Properties

Label 2400.4.a.bf.1.3
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.23109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 37x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.74427\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.81960 q^{7} +9.00000 q^{9} -25.7967 q^{11} -32.1575 q^{13} +9.16680 q^{17} +99.2784 q^{19} -20.4588 q^{21} -61.2597 q^{23} -27.0000 q^{27} +17.1991 q^{29} -74.9635 q^{31} +77.3900 q^{33} +55.9740 q^{37} +96.4724 q^{39} -54.1960 q^{41} -33.9813 q^{43} -152.955 q^{47} -296.493 q^{49} -27.5004 q^{51} -26.7289 q^{53} -297.835 q^{57} +567.984 q^{59} -249.963 q^{61} +61.3764 q^{63} +987.608 q^{67} +183.779 q^{69} -705.600 q^{71} +278.004 q^{73} -175.923 q^{77} +1137.94 q^{79} +81.0000 q^{81} -1058.03 q^{83} -51.5972 q^{87} +4.63145 q^{89} -219.301 q^{91} +224.890 q^{93} -1459.17 q^{97} -232.170 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 32 q^{7} + 27 q^{9} + 48 q^{11} - 76 q^{13} - 16 q^{17} + 88 q^{19} + 96 q^{21} - 20 q^{23} - 81 q^{27} + 58 q^{29} - 56 q^{31} - 144 q^{33} - 436 q^{37} + 228 q^{39} + 362 q^{41} - 148 q^{43}+ \cdots + 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.81960 0.368224 0.184112 0.982905i \(-0.441059\pi\)
0.184112 + 0.982905i \(0.441059\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −25.7967 −0.707090 −0.353545 0.935418i \(-0.615024\pi\)
−0.353545 + 0.935418i \(0.615024\pi\)
\(12\) 0 0
\(13\) −32.1575 −0.686067 −0.343034 0.939323i \(-0.611455\pi\)
−0.343034 + 0.939323i \(0.611455\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.16680 0.130781 0.0653904 0.997860i \(-0.479171\pi\)
0.0653904 + 0.997860i \(0.479171\pi\)
\(18\) 0 0
\(19\) 99.2784 1.19874 0.599369 0.800473i \(-0.295418\pi\)
0.599369 + 0.800473i \(0.295418\pi\)
\(20\) 0 0
\(21\) −20.4588 −0.212594
\(22\) 0 0
\(23\) −61.2597 −0.555371 −0.277686 0.960672i \(-0.589567\pi\)
−0.277686 + 0.960672i \(0.589567\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 17.1991 0.110131 0.0550653 0.998483i \(-0.482463\pi\)
0.0550653 + 0.998483i \(0.482463\pi\)
\(30\) 0 0
\(31\) −74.9635 −0.434317 −0.217159 0.976136i \(-0.569679\pi\)
−0.217159 + 0.976136i \(0.569679\pi\)
\(32\) 0 0
\(33\) 77.3900 0.408238
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 55.9740 0.248705 0.124352 0.992238i \(-0.460315\pi\)
0.124352 + 0.992238i \(0.460315\pi\)
\(38\) 0 0
\(39\) 96.4724 0.396101
\(40\) 0 0
\(41\) −54.1960 −0.206439 −0.103219 0.994659i \(-0.532914\pi\)
−0.103219 + 0.994659i \(0.532914\pi\)
\(42\) 0 0
\(43\) −33.9813 −0.120514 −0.0602570 0.998183i \(-0.519192\pi\)
−0.0602570 + 0.998183i \(0.519192\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −152.955 −0.474697 −0.237349 0.971425i \(-0.576278\pi\)
−0.237349 + 0.971425i \(0.576278\pi\)
\(48\) 0 0
\(49\) −296.493 −0.864411
\(50\) 0 0
\(51\) −27.5004 −0.0755064
\(52\) 0 0
\(53\) −26.7289 −0.0692736 −0.0346368 0.999400i \(-0.511027\pi\)
−0.0346368 + 0.999400i \(0.511027\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −297.835 −0.692092
\(58\) 0 0
\(59\) 567.984 1.25331 0.626655 0.779297i \(-0.284424\pi\)
0.626655 + 0.779297i \(0.284424\pi\)
\(60\) 0 0
\(61\) −249.963 −0.524663 −0.262331 0.964978i \(-0.584491\pi\)
−0.262331 + 0.964978i \(0.584491\pi\)
\(62\) 0 0
\(63\) 61.3764 0.122741
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 987.608 1.80083 0.900415 0.435033i \(-0.143263\pi\)
0.900415 + 0.435033i \(0.143263\pi\)
\(68\) 0 0
\(69\) 183.779 0.320644
\(70\) 0 0
\(71\) −705.600 −1.17943 −0.589713 0.807613i \(-0.700759\pi\)
−0.589713 + 0.807613i \(0.700759\pi\)
\(72\) 0 0
\(73\) 278.004 0.445725 0.222862 0.974850i \(-0.428460\pi\)
0.222862 + 0.974850i \(0.428460\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −175.923 −0.260367
\(78\) 0 0
\(79\) 1137.94 1.62061 0.810303 0.586010i \(-0.199302\pi\)
0.810303 + 0.586010i \(0.199302\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1058.03 −1.39921 −0.699603 0.714532i \(-0.746640\pi\)
−0.699603 + 0.714532i \(0.746640\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −51.5972 −0.0635839
\(88\) 0 0
