Properties

Label 2400.4.a.bd.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{89}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.21699\) of defining polynomial
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +22.0000 q^{7} +9.00000 q^{9} -18.8680 q^{11} -18.8680 q^{13} -132.076 q^{17} -113.208 q^{19} +66.0000 q^{21} +160.000 q^{23} +27.0000 q^{27} +128.000 q^{29} +75.4718 q^{31} -56.6039 q^{33} +18.8680 q^{37} -56.6039 q^{39} -358.000 q^{41} +172.000 q^{43} -4.00000 q^{47} +141.000 q^{49} -396.227 q^{51} +660.379 q^{53} -339.623 q^{57} +735.851 q^{59} -14.0000 q^{61} +198.000 q^{63} +848.000 q^{67} +480.000 q^{69} +641.511 q^{71} +1169.81 q^{73} -415.095 q^{77} -75.4718 q^{79} +81.0000 q^{81} +596.000 q^{83} +384.000 q^{87} +750.000 q^{89} -415.095 q^{91} +226.416 q^{93} -528.303 q^{97} -169.812 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 44 q^{7} + 18 q^{9} + 132 q^{21} + 320 q^{23} + 54 q^{27} + 256 q^{29} - 716 q^{41} + 344 q^{43} - 8 q^{47} + 282 q^{49} - 28 q^{61} + 396 q^{63} + 1696 q^{67} + 960 q^{69} + 162 q^{81}+ \cdots + 1500 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 22.0000 1.18789 0.593944 0.804506i \(-0.297570\pi\)
0.593944 + 0.804506i \(0.297570\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −18.8680 −0.517173 −0.258587 0.965988i \(-0.583257\pi\)
−0.258587 + 0.965988i \(0.583257\pi\)
\(12\) 0 0
\(13\) −18.8680 −0.402541 −0.201270 0.979536i \(-0.564507\pi\)
−0.201270 + 0.979536i \(0.564507\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −132.076 −1.88430 −0.942149 0.335194i \(-0.891198\pi\)
−0.942149 + 0.335194i \(0.891198\pi\)
\(18\) 0 0
\(19\) −113.208 −1.36693 −0.683464 0.729984i \(-0.739528\pi\)
−0.683464 + 0.729984i \(0.739528\pi\)
\(20\) 0 0
\(21\) 66.0000 0.685828
\(22\) 0 0
\(23\) 160.000 1.45054 0.725268 0.688467i \(-0.241716\pi\)
0.725268 + 0.688467i \(0.241716\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 128.000 0.819621 0.409810 0.912171i \(-0.365595\pi\)
0.409810 + 0.912171i \(0.365595\pi\)
\(30\) 0 0
\(31\) 75.4718 0.437263 0.218631 0.975808i \(-0.429841\pi\)
0.218631 + 0.975808i \(0.429841\pi\)
\(32\) 0 0
\(33\) −56.6039 −0.298590
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 18.8680 0.0838344 0.0419172 0.999121i \(-0.486653\pi\)
0.0419172 + 0.999121i \(0.486653\pi\)
\(38\) 0 0
\(39\) −56.6039 −0.232407
\(40\) 0 0
\(41\) −358.000 −1.36366 −0.681832 0.731509i \(-0.738816\pi\)
−0.681832 + 0.731509i \(0.738816\pi\)
\(42\) 0 0
\(43\) 172.000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.0124140 −0.00620702 0.999981i \(-0.501976\pi\)
−0.00620702 + 0.999981i \(0.501976\pi\)
\(48\) 0 0
\(49\) 141.000 0.411079
\(50\) 0 0
\(51\) −396.227 −1.08790
\(52\) 0 0
\(53\) 660.379 1.71151 0.855755 0.517382i \(-0.173093\pi\)
0.855755 + 0.517382i \(0.173093\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −339.623 −0.789197
\(58\) 0 0
\(59\) 735.851 1.62372 0.811861 0.583851i \(-0.198455\pi\)
0.811861 + 0.583851i \(0.198455\pi\)
\(60\) 0 0
\(61\) −14.0000 −0.0293855 −0.0146928 0.999892i \(-0.504677\pi\)
−0.0146928 + 0.999892i \(0.504677\pi\)
\(62\) 0 0
\(63\) 198.000 0.395963
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 848.000 1.54626 0.773132 0.634245i \(-0.218689\pi\)
0.773132 + 0.634245i \(0.218689\pi\)
\(68\) 0 0
\(69\) 480.000 0.837467
\(70\) 0 0
\(71\) 641.511 1.07230 0.536150 0.844123i \(-0.319878\pi\)
