553087\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 588.903 0.115056
\(298\) 0 0
\(299\) −6291.77 −1.21693
\(300\) 0 0
\(301\) −8089.91 −1.54915
\(302\) 0 0
\(303\) 4976.67 0.943571
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2642.13 0.491187 0.245594 0.969373i \(-0.421017\pi\)
0.245594 + 0.969373i \(0.421017\pi\)
\(308\) 0 0
\(309\) −2053.24 −0.378008
\(310\) 0 0
\(311\) 5165.24 0.941781 0.470891 0.882192i \(-0.343933\pi\)
0.470891 + 0.882192i \(0.343933\pi\)
\(312\) 0 0
\(313\) 10137.3 1.83065 0.915327 0.402712i \(-0.131932\pi\)
0.915327 + 0.402712i \(0.131932\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6427.21 −1.13876 −0.569381 0.822073i \(-0.692817\pi\)
−0.569381 + 0.822073i \(0.692817\pi\)
\(318\) 0 0
\(319\) 1130.49 0.198417
\(320\) 0 0
\(321\) −346.436 −0.0602372
\(322\) 0 0
\(323\) 4156.11 0.715950
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5222.91 −0.883265
\(328\) 0 0
\(329\) 7502.70 1.25726
\(330\) 0 0
\(331\) 3345.03 0.555466 0.277733 0.960658i \(-0.410417\pi\)
0.277733 + 0.960658i \(0.410417\pi\)
\(332\) 0 0
\(333\) 86.1136 0.0141712
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7127.89 1.15217 0.576085 0.817390i \(-0.304580\pi\)
0.576085 + 0.817390i \(0.304580\pi\)
\(338\) 0 0
\(339\) −5145.14 −0.824323
\(340\) 0 0
\(341\) 2400.21 0.381168
\(342\) 0 0
\(343\) 4730.78 0.744717
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2033.40 −0.314579 −0.157289 0.987553i \(-0.550276\pi\)
−0.157289 + 0.987553i \(0.550276\pi\)
\(348\) 0 0
\(349\) 6306.79 0.967321 0.483660 0.875256i \(-0.339307\pi\)
0.483660 + 0.875256i \(0.339307\pi\)
\(350\) 0 0
\(351\) −1907.54 −0.290076
\(352\) 0 0
\(353\) 10350.3 1.56059 0.780296 0.625411i \(-0.215069\pi\)
0.780296 + 0.625411i \(0.215069\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3544.01 −0.525403
\(358\) 0 0
\(359\) 9255.41 1.36067 0.680336 0.732900i \(-0.261834\pi\)
0.680336 + 0.732900i \(0.261834\pi\)
\(360\) 0 0
\(361\) −1077.41 −0.157080
\(362\) 0 0
\(363\) 2565.81 0.370993
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −208.453 −0.0296490 −0.0148245 0.999890i \(-0.504719\pi\)
−0.0148245 + 0.999890i \(0.504719\pi\)
\(368\) 0 0
\(369\) 2854.65 0.402730
\(370\) 0 0
\(371\) −3444.97 −0.482086
\(372\) 0 0
\(373\) 3208.18 0.445344 0.222672 0.974893i \(-0.428522\pi\)
0.222672 + 0.974893i \(0.428522\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3661.80 −0.500245
\(378\) 0 0
\(379\) 3209.82 0.435033 0.217516 0.976057i \(-0.430204\pi\)
0.217516 + 0.976057i \(0.430204\pi\)
\(380\) 0 0
\(381\) −2677.78 −0.360071
\(382\) 0 0
\(383\) 972.105 0.129693 0.0648463 0.997895i \(-0.479344\pi\)
0.0648463 + 0.997895i \(0.479344\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3368.80 0.442496
\(388\) 0 0
\(389\) 10508.9 1.36973 0.684863 0.728671i \(-0.259862\pi\)
0.684863 + 0.728671i \(0.259862\pi\)
\(390\) 0 0
\(391\) 4867.73 0.629595
\(392\) 0 0
\(393\) 145.969 0.0187358
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11952.2 1.51099 0.755496 0.655153i \(-0.227396\pi\)