\(89\) 4.63145 0.00551610 0.00275805 0.999996i \(-0.499122\pi\)
0.00275805 + 0.999996i \(0.499122\pi\)
\(90\) 0 0
\(91\) −219.301 −0.252626
\(92\) 0 0
\(93\) 224.890 0.250753
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1459.17 −1.52739 −0.763694 0.645578i \(-0.776617\pi\)
−0.763694 + 0.645578i \(0.776617\pi\)
\(98\) 0 0
\(99\) −232.170 −0.235697
\(100\) 0 0
\(101\) 1423.35 1.40227 0.701133 0.713031i \(-0.252678\pi\)
0.701133 + 0.713031i \(0.252678\pi\)
\(102\) 0 0
\(103\) 620.400 0.593493 0.296747 0.954956i \(-0.404098\pi\)
0.296747 + 0.954956i \(0.404098\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 765.835 0.691926 0.345963 0.938248i \(-0.387552\pi\)
0.345963 + 0.938248i \(0.387552\pi\)
\(108\) 0 0
\(109\) 1192.78 1.04814 0.524071 0.851675i \(-0.324413\pi\)
0.524071 + 0.851675i \(0.324413\pi\)
\(110\) 0 0
\(111\) −167.922 −0.143590
\(112\) 0 0
\(113\) −2049.68 −1.70635 −0.853177 0.521621i \(-0.825327\pi\)
−0.853177 + 0.521621i \(0.825327\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −289.417 −0.228689
\(118\) 0 0
\(119\) 62.5139 0.0481566
\(120\) 0 0
\(121\) −665.532 −0.500024
\(122\) 0 0
\(123\) 162.588 0.119188
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1721.60 −1.20289 −0.601445 0.798914i \(-0.705408\pi\)
−0.601445 + 0.798914i \(0.705408\pi\)
\(128\) 0 0
\(129\) 101.944 0.0695788
\(130\) 0 0
\(131\) 2064.73 1.37707 0.688535 0.725203i \(-0.258254\pi\)
0.688535 + 0.725203i \(0.258254\pi\)
\(132\) 0 0
\(133\) 677.039 0.441404
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2096.85 1.30764 0.653818 0.756652i \(-0.273166\pi\)
0.653818 + 0.756652i \(0.273166\pi\)
\(138\) 0 0
\(139\) −453.572 −0.276773 −0.138386 0.990378i \(-0.544192\pi\)
−0.138386 + 0.990378i \(0.544192\pi\)
\(140\) 0 0
\(141\) 458.865 0.274067
\(142\) 0 0
\(143\) 829.555 0.485111
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 889.479 0.499068
\(148\) 0 0
\(149\) −1373.69 −0.755281 −0.377641 0.925952i \(-0.623265\pi\)
−0.377641 + 0.925952i \(0.623265\pi\)
\(150\) 0 0
\(151\) 2477.83 1.33538 0.667692 0.744437i \(-0.267282\pi\)
0.667692 + 0.744437i \(0.267282\pi\)
\(152\) 0 0
\(153\) 82.5012 0.0435936
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1670.28 −0.849065 −0.424532 0.905413i \(-0.639561\pi\)
−0.424532 + 0.905413i \(0.639561\pi\)
\(158\) 0 0
\(159\) 80.1868 0.0399951
\(160\) 0 0
\(161\) −417.767 −0.204501
\(162\) 0 0
\(163\) −1097.50 −0.527378 −0.263689 0.964608i \(-0.584939\pi\)
−0.263689 + 0.964608i \(0.584939\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2332.34 −1.08073 −0.540365 0.841430i \(-0.681714\pi\)
−0.540365 + 0.841430i \(0.681714\pi\)
\(168\) 0 0
\(169\) −1162.90 −0.529311
\(170\) 0 0
\(171\) 893.506 0.399579
\(172\) 0 0
\(173\) −4112.25 −1.80722 −0.903608 0.428360i \(-0.859092\pi\)
−0.903608 + 0.428360i \(0.859092\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1703.95 −0.723598
\(178\) 0 0
\(179\) −1156.81 −0.483040 −0.241520 0.970396i \(-0.577646\pi\)
−0.241520 + 0.970396i \(0.577646\pi\)
\(180\) 0 0
\(181\) −1211.29 −0.497426 −0.248713 0.968577i \(-0.580008\pi\)
−0.248713 + 0.968577i \(0.580008\pi\)
\(182\) 0 0
\(183\) 749.888 0.302914
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −236.473 −0.0924738
\(188\) 0 0
\(189\) −184.129 −0.0708647
\(190\) 0 0
\(191\) 4192.97 1.58844 0.794221 0.607629i \(-0.207879\pi\)
0.794221 + 0.607629i \(0.207879\pi\)
\(192\) 0 0
\(193\) 2388.88 0.890960 0.445480 0.895292i \(-0.353033\pi\)
0.445480 + 0.895292i \(0.353033\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 346.366 0.125267 0.0626334 0.998037i \(-0.480050\pi\)
0.0626334 + 0.998037i \(0.480050\pi\)
\(198\) 0 0
\(199\) 1089.75 0.388192 0.194096 0.980983i \(-0.437823\pi\)
0.194096 + 0.980983i \(0.437823\pi\)
\(200\) 0 0
\(201\) −2962.82 −1.03971
\(202\) 0 0
\(203\) 117.291 0.0405527
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −551.338 −0.185124
\(208\) 0 0
\(209\) −2561.05 −0.847616
\(210\) 0 0
\(211\) 5613.32 1.83146 0.915728 0.401799i \(-0.131615\pi\)
0.915728 + 0.401799i \(0.131615\pi\)
\(212\) 0 0
\(213\) 2116.80 0.680942