0.536150 + 0.844123i \(0.319878\pi\)
\(72\) 0 0
\(73\) 1169.81 1.87557 0.937783 0.347222i \(-0.112875\pi\)
0.937783 + 0.347222i \(0.112875\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −415.095 −0.614344
\(78\) 0 0
\(79\) −75.4718 −0.107484 −0.0537421 0.998555i \(-0.517115\pi\)
−0.0537421 + 0.998555i \(0.517115\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 596.000 0.788187 0.394093 0.919070i \(-0.371059\pi\)
0.394093 + 0.919070i \(0.371059\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 384.000 0.473208
\(88\) 0 0
\(89\) 750.000 0.893257 0.446628 0.894720i \(-0.352625\pi\)
0.446628 + 0.894720i \(0.352625\pi\)
\(90\) 0 0
\(91\) −415.095 −0.478174
\(92\) 0 0
\(93\) 226.416 0.252454
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −528.303 −0.553000 −0.276500 0.961014i \(-0.589175\pi\)
−0.276500 + 0.961014i \(0.589175\pi\)
\(98\) 0 0
\(99\) −169.812 −0.172391
\(100\) 0 0
\(101\) 1224.00 1.20587 0.602933 0.797792i \(-0.293998\pi\)
0.602933 + 0.797792i \(0.293998\pi\)
\(102\) 0 0
\(103\) 14.0000 0.0133928 0.00669641 0.999978i \(-0.497868\pi\)
0.00669641 + 0.999978i \(0.497868\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 852.000 0.769775 0.384888 0.922963i \(-0.374240\pi\)
0.384888 + 0.922963i \(0.374240\pi\)
\(108\) 0 0
\(109\) −1094.00 −0.961341 −0.480671 0.876901i \(-0.659607\pi\)
−0.480671 + 0.876901i \(0.659607\pi\)
\(110\) 0 0
\(111\) 56.6039 0.0484018
\(112\) 0 0
\(113\) −547.171 −0.455518 −0.227759 0.973718i \(-0.573140\pi\)
−0.227759 + 0.973718i \(0.573140\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −169.812 −0.134180
\(118\) 0 0
\(119\) −2905.67 −2.23834
\(120\) 0 0
\(121\) −975.000 −0.732532
\(122\) 0 0
\(123\) −1074.00 −0.787312
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1010.00 −0.705693 −0.352846 0.935681i \(-0.614786\pi\)
−0.352846 + 0.935681i \(0.614786\pi\)
\(128\) 0 0
\(129\) 516.000 0.352180
\(130\) 0 0
\(131\) 924.530 0.616615 0.308308 0.951287i \(-0.400237\pi\)
0.308308 + 0.951287i \(0.400237\pi\)
\(132\) 0 0
\(133\) −2490.57 −1.62376
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 584.907 0.364759 0.182379 0.983228i \(-0.441620\pi\)
0.182379 + 0.983228i \(0.441620\pi\)
\(138\) 0 0
\(139\) 2641.51 1.61187 0.805937 0.592002i \(-0.201662\pi\)
0.805937 + 0.592002i \(0.201662\pi\)
\(140\) 0 0
\(141\) −12.0000 −0.00716725
\(142\) 0 0
\(143\) 356.000 0.208183
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 423.000 0.237336
\(148\) 0 0
\(149\) 1452.00 0.798339 0.399169 0.916877i \(-0.369299\pi\)
0.399169 + 0.916877i \(0.369299\pi\)
\(150\) 0 0
\(151\) −528.303 −0.284720 −0.142360 0.989815i \(-0.545469\pi\)
−0.142360 + 0.989815i \(0.545469\pi\)
\(152\) 0 0
\(153\) −1188.68 −0.628099
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −849.058 −0.431607 −0.215803 0.976437i \(-0.569237\pi\)
−0.215803 + 0.976437i \(0.569237\pi\)
\(158\) 0 0
\(159\) 1981.14 0.988140
\(160\) 0 0
\(161\) 3520.00 1.72307
\(162\) 0 0
\(163\) −3432.00 −1.64917 −0.824586 0.565737i \(-0.808592\pi\)
−0.824586 + 0.565737i \(0.808592\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2664.00 −1.23441 −0.617205 0.786802i \(-0.711735\pi\)
−0.617205 + 0.786802i \(0.711735\pi\)
\(168\) 0 0
\(169\) −1841.00 −0.837961
\(170\) 0 0
\(171\) −1018.87 −0.455643
\(172\) 0 0
\(173\) 1830.19 0.804318 0.402159 0.915570i \(-0.368260\pi\)