0.755496 + 0.655153i \(0.227396\pi\)
\(398\) 0 0
\(399\) −4930.10 −0.618580
\(400\) 0 0
\(401\) −3349.39 −0.417108 −0.208554 0.978011i \(-0.566876\pi\)
−0.208554 + 0.978011i \(0.566876\pi\)
\(402\) 0 0
\(403\) −7774.60 −0.960994
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −208.694 −0.0254166
\(408\) 0 0
\(409\) 6695.81 0.809502 0.404751 0.914427i \(-0.367358\pi\)
0.404751 + 0.914427i \(0.367358\pi\)
\(410\) 0 0
\(411\) −45.8993 −0.00550862
\(412\) 0 0
\(413\) 14987.6 1.78570
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6209.48 −0.729207
\(418\) 0 0
\(419\) −8413.46 −0.980965 −0.490483 0.871451i \(-0.663179\pi\)
−0.490483 + 0.871451i \(0.663179\pi\)
\(420\) 0 0
\(421\) 8129.10 0.941064 0.470532 0.882383i \(-0.344062\pi\)
0.470532 + 0.882383i \(0.344062\pi\)
\(422\) 0 0
\(423\) −3124.28 −0.359120
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 14803.1 1.67769
\(428\) 0 0
\(429\) 4622.86 0.520265
\(430\) 0 0
\(431\) 10644.8 1.18966 0.594828 0.803853i \(-0.297220\pi\)
0.594828 + 0.803853i \(0.297220\pi\)
\(432\) 0 0
\(433\) 15087.7 1.67452 0.837260 0.546805i \(-0.184156\pi\)
0.837260 + 0.546805i \(0.184156\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6771.53 0.741250
\(438\) 0 0
\(439\) 15203.8 1.65293 0.826467 0.562985i \(-0.190347\pi\)
0.826467 + 0.562985i \(0.190347\pi\)
\(440\) 0 0
\(441\) 1117.01 0.120614
\(442\) 0 0
\(443\) −11860.1 −1.27198 −0.635991 0.771696i \(-0.719409\pi\)
−0.635991 + 0.771696i \(0.719409\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3530.23 −0.373544
\(448\) 0 0
\(449\) 4128.01 0.433881 0.216941 0.976185i \(-0.430392\pi\)
0.216941 + 0.976185i \(0.430392\pi\)
\(450\) 0 0
\(451\) −6918.16 −0.722314
\(452\) 0 0
\(453\) −2948.77 −0.305840
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4368.36 −0.447141 −0.223570 0.974688i \(-0.571771\pi\)
−0.223570 + 0.974688i \(0.571771\pi\)
\(458\) 0 0
\(459\) 1475.80 0.150075
\(460\) 0 0
\(461\) −16287.4 −1.64551 −0.822755 0.568395i \(-0.807564\pi\)
−0.822755 + 0.568395i \(0.807564\pi\)
\(462\) 0 0
\(463\) 11145.3 1.11871 0.559357 0.828927i \(-0.311048\pi\)
0.559357 + 0.828927i \(0.311048\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14600.2 −1.44671 −0.723356 0.690475i \(-0.757401\pi\)
−0.723356 + 0.690475i \(0.757401\pi\)
\(468\) 0 0
\(469\) −12092.8 −1.19061
\(470\) 0 0
\(471\) 11660.7 1.14076
\(472\) 0 0
\(473\) −8164.19 −0.793636
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1434.56 0.137702
\(478\) 0 0
\(479\) −68.5375 −0.00653770 −0.00326885 0.999995i \(-0.501041\pi\)
−0.00326885 + 0.999995i \(0.501041\pi\)
\(480\) 0 0
\(481\) 675.987 0.0640798
\(482\) 0 0
\(483\) −5774.24 −0.543969
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −296.399 −0.0275793 −0.0137897 0.999905i \(-0.504390\pi\)
−0.0137897 + 0.999905i \(0.504390\pi\)
\(488\) 0 0
\(489\) 9240.71 0.854559
\(490\) 0 0
\(491\) −3332.21 −0.306274 −0.153137 0.988205i \(-0.548938\pi\)
−0.153137 + 0.988205i \(0.548938\pi\)
\(492\) 0 0
\(493\) 2833.01 0.258808