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −511.221 −0.159926
\(218\) 0 0
\(219\) −834.012 −0.257339
\(220\) 0 0
\(221\) −294.781 −0.0897245
\(222\) 0 0
\(223\) 14.7386 0.00442588 0.00221294 0.999998i \(-0.499296\pi\)
0.00221294 + 0.999998i \(0.499296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3008.40 0.879622 0.439811 0.898090i \(-0.355045\pi\)
0.439811 + 0.898090i \(0.355045\pi\)
\(228\) 0 0
\(229\) 3704.88 1.06911 0.534554 0.845135i \(-0.320480\pi\)
0.534554 + 0.845135i \(0.320480\pi\)
\(230\) 0 0
\(231\) 527.769 0.150323
\(232\) 0 0
\(233\) −305.357 −0.0858566 −0.0429283 0.999078i \(-0.513669\pi\)
−0.0429283 + 0.999078i \(0.513669\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3413.81 −0.935658
\(238\) 0 0
\(239\) −254.763 −0.0689510 −0.0344755 0.999406i \(-0.510976\pi\)
−0.0344755 + 0.999406i \(0.510976\pi\)
\(240\) 0 0
\(241\) 4032.38 1.07780 0.538898 0.842371i \(-0.318841\pi\)
0.538898 + 0.842371i \(0.318841\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3192.54 −0.822415
\(248\) 0 0
\(249\) 3174.09 0.807832
\(250\) 0 0
\(251\) 6009.93 1.51133 0.755664 0.654960i \(-0.227314\pi\)
0.755664 + 0.654960i \(0.227314\pi\)
\(252\) 0 0
\(253\) 1580.30 0.392697
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3638.54 0.883135 0.441567 0.897228i \(-0.354423\pi\)
0.441567 + 0.897228i \(0.354423\pi\)
\(258\) 0 0
\(259\) 381.720 0.0915789
\(260\) 0 0
\(261\) 154.792 0.0367102
\(262\) 0 0
\(263\) 4946.05 1.15964 0.579822 0.814743i \(-0.303122\pi\)
0.579822 + 0.814743i \(0.303122\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −13.8944 −0.00318472
\(268\) 0 0
\(269\) 3081.01 0.698336 0.349168 0.937060i \(-0.386464\pi\)
0.349168 + 0.937060i \(0.386464\pi\)
\(270\) 0 0
\(271\) 7914.77 1.77413 0.887063 0.461649i \(-0.152742\pi\)
0.887063 + 0.461649i \(0.152742\pi\)
\(272\) 0 0
\(273\) 657.903 0.145854
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3559.58 0.772110 0.386055 0.922476i \(-0.373837\pi\)
0.386055 + 0.922476i \(0.373837\pi\)
\(278\) 0 0
\(279\) −674.671 −0.144772
\(280\) 0 0
\(281\) 2025.25 0.429952 0.214976 0.976619i \(-0.431033\pi\)
0.214976 + 0.976619i \(0.431033\pi\)
\(282\) 0 0
\(283\) 3311.43 0.695563 0.347782 0.937576i \(-0.386935\pi\)
0.347782 + 0.937576i \(0.386935\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −369.595 −0.0760157
\(288\) 0 0
\(289\) −4828.97 −0.982896
\(290\) 0 0
\(291\) 4377.52 0.881838
\(292\) 0 0
\(293\) −1735.70 −0.346077 −0.173039 0.984915i \(-0.555359\pi\)
−0.173039 + 0.984915i \(0.555359\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 696.510 0.136079
\(298\) 0 0
\(299\) 1969.96 0.381022
\(300\) 0 0
\(301\) −231.739 −0.0443761
\(302\) 0 0
\(303\) −4270.06 −0.809598
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5444.54 1.01217 0.506085 0.862483i \(-0.331092\pi\)
0.506085 + 0.862483i \(0.331092\pi\)
\(308\) 0 0
\(309\) −1861.20 −0.342654
\(310\) 0 0
\(311\) 2873.36 0.523901 0.261950 0.965081i \(-0.415634\pi\)
0.261950 + 0.965081i \(0.415634\pi\)
\(312\) 0 0
\(313\) 6010.68 1.08544 0.542722 0.839913i \(-0.317394\pi\)
0.542722 + 0.839913i \(0.317394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7883.11 1.39672 0.698359 0.715748i \(-0.253914\pi\)
0.698359 + 0.715748i \(0.253914\pi\)
\(318\) 0 0
\(319\) −443.679 −0.0778722
\(320\) 0 0
\(321\) −2297.51 −0.399484
\(322\) 0 0
\(323\) 910.065 0.156772
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3578.33 −0.605145
\(328\) 0 0
\(329\) −1043.09 −0.174795
\(330\) 0 0
\(331\) 1636.58 0.271766 0.135883 0.990725i \(-0.456613\pi\)
0.135883 + 0.990725i \(0.456613\pi\)
\(332\) 0 0
\(333\) 503.766 0.0829015
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 287.115 0.0464099 0.0232050 0.999731i \(-0.492613\pi\)
0.0232050 + 0.999731i \(0.492613\pi\)
\(338\) 0 0
\(339\) 6149.05 0.985164
\(340\) 0 0
\(341\) 1933.81 0.307101
\(342\) 0 0
\(343\) −4361.09 −0.686521
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3067.93 −0.474626 −0.237313 0.971433i \(-0.576267\pi\)
−0.237313 + 0.971433i \(0.576267\pi\)
\(348\) 0 0
\(349\) 6754.03 1.03592 0.517959 0.855406i \(-0.326692\pi\)