0.402159 + 0.915570i \(0.368260\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2207.55 0.937456
\(178\) 0 0
\(179\) −3264.16 −1.36299 −0.681493 0.731824i \(-0.738669\pi\)
−0.681493 + 0.731824i \(0.738669\pi\)
\(180\) 0 0
\(181\) 3570.00 1.46606 0.733028 0.680199i \(-0.238107\pi\)
0.733028 + 0.680199i \(0.238107\pi\)
\(182\) 0 0
\(183\) −42.0000 −0.0169657
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2492.00 0.974508
\(188\) 0 0
\(189\) 594.000 0.228609
\(190\) 0 0
\(191\) 3207.55 1.21513 0.607567 0.794269i \(-0.292146\pi\)
0.607567 + 0.794269i \(0.292146\pi\)
\(192\) 0 0
\(193\) 264.151 0.0985183 0.0492592 0.998786i \(-0.484314\pi\)
0.0492592 + 0.998786i \(0.484314\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2471.70 0.893917 0.446958 0.894555i \(-0.352507\pi\)
0.446958 + 0.894555i \(0.352507\pi\)
\(198\) 0 0
\(199\) 679.247 0.241962 0.120981 0.992655i \(-0.461396\pi\)
0.120981 + 0.992655i \(0.461396\pi\)
\(200\) 0 0
\(201\) 2544.00 0.892736
\(202\) 0 0
\(203\) 2816.00 0.973618
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1440.00 0.483512
\(208\) 0 0
\(209\) 2136.00 0.706939
\(210\) 0 0
\(211\) −3396.23 −1.10809 −0.554043 0.832488i \(-0.686916\pi\)
−0.554043 + 0.832488i \(0.686916\pi\)
\(212\) 0 0
\(213\) 1924.53 0.619093
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1660.38 0.519419
\(218\) 0 0
\(219\) 3509.44 1.08286
\(220\) 0 0
\(221\) 2492.00 0.758507
\(222\) 0 0
\(223\) 318.000 0.0954926 0.0477463 0.998859i \(-0.484796\pi\)
0.0477463 + 0.998859i \(0.484796\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 204.000 0.0596474 0.0298237 0.999555i \(-0.490505\pi\)
0.0298237 + 0.999555i \(0.490505\pi\)
\(228\) 0 0
\(229\) −3450.00 −0.995556 −0.497778 0.867304i \(-0.665851\pi\)
−0.497778 + 0.867304i \(0.665851\pi\)
\(230\) 0 0
\(231\) −1245.29 −0.354692
\(232\) 0 0
\(233\) −3452.84 −0.970828 −0.485414 0.874284i \(-0.661331\pi\)
−0.485414 + 0.874284i \(0.661331\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −226.416 −0.0620560
\(238\) 0 0
\(239\) −3207.55 −0.868115 −0.434057 0.900885i \(-0.642918\pi\)
−0.434057 + 0.900885i \(0.642918\pi\)
\(240\) 0 0
\(241\) 6806.00 1.81914 0.909571 0.415550i \(-0.136411\pi\)
0.909571 + 0.415550i \(0.136411\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2136.00 0.550245
\(248\) 0 0
\(249\) 1788.00 0.455060
\(250\) 0 0
\(251\) −2018.87 −0.507690 −0.253845 0.967245i \(-0.581695\pi\)
−0.253845 + 0.967245i \(0.581695\pi\)
\(252\) 0 0
\(253\) −3018.87 −0.750178
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 735.851 0.178603 0.0893017 0.996005i \(-0.471536\pi\)
0.0893017 + 0.996005i \(0.471536\pi\)
\(258\) 0 0
\(259\) 415.095 0.0995859
\(260\) 0 0
\(261\) 1152.00 0.273207
\(262\) 0 0
\(263\) −1072.00 −0.251340 −0.125670 0.992072i \(-0.540108\pi\)
−0.125670 + 0.992072i \(0.540108\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2250.00 0.515722
\(268\) 0 0
\(269\) −2368.00 −0.536727 −0.268363 0.963318i \(-0.586483\pi\)
−0.268363 + 0.963318i \(0.586483\pi\)
\(270\) 0 0
\(271\) 1358.49 0.304511 0.152256 0.988341i \(-0.451346\pi\)
0.152256 + 0.988341i \(0.451346\pi\)
\(272\) 0 0
\(273\) −1245.29 −0.276074
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6962.28 1.51019 0.755095 0.655615i \(-0.227591\pi\)
0.755095 + 0.655615i \(0.227591\pi\)
\(278\) 0 0
\(279\) 679.247 0.145754
\(280\) 0 0
\(281\) 6894.00 1.46356 0.731782 0.681539i \(-0.238689\pi\)