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11186.8 1.00965
\(498\) 0 0
\(499\) 21280.8 1.90914 0.954568 0.297995i \(-0.0963178\pi\)
0.954568 + 0.297995i \(0.0963178\pi\)
\(500\) 0 0
\(501\) −9550.93 −0.851705
\(502\) 0 0
\(503\) −4862.81 −0.431058 −0.215529 0.976497i \(-0.569148\pi\)
−0.215529 + 0.976497i \(0.569148\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −8383.07 −0.734330
\(508\) 0 0
\(509\) 7058.61 0.614670 0.307335 0.951601i \(-0.400563\pi\)
0.307335 + 0.951601i \(0.400563\pi\)
\(510\) 0 0
\(511\) 16111.7 1.39479
\(512\) 0 0
\(513\) 2052.99 0.176690
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7571.59 0.644097
\(518\) 0 0
\(519\) −7127.61 −0.602827
\(520\) 0 0
\(521\) −18033.6 −1.51644 −0.758222 0.651996i \(-0.773932\pi\)
−0.758222 + 0.651996i \(0.773932\pi\)
\(522\) 0 0
\(523\) −15339.4 −1.28249 −0.641247 0.767334i \(-0.721583\pi\)
−0.641247 + 0.767334i \(0.721583\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6014.95 0.497183
\(528\) 0 0
\(529\) −4236.02 −0.348157
\(530\) 0 0
\(531\) −6241.16 −0.510062
\(532\) 0 0
\(533\) 22408.9 1.82108
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4665.15 0.374890
\(538\) 0 0
\(539\) −2707.03 −0.216327
\(540\) 0 0
\(541\) −7640.12 −0.607162 −0.303581 0.952806i \(-0.598182\pi\)
−0.303581 + 0.952806i \(0.598182\pi\)
\(542\) 0 0
\(543\) 1405.55 0.111082
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10201.5 0.797415 0.398708 0.917078i \(-0.369459\pi\)
0.398708 + 0.917078i \(0.369459\pi\)
\(548\) 0 0
\(549\) −6164.32 −0.479211
\(550\) 0 0
\(551\) 3941.02 0.304706
\(552\) 0 0
\(553\) −2595.54 −0.199590
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11581.5 −0.881013 −0.440506 0.897749i \(-0.645201\pi\)
−0.440506 + 0.897749i \(0.645201\pi\)
\(558\) 0 0
\(559\) 26444.9 2.00090
\(560\) 0 0
\(561\) −3576.55 −0.269166
\(562\) 0 0
\(563\) 13471.7 1.00846 0.504230 0.863569i \(-0.331776\pi\)
0.504230 + 0.863569i \(0.331776\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1750.63 −0.129664
\(568\) 0 0
\(569\) −22707.8 −1.67304 −0.836522 0.547934i \(-0.815415\pi\)
−0.836522 + 0.547934i \(0.815415\pi\)
\(570\) 0 0
\(571\) −16646.0 −1.21999 −0.609993 0.792407i \(-0.708828\pi\)
−0.609993 + 0.792407i \(0.708828\pi\)
\(572\) 0 0
\(573\) −5449.59 −0.397312
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16852.5 1.21591 0.607954 0.793972i \(-0.291990\pi\)
0.607954 + 0.793972i \(0.291990\pi\)
\(578\) 0 0
\(579\) −7670.77 −0.550581
\(580\) 0 0
\(581\) 7377.59 0.526806
\(582\) 0 0
\(583\) −3476.60 −0.246974
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24449.0 1.71911 0.859555 0.511044i \(-0.170741\pi\)
0.859555 + 0.511044i \(0.170741\pi\)
\(588\) 0 0
\(589\) 8367.43 0.585355
\(590\) 0 0
\(591\) −10876.7 −0.757037
\(592\) 0 0
\(593\) −25721.2 −1.78118 −0.890592 0.454802i \(-0.849710\pi\)
−0.890592 + 0.454802i \(0.849710\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5043.55 0.345760
\(598\) 0 0
\(599\) −26522.0 −1.80911 −0.904556 0.426355i \(-0.859797\pi\)