0.517959 + 0.855406i \(0.326692\pi\)
\(350\) 0 0
\(351\) 868.252 0.132034
\(352\) 0 0
\(353\) −8318.47 −1.25424 −0.627121 0.778922i \(-0.715767\pi\)
−0.627121 + 0.778922i \(0.715767\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −187.542 −0.0278032
\(358\) 0 0
\(359\) 7980.40 1.17323 0.586615 0.809866i \(-0.300460\pi\)
0.586615 + 0.809866i \(0.300460\pi\)
\(360\) 0 0
\(361\) 2997.20 0.436973
\(362\) 0 0
\(363\) 1996.60 0.288689
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6471.22 0.920422 0.460211 0.887810i \(-0.347774\pi\)
0.460211 + 0.887810i \(0.347774\pi\)
\(368\) 0 0
\(369\) −487.764 −0.0688129
\(370\) 0 0
\(371\) −182.281 −0.0255082
\(372\) 0 0
\(373\) 7441.94 1.03305 0.516527 0.856271i \(-0.327225\pi\)
0.516527 + 0.856271i \(0.327225\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −553.078 −0.0755570
\(378\) 0 0
\(379\) 10962.3 1.48573 0.742867 0.669439i \(-0.233466\pi\)
0.742867 + 0.669439i \(0.233466\pi\)
\(380\) 0 0
\(381\) 5164.79 0.694489
\(382\) 0 0
\(383\) −14038.1 −1.87288 −0.936441 0.350826i \(-0.885901\pi\)
−0.936441 + 0.350826i \(0.885901\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −305.832 −0.0401714
\(388\) 0 0
\(389\) −10282.9 −1.34027 −0.670135 0.742239i \(-0.733764\pi\)
−0.670135 + 0.742239i \(0.733764\pi\)
\(390\) 0 0
\(391\) −561.556 −0.0726319
\(392\) 0 0
\(393\) −6194.19 −0.795052
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6787.17 0.858032 0.429016 0.903297i \(-0.358860\pi\)
0.429016 + 0.903297i \(0.358860\pi\)
\(398\) 0 0
\(399\) −2031.12 −0.254845
\(400\) 0 0
\(401\) −1939.49 −0.241530 −0.120765 0.992681i \(-0.538535\pi\)
−0.120765 + 0.992681i \(0.538535\pi\)
\(402\) 0 0
\(403\) 2410.64 0.297971
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1443.94 −0.175856
\(408\) 0 0
\(409\) −5528.51 −0.668379 −0.334190 0.942506i \(-0.608463\pi\)
−0.334190 + 0.942506i \(0.608463\pi\)
\(410\) 0 0
\(411\) −6290.56 −0.754964
\(412\) 0 0
\(413\) 3873.42 0.461498
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1360.71 0.159795
\(418\) 0 0
\(419\) 6818.79 0.795035 0.397518 0.917595i \(-0.369872\pi\)
0.397518 + 0.917595i \(0.369872\pi\)
\(420\) 0 0
\(421\) −15473.8 −1.79132 −0.895659 0.444741i \(-0.853296\pi\)
−0.895659 + 0.444741i \(0.853296\pi\)
\(422\) 0 0
\(423\) −1376.59 −0.158232
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1704.65 −0.193193
\(428\) 0 0
\(429\) −2488.67 −0.280079
\(430\) 0 0
\(431\) 11445.5 1.27914 0.639569 0.768734i \(-0.279113\pi\)
0.639569 + 0.768734i \(0.279113\pi\)
\(432\) 0 0
\(433\) 8471.01 0.940164 0.470082 0.882623i \(-0.344224\pi\)
0.470082 + 0.882623i \(0.344224\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6081.77 −0.665745
\(438\) 0 0
\(439\) 2237.01 0.243205 0.121602 0.992579i \(-0.461197\pi\)
0.121602 + 0.992579i \(0.461197\pi\)
\(440\) 0 0
\(441\) −2668.44 −0.288137
\(442\) 0 0
\(443\) 14329.1 1.53679 0.768394 0.639977i \(-0.221056\pi\)
0.768394 + 0.639977i \(0.221056\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4121.06 0.436062
\(448\) 0 0
\(449\) 15604.9 1.64018 0.820089 0.572237i \(-0.193924\pi\)
0.820089 + 0.572237i \(0.193924\pi\)
\(450\) 0 0
\(451\) 1398.08 0.145971
\(452\) 0 0
\(453\) −7433.50 −0.770985
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1300.53 −0.133121 −0.0665605 0.997782i \(-0.521203\pi\)
−0.0665605 + 0.997782i \(0.521203\pi\)
\(458\) 0 0
\(459\) −247.504 −0.0251688
\(460\) 0 0
\(461\) 4748.14 0.479703 0.239851 0.970810i \(-0.422901\pi\)
0.239851 + 0.970810i \(0.422901\pi\)
\(462\) 0 0
\(463\) −13565.9 −1.36168 −0.680842 0.732430i \(-0.738386\pi\)
−0.680842 + 0.732430i \(0.738386\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11178.2 1.10764 0.553819 0.832637i \(-0.313170\pi\)
0.553819 + 0.832637i \(0.313170\pi\)
\(468\) 0 0
\(469\) 6735.09 0.663108
\(470\) 0 0
\(471\) 5010.85 0.490208
\(472\) 0 0
\(473\) 876.605 0.0852143
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −240.560 −0.0230912
\(478\) 0 0
\(479\) 5562.99 0.530646 0.265323 0.964160i \(-0.414521\pi\)
0.265323 + 0.964160i \(0.414521\pi\)
\(480\) 0 0