0.731782 + 0.681539i \(0.238689\pi\)
\(282\) 0 0
\(283\) −2456.00 −0.515880 −0.257940 0.966161i \(-0.583044\pi\)
−0.257940 + 0.966161i \(0.583044\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7876.00 −1.61988
\(288\) 0 0
\(289\) 12531.0 2.55058
\(290\) 0 0
\(291\) −1584.91 −0.319275
\(292\) 0 0
\(293\) −9301.91 −1.85469 −0.927343 0.374212i \(-0.877913\pi\)
−0.927343 + 0.374212i \(0.877913\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −509.435 −0.0995300
\(298\) 0 0
\(299\) −3018.87 −0.583900
\(300\) 0 0
\(301\) 3784.00 0.724605
\(302\) 0 0
\(303\) 3672.00 0.696208
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4964.00 −0.922835 −0.461418 0.887183i \(-0.652659\pi\)
−0.461418 + 0.887183i \(0.652659\pi\)
\(308\) 0 0
\(309\) 42.0000 0.00773235
\(310\) 0 0
\(311\) 5018.88 0.915095 0.457547 0.889185i \(-0.348728\pi\)
0.457547 + 0.889185i \(0.348728\pi\)
\(312\) 0 0
\(313\) 2830.19 0.511093 0.255546 0.966797i \(-0.417745\pi\)
0.255546 + 0.966797i \(0.417745\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3000.01 −0.531537 −0.265768 0.964037i \(-0.585626\pi\)
−0.265768 + 0.964037i \(0.585626\pi\)
\(318\) 0 0
\(319\) −2415.10 −0.423886
\(320\) 0 0
\(321\) 2556.00 0.444430
\(322\) 0 0
\(323\) 14952.0 2.57570
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3282.00 −0.555031
\(328\) 0 0
\(329\) −88.0000 −0.0147465
\(330\) 0 0
\(331\) 6000.01 0.996346 0.498173 0.867078i \(-0.334004\pi\)
0.498173 + 0.867078i \(0.334004\pi\)
\(332\) 0 0
\(333\) 169.812 0.0279448
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8415.11 −1.36024 −0.680119 0.733102i \(-0.738072\pi\)
−0.680119 + 0.733102i \(0.738072\pi\)
\(338\) 0 0
\(339\) −1641.51 −0.262993
\(340\) 0 0
\(341\) −1424.00 −0.226141
\(342\) 0 0
\(343\) −4444.00 −0.699573
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7500.00 1.16029 0.580146 0.814513i \(-0.302996\pi\)
0.580146 + 0.814513i \(0.302996\pi\)
\(348\) 0 0
\(349\) −1814.00 −0.278227 −0.139113 0.990276i \(-0.544425\pi\)
−0.139113 + 0.990276i \(0.544425\pi\)
\(350\) 0 0
\(351\) −509.435 −0.0774690
\(352\) 0 0
\(353\) 5905.67 0.890445 0.445223 0.895420i \(-0.353125\pi\)
0.445223 + 0.895420i \(0.353125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −8717.00 −1.29230
\(358\) 0 0
\(359\) 13283.0 1.95279 0.976396 0.215988i \(-0.0692972\pi\)
0.976396 + 0.215988i \(0.0692972\pi\)
\(360\) 0 0
\(361\) 5957.00 0.868494
\(362\) 0 0
\(363\) −2925.00 −0.422928
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6834.00 −0.972022 −0.486011 0.873953i \(-0.661548\pi\)
−0.486011 + 0.873953i \(0.661548\pi\)
\(368\) 0 0
\(369\) −3222.00 −0.454555
\(370\) 0 0
\(371\) 14528.3 2.03308
\(372\) 0 0
\(373\) 11377.4 1.57935 0.789676 0.613524i \(-0.210249\pi\)
0.789676 + 0.613524i \(0.210249\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2415.10 −0.329931
\(378\) 0 0
\(379\) −1358.49 −0.184119 −0.0920595 0.995754i \(-0.529345\pi\)
−0.0920595 + 0.995754i \(0.529345\pi\)
\(380\) 0 0
\(381\) −3030.00 −0.407432
\(382\) 0 0
\(383\) −4644.00 −0.619575 −0.309788 0.950806i \(-0.600258\pi\)
−0.309788 + 0.950806i \(0.600258\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1548.00 0.203331
\(388\) 0 0
\(389\) 8820.00 1.14959 0.574797 0.818296i \(-0.305081\pi\)
0.574797 + 0.818296i \(0.305081\pi\)
\(390\) 0 0
\(391\) −21132.1 −2.73324
\(392\) 0 0
\(393\) 2773.59 0.356003