−0.904556 + 0.426355i \(0.859797\pi\)
\(600\) 0 0
\(601\) 13663.6 0.927373 0.463687 0.885999i \(-0.346526\pi\)
0.463687 + 0.885999i \(0.346526\pi\)
\(602\) 0 0
\(603\) 5035.69 0.340082
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20022.6 1.33887 0.669434 0.742871i \(-0.266537\pi\)
0.669434 + 0.742871i \(0.266537\pi\)
\(608\) 0 0
\(609\) −3360.60 −0.223610
\(610\) 0 0
\(611\) −24525.4 −1.62388
\(612\) 0 0
\(613\) 16164.9 1.06508 0.532539 0.846406i \(-0.321238\pi\)
0.532539 + 0.846406i \(0.321238\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20653.5 −1.34762 −0.673808 0.738907i \(-0.735342\pi\)
−0.673808 + 0.738907i \(0.735342\pi\)
\(618\) 0 0
\(619\) −7727.54 −0.501771 −0.250885 0.968017i \(-0.580722\pi\)
−0.250885 + 0.968017i \(0.580722\pi\)
\(620\) 0 0
\(621\) 2404.51 0.155378
\(622\) 0 0
\(623\) 15278.7 0.982552
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4975.36 −0.316901
\(628\) 0 0
\(629\) −522.989 −0.0331525
\(630\) 0 0
\(631\) 14814.4 0.934631 0.467315 0.884091i \(-0.345221\pi\)
0.467315 + 0.884091i \(0.345221\pi\)
\(632\) 0 0
\(633\) −3261.87 −0.204815
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8768.46 0.545399
\(638\) 0 0
\(639\) −4658.40 −0.288393
\(640\) 0 0
\(641\) 2953.56 0.181995 0.0909973 0.995851i \(-0.470995\pi\)
0.0909973 + 0.995851i \(0.470995\pi\)
\(642\) 0 0
\(643\) −15566.3 −0.954703 −0.477351 0.878712i \(-0.658403\pi\)
−0.477351 + 0.878712i \(0.658403\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −31671.2 −1.92445 −0.962227 0.272248i \(-0.912233\pi\)
−0.962227 + 0.272248i \(0.912233\pi\)
\(648\) 0 0
\(649\) 15125.2 0.914819
\(650\) 0 0
\(651\) −7135.11 −0.429565
\(652\) 0 0
\(653\) 10925.8 0.654765 0.327382 0.944892i \(-0.393833\pi\)
0.327382 + 0.944892i \(0.393833\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6709.24 −0.398405
\(658\) 0 0
\(659\) −12037.7 −0.711566 −0.355783 0.934569i \(-0.615786\pi\)
−0.355783 + 0.934569i \(0.615786\pi\)
\(660\) 0 0
\(661\) 2116.75 0.124557 0.0622785 0.998059i \(-0.480163\pi\)
0.0622785 + 0.998059i \(0.480163\pi\)
\(662\) 0 0
\(663\) 11584.9 0.678615
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4615.82 0.267954
\(668\) 0 0
\(669\) 12660.8 0.731680
\(670\) 0 0
\(671\) 14939.0 0.859485
\(672\) 0 0
\(673\) 482.210 0.0276193 0.0138097 0.999905i \(-0.495604\pi\)
0.0138097 + 0.999905i \(0.495604\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16056.6 0.911527 0.455763 0.890101i \(-0.349366\pi\)
0.455763 + 0.890101i \(0.349366\pi\)
\(678\) 0 0
\(679\) 3700.47 0.209147
\(680\) 0 0
\(681\) 1484.78 0.0835489
\(682\) 0 0
\(683\) −18345.4 −1.02777 −0.513884 0.857860i \(-0.671794\pi\)
−0.513884 + 0.857860i \(0.671794\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6212.45 −0.345007
\(688\) 0 0
\(689\) 11261.2 0.622666
\(690\) 0 0
\(691\) −20257.2 −1.11522 −0.557611 0.830102i \(-0.688282\pi\)
−0.557611 + 0.830102i \(0.688282\pi\)
\(692\) 0 0
\(693\) 4242.61 0.232559
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17337.0 −0.942161
\(698\) 0 0