\(481\) −1799.98 −0.170628
\(482\) 0 0
\(483\) 1253.30 0.118069
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −16716.3 −1.55542 −0.777710 0.628623i \(-0.783619\pi\)
−0.777710 + 0.628623i \(0.783619\pi\)
\(488\) 0 0
\(489\) 3292.49 0.304482
\(490\) 0 0
\(491\) 3320.29 0.305178 0.152589 0.988290i \(-0.451239\pi\)
0.152589 + 0.988290i \(0.451239\pi\)
\(492\) 0 0
\(493\) 157.660 0.0144030
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4811.91 −0.434293
\(498\) 0 0
\(499\) −1649.53 −0.147982 −0.0739910 0.997259i \(-0.523574\pi\)
−0.0739910 + 0.997259i \(0.523574\pi\)
\(500\) 0 0
\(501\) 6997.03 0.623960
\(502\) 0 0
\(503\) −4173.99 −0.369998 −0.184999 0.982739i \(-0.559228\pi\)
−0.184999 + 0.982739i \(0.559228\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3488.69 0.305598
\(508\) 0 0
\(509\) −2945.71 −0.256515 −0.128258 0.991741i \(-0.540938\pi\)
−0.128258 + 0.991741i \(0.540938\pi\)
\(510\) 0 0
\(511\) 1895.88 0.164126
\(512\) 0 0
\(513\) −2680.52 −0.230697
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3945.73 0.335654
\(518\) 0 0
\(519\) 12336.7 1.04340
\(520\) 0 0
\(521\) −9799.89 −0.824071 −0.412035 0.911168i \(-0.635182\pi\)
−0.412035 + 0.911168i \(0.635182\pi\)
\(522\) 0 0
\(523\) 14268.0 1.19292 0.596458 0.802644i \(-0.296574\pi\)
0.596458 + 0.802644i \(0.296574\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −687.175 −0.0568004
\(528\) 0 0
\(529\) −8414.24 −0.691563
\(530\) 0 0
\(531\) 5111.86 0.417770
\(532\) 0 0
\(533\) 1742.81 0.141631
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3470.44 0.278884
\(538\) 0 0
\(539\) 7648.53 0.611216
\(540\) 0 0
\(541\) 6611.27 0.525399 0.262700 0.964878i \(-0.415387\pi\)
0.262700 + 0.964878i \(0.415387\pi\)
\(542\) 0 0
\(543\) 3633.86 0.287189
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16141.3 1.26171 0.630853 0.775903i \(-0.282705\pi\)
0.630853 + 0.775903i \(0.282705\pi\)
\(548\) 0 0
\(549\) −2249.66 −0.174888
\(550\) 0 0
\(551\) 1707.50 0.132018
\(552\) 0 0
\(553\) 7760.28 0.596746
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16680.5 −1.26889 −0.634447 0.772966i \(-0.718772\pi\)
−0.634447 + 0.772966i \(0.718772\pi\)
\(558\) 0 0
\(559\) 1092.75 0.0826808
\(560\) 0 0
\(561\) 709.419 0.0533898
\(562\) 0 0
\(563\) −15190.8 −1.13715 −0.568577 0.822630i \(-0.692506\pi\)
−0.568577 + 0.822630i \(0.692506\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 552.388 0.0409138
\(568\) 0 0
\(569\) 7785.68 0.573625 0.286812 0.957987i \(-0.407404\pi\)
0.286812 + 0.957987i \(0.407404\pi\)
\(570\) 0 0
\(571\) 10274.5 0.753023 0.376511 0.926412i \(-0.377124\pi\)
0.376511 + 0.926412i \(0.377124\pi\)
\(572\) 0 0
\(573\) −12578.9 −0.917087
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18429.3 1.32968 0.664838 0.746988i \(-0.268501\pi\)
0.664838 + 0.746988i \(0.268501\pi\)
\(578\) 0 0
\(579\) −7166.63 −0.514396
\(580\) 0 0
\(581\) −7215.35 −0.515221
\(582\) 0 0
\(583\) 689.517 0.0489827
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5225.99 0.367461 0.183731 0.982977i \(-0.441183\pi\)
0.183731 + 0.982977i \(0.441183\pi\)
\(588\) 0 0
\(589\) −7442.25 −0.520633
\(590\) 0 0
\(591\) −1039.10 −0.0723228
\(592\) 0 0
\(593\) −602.367 −0.0417138 −0.0208569 0.999782i \(-0.506639\pi\)
−0.0208569 + 0.999782i \(0.506639\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3269.24 −0.224123
\(598\) 0 0
\(599\) −7714.91 −0.526248 −0.263124 0.964762i \(-0.584753\pi\)
−0.263124 + 0.964762i \(0.584753\pi\)
\(600\) 0 0
\(601\) 16822.2 1.14175 0.570874 0.821038i \(-0.306605\pi\)
0.570874 + 0.821038i \(0.306605\pi\)
\(602\) 0 0
\(603\) 8888.47 0.600276
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8251.11 −0.551733 −0.275867 0.961196i \(-0.588965\pi\)
−0.275867 + 0.961196i \(0.588965\pi\)
\(608\) 0 0
\(609\) −351.872 −0.0234131
\(610\) 0 0
\(611\) 4918.64 0.325674
\(612\) 0 0
\(613\) −14423.3 −0.950330 −0.475165 0.879897i \(-0.657612\pi\)
−0.475165 + 0.879897i \(0.657612\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17060.0 −1.11314 −0.556571 0.830800i \(-0.687883\pi\)
−0.556571 + 0.830800i \(0.687883\pi\)