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6584.92 0.832462 0.416231 0.909259i \(-0.363351\pi\)
0.416231 + 0.909259i \(0.363351\pi\)
\(398\) 0 0
\(399\) −7471.71 −0.937477
\(400\) 0 0
\(401\) 8030.00 0.999998 0.499999 0.866026i \(-0.333334\pi\)
0.499999 + 0.866026i \(0.333334\pi\)
\(402\) 0 0
\(403\) −1424.00 −0.176016
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −356.000 −0.0433569
\(408\) 0 0
\(409\) 7670.00 0.927279 0.463639 0.886024i \(-0.346543\pi\)
0.463639 + 0.886024i \(0.346543\pi\)
\(410\) 0 0
\(411\) 1754.72 0.210594
\(412\) 0 0
\(413\) 16188.7 1.92880
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7924.54 0.930615
\(418\) 0 0
\(419\) 1226.42 0.142994 0.0714969 0.997441i \(-0.477222\pi\)
0.0714969 + 0.997441i \(0.477222\pi\)
\(420\) 0 0
\(421\) 6038.00 0.698988 0.349494 0.936939i \(-0.386353\pi\)
0.349494 + 0.936939i \(0.386353\pi\)
\(422\) 0 0
\(423\) −36.0000 −0.00413801
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −308.000 −0.0349067
\(428\) 0 0
\(429\) 1068.00 0.120195
\(430\) 0 0
\(431\) −12377.4 −1.38329 −0.691645 0.722238i \(-0.743113\pi\)
−0.691645 + 0.722238i \(0.743113\pi\)
\(432\) 0 0
\(433\) 3735.86 0.414628 0.207314 0.978274i \(-0.433528\pi\)
0.207314 + 0.978274i \(0.433528\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18113.2 −1.98278
\(438\) 0 0
\(439\) 10339.6 1.12411 0.562055 0.827100i \(-0.310011\pi\)
0.562055 + 0.827100i \(0.310011\pi\)
\(440\) 0 0
\(441\) 1269.00 0.137026
\(442\) 0 0
\(443\) −3156.00 −0.338479 −0.169239 0.985575i \(-0.554131\pi\)
−0.169239 + 0.985575i \(0.554131\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4356.00 0.460921
\(448\) 0 0
\(449\) 2830.00 0.297452 0.148726 0.988878i \(-0.452483\pi\)
0.148726 + 0.988878i \(0.452483\pi\)
\(450\) 0 0
\(451\) 6754.73 0.705250
\(452\) 0 0
\(453\) −1584.91 −0.164383
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12226.4 −1.25149 −0.625743 0.780030i \(-0.715204\pi\)
−0.625743 + 0.780030i \(0.715204\pi\)
\(458\) 0 0
\(459\) −3566.04 −0.362633
\(460\) 0 0
\(461\) 13724.0 1.38653 0.693265 0.720683i \(-0.256172\pi\)
0.693265 + 0.720683i \(0.256172\pi\)
\(462\) 0 0
\(463\) −19110.0 −1.91818 −0.959090 0.283103i \(-0.908636\pi\)
−0.959090 + 0.283103i \(0.908636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1524.00 −0.151011 −0.0755057 0.997145i \(-0.524057\pi\)
−0.0755057 + 0.997145i \(0.524057\pi\)
\(468\) 0 0
\(469\) 18656.0 1.83679
\(470\) 0 0
\(471\) −2547.17 −0.249188
\(472\) 0 0
\(473\) −3245.29 −0.315473
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5943.41 0.570503
\(478\) 0 0
\(479\) −4264.16 −0.406752 −0.203376 0.979101i \(-0.565191\pi\)
−0.203376 + 0.979101i \(0.565191\pi\)
\(480\) 0 0
\(481\) −356.000 −0.0337468
\(482\) 0 0
\(483\) 10560.0 0.994817
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −15838.0 −1.47369 −0.736846 0.676060i \(-0.763686\pi\)
−0.736846 + 0.676060i \(0.763686\pi\)
\(488\) 0 0
\(489\) −10296.0 −0.952150
\(490\) 0 0
\(491\) −15603.8 −1.43420 −0.717098 0.696973i \(-0.754530\pi\)
−0.717098 + 0.696973i \(0.754530\pi\)
\(492\) 0 0
\(493\) −16905.7 −1.54441
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14113.2 1.27377
\(498\) 0 0
\(499\) −14301.9 −1.28305 −0.641525 0.767102i \(-0.721698\pi\)
−0.641525 + 0.767102i \(0.721698\pi\)
\(500\) 0 0
\(501\) −7992.00 −0.712687
\(502\) 0 0
\(503\) −19140.0 −1.69664 −0.848320 0.529483i \(-0.822386\pi\)