\(699\) −11072.0 −0.599116
\(700\) 0 0
\(701\) 16341.0 0.880446 0.440223 0.897888i \(-0.354899\pi\)
0.440223 + 0.897888i \(0.354899\pi\)
\(702\) 0 0
\(703\) −727.533 −0.0390319
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35853.2 1.90721
\(708\) 0 0
\(709\) 4826.19 0.255644 0.127822 0.991797i \(-0.459201\pi\)
0.127822 + 0.991797i \(0.459201\pi\)
\(710\) 0 0
\(711\) 1080.84 0.0570105
\(712\) 0 0
\(713\) 9800.14 0.514752
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1967.09 −0.102458
\(718\) 0 0
\(719\) 15545.4 0.806322 0.403161 0.915129i \(-0.367911\pi\)
0.403161 + 0.915129i \(0.367911\pi\)
\(720\) 0 0
\(721\) −14792.0 −0.764056
\(722\) 0 0
\(723\) 14418.4 0.741667
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17551.5 −0.895389 −0.447694 0.894187i \(-0.647755\pi\)
−0.447694 + 0.894187i \(0.647755\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −20459.6 −1.03519
\(732\) 0 0
\(733\) −5663.10 −0.285363 −0.142682 0.989769i \(-0.545573\pi\)
−0.142682 + 0.989769i \(0.545573\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12203.8 −0.609951
\(738\) 0 0
\(739\) −14966.6 −0.745000 −0.372500 0.928032i \(-0.621499\pi\)
−0.372500 + 0.928032i \(0.621499\pi\)
\(740\) 0 0
\(741\) 16115.9 0.798963
\(742\) 0 0
\(743\) 28113.0 1.38811 0.694055 0.719922i \(-0.255822\pi\)
0.694055 + 0.719922i \(0.255822\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3072.18 −0.150475
\(748\) 0 0
\(749\) −2495.81 −0.121756
\(750\) 0 0
\(751\) 1320.93 0.0641831 0.0320915 0.999485i \(-0.489783\pi\)
0.0320915 + 0.999485i \(0.489783\pi\)
\(752\) 0 0
\(753\) 19479.9 0.942745
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −25204.8 −1.21015 −0.605075 0.796169i \(-0.706857\pi\)
−0.605075 + 0.796169i \(0.706857\pi\)
\(758\) 0 0
\(759\) −5827.26 −0.278677
\(760\) 0 0
\(761\) 24919.5 1.18703 0.593516 0.804822i \(-0.297739\pi\)
0.593516 + 0.804822i \(0.297739\pi\)
\(762\) 0 0
\(763\) −37627.2 −1.78532
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −48992.8 −2.30642
\(768\) 0 0
\(769\) 3859.10 0.180966 0.0904830 0.995898i \(-0.471159\pi\)
0.0904830 + 0.995898i \(0.471159\pi\)
\(770\) 0 0
\(771\) −19988.6 −0.933684
\(772\) 0 0
\(773\) −32502.5 −1.51233 −0.756167 0.654379i \(-0.772930\pi\)
−0.756167 + 0.654379i \(0.772930\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 620.385 0.0286437
\(778\) 0 0
\(779\) −24117.6 −1.10925
\(780\) 0 0
\(781\) 11289.5 0.517246
\(782\) 0 0
\(783\) 1399.42 0.0638714
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14105.9 0.638907 0.319453 0.947602i \(-0.396501\pi\)
0.319453 + 0.947602i \(0.396501\pi\)
\(788\) 0 0
\(789\) −18609.5 −0.839689
\(790\) 0 0
\(791\) −37066.9 −1.66618
\(792\) 0 0
\(793\) −48389.6 −2.16692
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23808.9 1.05816 0.529080 0.848572i \(-0.322537\pi\)
0.529080 + 0.848572i \(0.322537\pi\)
\(798\) 0 0
\(799\) 18974.5 0.840137
\(800\) 0 0
\(801\) −6362.38 −0.280654
\(802\) 0 0
\(803\) 16259.6 0.714558
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4707.86 −0.205359