\(618\) 0 0
\(619\) −4179.63 −0.271395 −0.135697 0.990750i \(-0.543327\pi\)
−0.135697 + 0.990750i \(0.543327\pi\)
\(620\) 0 0
\(621\) 1654.01 0.106881
\(622\) 0 0
\(623\) 31.5846 0.00203116
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7683.16 0.489371
\(628\) 0 0
\(629\) 513.102 0.0325258
\(630\) 0 0
\(631\) 10401.2 0.656208 0.328104 0.944642i \(-0.393590\pi\)
0.328104 + 0.944642i \(0.393590\pi\)
\(632\) 0 0
\(633\) −16840.0 −1.05739
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9534.47 0.593044
\(638\) 0 0
\(639\) −6350.40 −0.393142
\(640\) 0 0
\(641\) 9629.38 0.593350 0.296675 0.954978i \(-0.404122\pi\)
0.296675 + 0.954978i \(0.404122\pi\)
\(642\) 0 0
\(643\) −554.156 −0.0339872 −0.0169936 0.999856i \(-0.505409\pi\)
−0.0169936 + 0.999856i \(0.505409\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −29213.5 −1.77512 −0.887559 0.460694i \(-0.847600\pi\)
−0.887559 + 0.460694i \(0.847600\pi\)
\(648\) 0 0
\(649\) −14652.1 −0.886202
\(650\) 0 0
\(651\) 1533.66 0.0923333
\(652\) 0 0
\(653\) 8519.64 0.510565 0.255283 0.966866i \(-0.417831\pi\)
0.255283 + 0.966866i \(0.417831\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2502.04 0.148575
\(658\) 0 0
\(659\) −13709.4 −0.810382 −0.405191 0.914232i \(-0.632795\pi\)
−0.405191 + 0.914232i \(0.632795\pi\)
\(660\) 0 0
\(661\) −3470.85 −0.204237 −0.102118 0.994772i \(-0.532562\pi\)
−0.102118 + 0.994772i \(0.532562\pi\)
\(662\) 0 0
\(663\) 884.343 0.0518025
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1053.61 −0.0611633
\(668\) 0 0
\(669\) −44.2158 −0.00255528
\(670\) 0 0
\(671\) 6448.20 0.370984
\(672\) 0 0
\(673\) 13746.2 0.787336 0.393668 0.919253i \(-0.371206\pi\)
0.393668 + 0.919253i \(0.371206\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21098.5 −1.19776 −0.598878 0.800840i \(-0.704386\pi\)
−0.598878 + 0.800840i \(0.704386\pi\)
\(678\) 0 0
\(679\) −9950.99 −0.562421
\(680\) 0 0
\(681\) −9025.19 −0.507850
\(682\) 0 0
\(683\) 16080.3 0.900872 0.450436 0.892809i \(-0.351269\pi\)
0.450436 + 0.892809i \(0.351269\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11114.7 −0.617249
\(688\) 0 0
\(689\) 859.535 0.0475264
\(690\) 0 0
\(691\) 14310.6 0.787844 0.393922 0.919144i \(-0.371118\pi\)
0.393922 + 0.919144i \(0.371118\pi\)
\(692\) 0 0
\(693\) −1583.31 −0.0867891
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −496.804 −0.0269983
\(698\) 0 0
\(699\) 916.071 0.0495694
\(700\) 0 0
\(701\) −9834.76 −0.529891 −0.264946 0.964263i \(-0.585354\pi\)
−0.264946 + 0.964263i \(0.585354\pi\)
\(702\) 0 0
\(703\) 5557.01 0.298132
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9706.69 0.516347
\(708\) 0 0
\(709\) 10055.7 0.532650 0.266325 0.963883i \(-0.414191\pi\)
0.266325 + 0.963883i \(0.414191\pi\)
\(710\) 0 0
\(711\) 10241.4 0.540202
\(712\) 0 0
\(713\) 4592.24 0.241207
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 764.290 0.0398089
\(718\) 0 0
\(719\) −22769.9 −1.18105 −0.590524 0.807020i \(-0.701079\pi\)
−0.590524 + 0.807020i \(0.701079\pi\)
\(720\) 0 0
\(721\) 4230.88 0.218538
\(722\) 0 0
\(723\) −12097.2 −0.622265
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −23421.7 −1.19486 −0.597429 0.801922i \(-0.703811\pi\)
−0.597429 + 0.801922i \(0.703811\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −311.500 −0.0157609
\(732\) 0 0
\(733\) 38228.0 1.92631 0.963153 0.268953i \(-0.0866776\pi\)
0.963153 + 0.268953i \(0.0866776\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25477.0 −1.27335
\(738\) 0 0
\(739\) −21579.3 −1.07416 −0.537082 0.843530i \(-0.680473\pi\)
−0.537082 + 0.843530i \(0.680473\pi\)
\(740\) 0 0
\(741\) 9577.63 0.474822
\(742\) 0 0
\(743\) −894.461 −0.0441650 −0.0220825 0.999756i \(-0.507030\pi\)
−0.0220825 + 0.999756i \(0.507030\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9522.28 −0.466402
\(748\) 0 0
\(749\) 5222.69 0.254784
\(750\) 0 0
\(751\) −13206.6 −0.641700 −0.320850 0.947130i \(-0.603968\pi\)
−0.320850 + 0.947130i \(0.603968\pi\)
\(752\) 0 0
\(753\) −18029.8 −0.872566
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16163.8 0.776066 0.388033 0.921645i \(-0.373155\pi\)