−0.848320 + 0.529483i \(0.822386\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5523.00 −0.483797
\(508\) 0 0
\(509\) 3072.00 0.267513 0.133756 0.991014i \(-0.457296\pi\)
0.133756 + 0.991014i \(0.457296\pi\)
\(510\) 0 0
\(511\) 25735.9 2.22796
\(512\) 0 0
\(513\) −3056.61 −0.263066
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 75.4718 0.00642021
\(518\) 0 0
\(519\) 5490.58 0.464373
\(520\) 0 0
\(521\) −11850.0 −0.996464 −0.498232 0.867044i \(-0.666017\pi\)
−0.498232 + 0.867044i \(0.666017\pi\)
\(522\) 0 0
\(523\) −5256.00 −0.439443 −0.219722 0.975563i \(-0.570515\pi\)
−0.219722 + 0.975563i \(0.570515\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9968.00 −0.823933
\(528\) 0 0
\(529\) 13433.0 1.10405
\(530\) 0 0
\(531\) 6622.65 0.541241
\(532\) 0 0
\(533\) 6754.73 0.548930
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −9792.47 −0.786921
\(538\) 0 0
\(539\) −2660.38 −0.212599
\(540\) 0 0
\(541\) 19898.0 1.58130 0.790649 0.612270i \(-0.209743\pi\)
0.790649 + 0.612270i \(0.209743\pi\)
\(542\) 0 0
\(543\) 10710.0 0.846427
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11844.0 0.925800 0.462900 0.886410i \(-0.346809\pi\)
0.462900 + 0.886410i \(0.346809\pi\)
\(548\) 0 0
\(549\) −126.000 −0.00979517
\(550\) 0 0
\(551\) −14490.6 −1.12036
\(552\) 0 0
\(553\) −1660.38 −0.127679
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9641.53 0.733437 0.366719 0.930332i \(-0.380481\pi\)
0.366719 + 0.930332i \(0.380481\pi\)
\(558\) 0 0
\(559\) −3245.29 −0.245548
\(560\) 0 0
\(561\) 7476.00 0.562633
\(562\) 0 0
\(563\) 8596.00 0.643478 0.321739 0.946828i \(-0.395733\pi\)
0.321739 + 0.946828i \(0.395733\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1782.00 0.131988
\(568\) 0 0
\(569\) −15234.0 −1.12239 −0.561197 0.827682i \(-0.689659\pi\)
−0.561197 + 0.827682i \(0.689659\pi\)
\(570\) 0 0
\(571\) −14830.2 −1.08691 −0.543455 0.839438i \(-0.682884\pi\)
−0.543455 + 0.839438i \(0.682884\pi\)
\(572\) 0 0
\(573\) 9622.66 0.701557
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −15547.2 −1.12173 −0.560865 0.827907i \(-0.689531\pi\)
−0.560865 + 0.827907i \(0.689531\pi\)
\(578\) 0 0
\(579\) 792.454 0.0568796
\(580\) 0 0
\(581\) 13112.0 0.936278
\(582\) 0 0
\(583\) −12460.0 −0.885147
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25908.0 1.82170 0.910850 0.412738i \(-0.135428\pi\)
0.910850 + 0.412738i \(0.135428\pi\)
\(588\) 0 0
\(589\) −8544.00 −0.597707
\(590\) 0 0
\(591\) 7415.11 0.516103
\(592\) 0 0
\(593\) −14434.0 −0.999550 −0.499775 0.866155i \(-0.666584\pi\)
−0.499775 + 0.866155i \(0.666584\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2037.74 0.139697
\(598\) 0 0
\(599\) 12377.4 0.844284 0.422142 0.906530i \(-0.361278\pi\)
0.422142 + 0.906530i \(0.361278\pi\)
\(600\) 0 0
\(601\) −3630.00 −0.246374 −0.123187 0.992383i \(-0.539312\pi\)
−0.123187 + 0.992383i \(0.539312\pi\)
\(602\) 0 0
\(603\) 7632.00 0.515421
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19710.0 −1.31796 −0.658982 0.752159i \(-0.729013\pi\)
−0.658982 + 0.752159i \(0.729013\pi\)
\(608\) 0 0
\(609\) 8448.00 0.562119
\(610\) 0 0
\(611\) 75.4718 0.00499716
\(612\) 0 0
\(613\) −8283.04 −0.545756 −0.272878 0.962049i \(-0.587976\pi\)
−0.272878 + 0.962049i \(0.587976\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14509.5 0.946724 0.473362 0.880868i \(-0.343040\pi\)