\(808\) 0 0
\(809\) −33146.0 −1.44049 −0.720243 0.693722i \(-0.755970\pi\)
−0.720243 + 0.693722i \(0.755970\pi\)
\(810\) 0 0
\(811\) 40932.2 1.77229 0.886143 0.463413i \(-0.153375\pi\)
0.886143 + 0.463413i \(0.153375\pi\)
\(812\) 0 0
\(813\) −9778.15 −0.421814
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −28461.4 −1.21878
\(818\) 0 0
\(819\) −13742.4 −0.586322
\(820\) 0 0
\(821\) −15389.1 −0.654181 −0.327090 0.944993i \(-0.606068\pi\)
−0.327090 + 0.944993i \(0.606068\pi\)
\(822\) 0 0
\(823\) −34659.0 −1.46797 −0.733984 0.679167i \(-0.762341\pi\)
−0.733984 + 0.679167i \(0.762341\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −17437.2 −0.733194 −0.366597 0.930380i \(-0.619477\pi\)
−0.366597 + 0.930380i \(0.619477\pi\)
\(828\) 0 0
\(829\) −28007.6 −1.17339 −0.586696 0.809807i \(-0.699572\pi\)
−0.586696 + 0.809807i \(0.699572\pi\)
\(830\) 0 0
\(831\) −4425.72 −0.184749
\(832\) 0 0
\(833\) −6783.86 −0.282169
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2971.20 0.122700
\(838\) 0 0
\(839\) −33889.0 −1.39449 −0.697245 0.716833i \(-0.745591\pi\)
−0.697245 + 0.716833i \(0.745591\pi\)
\(840\) 0 0
\(841\) −21702.6 −0.889852
\(842\) 0 0
\(843\) 11845.5 0.483963
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 18484.8 0.749876
\(848\) 0 0
\(849\) −2426.29 −0.0980803
\(850\) 0 0
\(851\) −852.104 −0.0343240
\(852\) 0 0
\(853\) −43681.8 −1.75338 −0.876691 0.481054i \(-0.840254\pi\)
−0.876691 + 0.481054i \(0.840254\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9095.47 −0.362538 −0.181269 0.983434i \(-0.558021\pi\)
−0.181269 + 0.983434i \(0.558021\pi\)
\(858\) 0 0
\(859\) 31215.0 1.23986 0.619932 0.784655i \(-0.287160\pi\)
0.619932 + 0.784655i \(0.287160\pi\)
\(860\) 0 0
\(861\) 20565.7 0.814026
\(862\) 0 0
\(863\) 22777.1 0.898427 0.449213 0.893424i \(-0.351704\pi\)
0.449213 + 0.893424i \(0.351704\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5776.12 0.226260
\(868\) 0 0
\(869\) −2619.37 −0.102251
\(870\) 0 0
\(871\) 39529.9 1.53780
\(872\) 0 0
\(873\) −1540.95 −0.0597404
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −12582.9 −0.484485 −0.242243 0.970216i \(-0.577883\pi\)
−0.242243 + 0.970216i \(0.577883\pi\)
\(878\) 0 0
\(879\) 4995.50 0.191688
\(880\) 0 0
\(881\) 30067.9 1.14984 0.574922 0.818208i \(-0.305032\pi\)
0.574922 + 0.818208i \(0.305032\pi\)
\(882\) 0 0
\(883\) −37957.3 −1.44662 −0.723309 0.690524i \(-0.757380\pi\)
−0.723309 + 0.690524i \(0.757380\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14575.0 0.551725 0.275862 0.961197i \(-0.411037\pi\)
0.275862 + 0.961197i \(0.411037\pi\)
\(888\) 0 0
\(889\) −19291.4 −0.727800
\(890\) 0 0
\(891\) −1766.71 −0.0664275
\(892\) 0 0
\(893\) 26395.6 0.989131
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 18875.3 0.702595
\(898\) 0 0
\(899\) 5703.67 0.211599
\(900\) 0 0
\(901\) −8712.40 −0.322145
\(902\) 0 0
\(903\) 24269.7 0.894403
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 50932.7 1.86460 0.932301 0.361684i \(-0.117798\pi\)
0.932301 + 0.361684i \(0.117798\pi\)