0.388033 + 0.921645i \(0.373155\pi\)
\(758\) 0 0
\(759\) −4740.89 −0.226724
\(760\) 0 0
\(761\) −2172.37 −0.103480 −0.0517400 0.998661i \(-0.516477\pi\)
−0.0517400 + 0.998661i \(0.516477\pi\)
\(762\) 0 0
\(763\) 8134.27 0.385951
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18264.9 −0.859855
\(768\) 0 0
\(769\) 35993.9 1.68787 0.843935 0.536446i \(-0.180233\pi\)
0.843935 + 0.536446i \(0.180233\pi\)
\(770\) 0 0
\(771\) −10915.6 −0.509878
\(772\) 0 0
\(773\) −12656.4 −0.588900 −0.294450 0.955667i \(-0.595136\pi\)
−0.294450 + 0.955667i \(0.595136\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1145.16 −0.0528731
\(778\) 0 0
\(779\) −5380.49 −0.247466
\(780\) 0 0
\(781\) 18202.1 0.833960
\(782\) 0 0
\(783\) −464.375 −0.0211946
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36055.0 1.63306 0.816532 0.577300i \(-0.195894\pi\)
0.816532 + 0.577300i \(0.195894\pi\)
\(788\) 0 0
\(789\) −14838.1 −0.669521
\(790\) 0 0
\(791\) −13978.0 −0.628320
\(792\) 0 0
\(793\) 8038.17 0.359954
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5228.07 −0.232356 −0.116178 0.993228i \(-0.537064\pi\)
−0.116178 + 0.993228i \(0.537064\pi\)
\(798\) 0 0
\(799\) −1402.11 −0.0620813
\(800\) 0 0
\(801\) 41.6831 0.00183870
\(802\) 0 0
\(803\) −7171.58 −0.315167
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9243.03 −0.403185
\(808\) 0 0
\(809\) 19721.0 0.857051 0.428525 0.903530i \(-0.359033\pi\)
0.428525 + 0.903530i \(0.359033\pi\)
\(810\) 0 0
\(811\) −16305.2 −0.705984 −0.352992 0.935626i \(-0.614836\pi\)
−0.352992 + 0.935626i \(0.614836\pi\)
\(812\) 0 0
\(813\) −23744.3 −1.02429
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3373.61 −0.144465
\(818\) 0 0
\(819\) −1973.71 −0.0842088
\(820\) 0 0
\(821\) −42456.1 −1.80478 −0.902392 0.430916i \(-0.858190\pi\)
−0.902392 + 0.430916i \(0.858190\pi\)
\(822\) 0 0
\(823\) 18745.3 0.793948 0.396974 0.917830i \(-0.370060\pi\)
0.396974 + 0.917830i \(0.370060\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31886.6 1.34076 0.670379 0.742019i \(-0.266132\pi\)
0.670379 + 0.742019i \(0.266132\pi\)
\(828\) 0 0
\(829\) −16850.5 −0.705962 −0.352981 0.935631i \(-0.614832\pi\)
−0.352981 + 0.935631i \(0.614832\pi\)
\(830\) 0 0
\(831\) −10678.7 −0.445778
\(832\) 0 0
\(833\) −2717.89 −0.113048
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2024.01 0.0835844
\(838\) 0 0
\(839\) 4400.11 0.181059 0.0905296 0.995894i \(-0.471144\pi\)
0.0905296 + 0.995894i \(0.471144\pi\)
\(840\) 0 0
\(841\) −24093.2 −0.987871
\(842\) 0 0
\(843\) −6075.76 −0.248233
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −4538.66 −0.184121
\(848\) 0 0
\(849\) −9934.30 −0.401584
\(850\) 0 0
\(851\) −3428.95 −0.138123
\(852\) 0 0
\(853\) 37149.8 1.49119 0.745596 0.666398i \(-0.232165\pi\)
0.745596 + 0.666398i \(0.232165\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1242.70 0.0495332 0.0247666 0.999693i \(-0.492116\pi\)
0.0247666 + 0.999693i \(0.492116\pi\)
\(858\) 0 0
\(859\) 19076.5 0.757721 0.378860 0.925454i \(-0.376316\pi\)
0.378860 + 0.925454i \(0.376316\pi\)
\(860\) 0 0
\(861\) 1108.79 0.0438877
\(862\) 0 0
\(863\) 3400.46 0.134129 0.0670644 0.997749i \(-0.478637\pi\)
0.0670644 + 0.997749i \(0.478637\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14486.9 0.567475
\(868\) 0 0
\(869\) −29355.0 −1.14591
\(870\) 0 0
\(871\) −31759.0 −1.23549
\(872\) 0 0
\(873\) −13132.6 −0.509130
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −24717.7 −0.951719 −0.475860 0.879521i \(-0.657863\pi\)
−0.475860 + 0.879521i \(0.657863\pi\)
\(878\) 0 0
\(879\) 5207.10 0.199808
\(880\) 0 0
\(881\) 45748.4 1.74949 0.874746 0.484582i \(-0.161028\pi\)
0.874746 + 0.484582i \(0.161028\pi\)
\(882\) 0 0
\(883\) −48052.1 −1.83135 −0.915676 0.401918i \(-0.868344\pi\)
−0.915676 + 0.401918i \(0.868344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −29794.4 −1.12785 −0.563923 0.825828i \(-0.690708\pi\)
−0.563923 + 0.825828i \(0.690708\pi\)
\(888\) 0 0
\(889\) −11740.6 −0.442933
\(890\) 0 0
\(891\) −2089.53 −0.0785655
\(892\) 0 0
\(893\) −15185.1 −0.569038