0.473362 + 0.880868i \(0.343040\pi\)
\(618\) 0 0
\(619\) 12226.4 0.793897 0.396948 0.917841i \(-0.370069\pi\)
0.396948 + 0.917841i \(0.370069\pi\)
\(620\) 0 0
\(621\) 4320.00 0.279156
\(622\) 0 0
\(623\) 16500.0 1.06109
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6408.00 0.408151
\(628\) 0 0
\(629\) −2492.00 −0.157969
\(630\) 0 0
\(631\) 29811.4 1.88078 0.940390 0.340098i \(-0.110460\pi\)
0.940390 + 0.340098i \(0.110460\pi\)
\(632\) 0 0
\(633\) −10188.7 −0.639754
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2660.38 −0.165476
\(638\) 0 0
\(639\) 5773.60 0.357433
\(640\) 0 0
\(641\) 2690.00 0.165754 0.0828772 0.996560i \(-0.473589\pi\)
0.0828772 + 0.996560i \(0.473589\pi\)
\(642\) 0 0
\(643\) 1216.00 0.0745791 0.0372895 0.999305i \(-0.488128\pi\)
0.0372895 + 0.999305i \(0.488128\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22396.0 1.36086 0.680431 0.732812i \(-0.261793\pi\)
0.680431 + 0.732812i \(0.261793\pi\)
\(648\) 0 0
\(649\) −13884.0 −0.839745
\(650\) 0 0
\(651\) 4981.14 0.299887
\(652\) 0 0
\(653\) −11226.4 −0.672779 −0.336389 0.941723i \(-0.609206\pi\)
−0.336389 + 0.941723i \(0.609206\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10528.3 0.625189
\(658\) 0 0
\(659\) 13377.4 0.790757 0.395379 0.918518i \(-0.370613\pi\)
0.395379 + 0.918518i \(0.370613\pi\)
\(660\) 0 0
\(661\) 5794.00 0.340939 0.170469 0.985363i \(-0.445472\pi\)
0.170469 + 0.985363i \(0.445472\pi\)
\(662\) 0 0
\(663\) 7476.00 0.437924
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20480.0 1.18889
\(668\) 0 0
\(669\) 954.000 0.0551327
\(670\) 0 0
\(671\) 264.151 0.0151974
\(672\) 0 0
\(673\) 21622.7 1.23847 0.619237 0.785204i \(-0.287442\pi\)
0.619237 + 0.785204i \(0.287442\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11641.5 0.660887 0.330443 0.943826i \(-0.392802\pi\)
0.330443 + 0.943826i \(0.392802\pi\)
\(678\) 0 0
\(679\) −11622.7 −0.656903
\(680\) 0 0
\(681\) 612.000 0.0344374
\(682\) 0 0
\(683\) 14924.0 0.836092 0.418046 0.908426i \(-0.362715\pi\)
0.418046 + 0.908426i \(0.362715\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10350.0 −0.574785
\(688\) 0 0
\(689\) −12460.0 −0.688952
\(690\) 0 0
\(691\) 17698.1 0.974341 0.487170 0.873307i \(-0.338029\pi\)
0.487170 + 0.873307i \(0.338029\pi\)
\(692\) 0 0
\(693\) −3735.86 −0.204781
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 47283.1 2.56955
\(698\) 0 0
\(699\) −10358.5 −0.560508
\(700\) 0 0
\(701\) −1792.00 −0.0965519 −0.0482760 0.998834i \(-0.515373\pi\)
−0.0482760 + 0.998834i \(0.515373\pi\)
\(702\) 0 0
\(703\) −2136.00 −0.114596
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26928.0 1.43244
\(708\) 0 0
\(709\) −562.000 −0.0297692 −0.0148846 0.999889i \(-0.504738\pi\)
−0.0148846 + 0.999889i \(0.504738\pi\)
\(710\) 0 0
\(711\) −679.247 −0.0358280
\(712\) 0 0
\(713\) 12075.5 0.634265
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9622.66 −0.501206
\(718\) 0 0
\(719\) −20905.7 −1.08435 −0.542177 0.840264i \(-0.682400\pi\)
−0.542177 + 0.840264i \(0.682400\pi\)
\(720\) 0 0
\(721\) 308.000 0.0159092
\(722\) 0 0
\(723\) 20418.0 1.05028
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −21006.0 −1.07162 −0.535811 0.844338i \(-0.679994\pi\)
−0.535811 + 0.844338i \(0.679994\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −22717.0 −1.14941
\(732\) 0 0
\(733\) −30622.7 −1.54308 −0.771538 0.636183i \(-0.780512\pi\)