\(908\) 0 0
\(909\) −14930.0 −0.544771
\(910\) 0 0
\(911\) 20903.2 0.760212 0.380106 0.924943i \(-0.375887\pi\)
0.380106 + 0.924943i \(0.375887\pi\)
\(912\) 0 0
\(913\) 7445.33 0.269884
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1051.60 0.0378700
\(918\) 0 0
\(919\) 41545.1 1.49124 0.745619 0.666373i \(-0.232154\pi\)
0.745619 + 0.666373i \(0.232154\pi\)
\(920\) 0 0
\(921\) −7926.39 −0.283587
\(922\) 0 0
\(923\) −36568.2 −1.30407
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6159.71 0.218243
\(928\) 0 0
\(929\) 37671.2 1.33041 0.665205 0.746661i \(-0.268344\pi\)
0.665205 + 0.746661i \(0.268344\pi\)
\(930\) 0 0
\(931\) −9437.08 −0.332210
\(932\) 0 0
\(933\) −15495.7 −0.543738
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 14680.4 0.511834 0.255917 0.966699i \(-0.417623\pi\)
0.255917 + 0.966699i \(0.417623\pi\)
\(938\) 0 0
\(939\) −30411.9 −1.05693
\(940\) 0 0
\(941\) −15985.8 −0.553797 −0.276898 0.960899i \(-0.589307\pi\)
−0.276898 + 0.960899i \(0.589307\pi\)
\(942\) 0 0
\(943\) −28247.1 −0.975454
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6083.09 −0.208737 −0.104368 0.994539i \(-0.533282\pi\)
−0.104368 + 0.994539i \(0.533282\pi\)
\(948\) 0 0
\(949\) −52667.2 −1.80153
\(950\) 0 0
\(951\) 19281.6 0.657465
\(952\) 0 0
\(953\) −57758.8 −1.96326 −0.981632 0.190786i \(-0.938896\pi\)
−0.981632 + 0.190786i \(0.938896\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −3391.46 −0.114556
\(958\) 0 0
\(959\) −330.670 −0.0111344
\(960\) 0 0
\(961\) −17681.2 −0.593508
\(962\) 0 0
\(963\) 1039.31 0.0347780
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10663.7 0.354625 0.177313 0.984155i \(-0.443260\pi\)
0.177313 + 0.984155i \(0.443260\pi\)
\(968\) 0 0
\(969\) −12468.3 −0.413354
\(970\) 0 0
\(971\) −40563.2 −1.34061 −0.670306 0.742085i \(-0.733837\pi\)
−0.670306 + 0.742085i \(0.733837\pi\)
\(972\) 0 0
\(973\) −44734.7 −1.47392
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 573.645 0.0187846 0.00939228 0.999956i \(-0.497010\pi\)
0.00939228 + 0.999956i \(0.497010\pi\)
\(978\) 0 0
\(979\) 15419.0 0.503364
\(980\) 0 0
\(981\) 15668.7 0.509954
\(982\) 0 0
\(983\) 11416.8 0.370438 0.185219 0.982697i \(-0.440701\pi\)
0.185219 + 0.982697i \(0.440701\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −22508.1 −0.725877
\(988\) 0 0
\(989\) −33334.7 −1.07177
\(990\) 0 0
\(991\) 31656.9 1.01475 0.507373 0.861726i \(-0.330617\pi\)
0.507373 + 0.861726i \(0.330617\pi\)
\(992\) 0 0
\(993\) −10035.1 −0.320699
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −42673.1 −1.35554 −0.677768 0.735276i \(-0.737053\pi\)
−0.677768 + 0.735276i \(0.737053\pi\)
\(998\) 0 0
\(999\) −258.341 −0.00818172
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bi.1.1 3
4.3 odd 2 2400.4.a.bt.1.3 yes 3
5.4 even 2 2400.4.a.bs.1.3 yes 3
20.19 odd 2 2400.4.a.bj.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2400.4.a.bi.1.1 3 1.1 even 1 trivial
2400.4.a.bj.1.1 yes 3 20.19 odd 2
2400.4.a.bs.1.3 yes 3 5.4 even 2
2400.4.a.bt.1.3 yes 3 4.3 odd 2