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −5909.87 −0.219983
\(898\) 0 0
\(899\) −1289.30 −0.0478316
\(900\) 0 0
\(901\) −245.019 −0.00905967
\(902\) 0 0
\(903\) 695.217 0.0256206
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 43880.6 1.60643 0.803214 0.595690i \(-0.203121\pi\)
0.803214 + 0.595690i \(0.203121\pi\)
\(908\) 0 0
\(909\) 12810.2 0.467422
\(910\) 0 0
\(911\) −43185.1 −1.57057 −0.785284 0.619136i \(-0.787483\pi\)
−0.785284 + 0.619136i \(0.787483\pi\)
\(912\) 0 0
\(913\) 27293.7 0.989364
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14080.6 0.507070
\(918\) 0 0
\(919\) 14712.4 0.528093 0.264047 0.964510i \(-0.414943\pi\)
0.264047 + 0.964510i \(0.414943\pi\)
\(920\) 0 0
\(921\) −16333.6 −0.584377
\(922\) 0 0
\(923\) 22690.3 0.809166
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 5583.60 0.197831
\(928\) 0 0
\(929\) −10082.0 −0.356061 −0.178031 0.984025i \(-0.556973\pi\)
−0.178031 + 0.984025i \(0.556973\pi\)
\(930\) 0 0
\(931\) −29435.4 −1.03620
\(932\) 0 0
\(933\) −8620.07 −0.302474
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 26665.2 0.929686 0.464843 0.885393i \(-0.346111\pi\)
0.464843 + 0.885393i \(0.346111\pi\)
\(938\) 0 0
\(939\) −18032.0 −0.626681
\(940\) 0 0
\(941\) −14181.1 −0.491277 −0.245639 0.969361i \(-0.578998\pi\)
−0.245639 + 0.969361i \(0.578998\pi\)
\(942\) 0 0
\(943\) 3320.03 0.114650
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33047.2 1.13399 0.566995 0.823721i \(-0.308106\pi\)
0.566995 + 0.823721i \(0.308106\pi\)
\(948\) 0 0
\(949\) −8939.90 −0.305797
\(950\) 0 0
\(951\) −23649.3 −0.806395
\(952\) 0 0
\(953\) −30618.0 −1.04073 −0.520365 0.853944i \(-0.674204\pi\)
−0.520365 + 0.853944i \(0.674204\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1331.04 0.0449595
\(958\) 0 0
\(959\) 14299.7 0.481503
\(960\) 0 0
\(961\) −24171.5 −0.811368
\(962\) 0 0
\(963\) 6892.52 0.230642
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −31993.1 −1.06394 −0.531969 0.846764i \(-0.678548\pi\)
−0.531969 + 0.846764i \(0.678548\pi\)
\(968\) 0 0
\(969\) −2730.20 −0.0905124
\(970\) 0 0
\(971\) −39141.8 −1.29364 −0.646818 0.762644i \(-0.723901\pi\)
−0.646818 + 0.762644i \(0.723901\pi\)
\(972\) 0 0
\(973\) −3093.18 −0.101914
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 246.261 0.00806407 0.00403204 0.999992i \(-0.498717\pi\)
0.00403204 + 0.999992i \(0.498717\pi\)
\(978\) 0 0
\(979\) −119.476 −0.00390038
\(980\) 0 0
\(981\) 10735.0 0.349380
\(982\) 0 0
\(983\) −602.142 −0.0195375 −0.00976874 0.999952i \(-0.503110\pi\)
−0.00976874 + 0.999952i \(0.503110\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3129.27 0.100918
\(988\) 0 0
\(989\) 2081.69 0.0669300
\(990\) 0 0
\(991\) −15764.3 −0.505318 −0.252659 0.967555i \(-0.581305\pi\)
−0.252659 + 0.967555i \(0.581305\pi\)
\(992\) 0 0
\(993\) −4909.73 −0.156904
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33598.4 1.06728 0.533638 0.845713i \(-0.320825\pi\)
0.533638 + 0.845713i \(0.320825\pi\)
\(998\) 0 0
\(999\) −1511.30 −0.0478632
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bf.1.3 3
4.3 odd 2 2400.4.a.bw.1.1 3
5.2 odd 4 480.4.f.e.289.6 yes 6
5.3 odd 4 480.4.f.e.289.3 yes 6
5.4 even 2 2400.4.a.bx.1.1 3
15.2 even 4 1440.4.f.i.289.1 6
15.8 even 4 1440.4.f.i.289.2 6
20.3 even 4 480.4.f.d.289.6 yes 6
20.7 even 4 480.4.f.d.289.3 6
20.19 odd 2 2400.4.a.be.1.3 3
40.3 even 4 960.4.f.s.769.1 6
40.13 odd 4 960.4.f.r.769.4 6
40.27 even 4 960.4.f.s.769.4 6
40.37 odd 4 960.4.f.r.769.1 6
60.23 odd 4 1440.4.f.j.289.2 6
60.47 odd 4 1440.4.f.j.289.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.d.289.3 6 20.7 even 4
480.4.f.d.289.6 yes 6 20.3 even 4
480.4.f.e.289.3 yes 6 5.3 odd 4
480.4.f.e.289.6 yes 6 5.2 odd 4
960.4.f.r.769.1 6 40.37 odd 4
960.4.f.r.769.4 6 40.13 odd 4
960.4.f.s.769.1 6 40.3 even 4
960.4.f.s.769.4 6 40.27 even 4
1440.4.f.i.289.1 6 15.2 even 4
1440.4.f.i.289.2 6 15.8 even 4
1440.4.f.j.289.1 6 60.47 odd 4
1440.4.f.j.289.2 6 60.23 odd 4
2400.4.a.be.1.3 3 20.19 odd 2
2400.4.a.bf.1.3 3 1.1 even 1 trivial
2400.4.a.bw.1.1 3 4.3 odd 2
2400.4.a.bx.1.1 3 5.4 even 2