−0.771538 + 0.636183i \(0.780512\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16000.0 −0.799686
\(738\) 0 0
\(739\) −21320.8 −1.06130 −0.530648 0.847592i \(-0.678051\pi\)
−0.530648 + 0.847592i \(0.678051\pi\)
\(740\) 0 0
\(741\) 6408.00 0.317684
\(742\) 0 0
\(743\) 32972.0 1.62803 0.814014 0.580845i \(-0.197278\pi\)
0.814014 + 0.580845i \(0.197278\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5364.00 0.262729
\(748\) 0 0
\(749\) 18744.0 0.914407
\(750\) 0 0
\(751\) −33509.5 −1.62820 −0.814101 0.580724i \(-0.802770\pi\)
−0.814101 + 0.580724i \(0.802770\pi\)
\(752\) 0 0
\(753\) −6056.62 −0.293115
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23717.0 1.13872 0.569359 0.822089i \(-0.307191\pi\)
0.569359 + 0.822089i \(0.307191\pi\)
\(758\) 0 0
\(759\) −9056.62 −0.433115
\(760\) 0 0
\(761\) −38530.0 −1.83536 −0.917682 0.397317i \(-0.869941\pi\)
−0.917682 + 0.397317i \(0.869941\pi\)
\(762\) 0 0
\(763\) −24068.0 −1.14197
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13884.0 −0.653614
\(768\) 0 0
\(769\) −24926.0 −1.16886 −0.584431 0.811444i \(-0.698682\pi\)
−0.584431 + 0.811444i \(0.698682\pi\)
\(770\) 0 0
\(771\) 2207.55 0.103117
\(772\) 0 0
\(773\) −3377.37 −0.157148 −0.0785740 0.996908i \(-0.525037\pi\)
−0.0785740 + 0.996908i \(0.525037\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1245.29 0.0574960
\(778\) 0 0
\(779\) 40528.4 1.86403
\(780\) 0 0
\(781\) −12104.0 −0.554565
\(782\) 0 0
\(783\) 3456.00 0.157736
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 7144.00 0.323578 0.161789 0.986825i \(-0.448274\pi\)
0.161789 + 0.986825i \(0.448274\pi\)
\(788\) 0 0
\(789\) −3216.00 −0.145111
\(790\) 0 0
\(791\) −12037.8 −0.541104
\(792\) 0 0
\(793\) 264.151 0.0118289
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12207.6 −0.542553 −0.271276 0.962502i \(-0.587446\pi\)
−0.271276 + 0.962502i \(0.587446\pi\)
\(798\) 0 0
\(799\) 528.303 0.0233918
\(800\) 0 0
\(801\) 6750.00 0.297752
\(802\) 0 0
\(803\) −22072.0 −0.969992
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −7104.00 −0.309879
\(808\) 0 0
\(809\) −15246.0 −0.662572 −0.331286 0.943530i \(-0.607483\pi\)
−0.331286 + 0.943530i \(0.607483\pi\)
\(810\) 0 0
\(811\) −15622.7 −0.676432 −0.338216 0.941069i \(-0.609823\pi\)
−0.338216 + 0.941069i \(0.609823\pi\)
\(812\) 0 0
\(813\) 4075.48 0.175810
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −19471.7 −0.833819
\(818\) 0 0
\(819\) −3735.86 −0.159391
\(820\) 0 0
\(821\) 13736.0 0.583910 0.291955 0.956432i \(-0.405694\pi\)
0.291955 + 0.956432i \(0.405694\pi\)
\(822\) 0 0
\(823\) −22222.0 −0.941203 −0.470602 0.882346i \(-0.655963\pi\)
−0.470602 + 0.882346i \(0.655963\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41700.0 1.75339 0.876694 0.481049i \(-0.159744\pi\)
0.876694 + 0.481049i \(0.159744\pi\)
\(828\) 0 0
\(829\) −20206.0 −0.846542 −0.423271 0.906003i \(-0.639118\pi\)
−0.423271 + 0.906003i \(0.639118\pi\)
\(830\) 0 0
\(831\) 20886.8 0.871909
\(832\) 0 0
\(833\) −18622.7 −0.774595
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2037.74 0.0841512
\(838\) 0 0
\(839\) 5811.33 0.239129 0.119565 0.992826i \(-0.461850\pi\)
0.119565 + 0.992826i \(0.461850\pi\)
\(840\) 0 0
\(841\) −8005.00 −0.328222
\(842\) 0 0
\(843\) 20682.0 0.844989
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −21450.0 −0.870166
\(848\) 0 0
\(849\) −7368.00 −0.297843
\(850\) 0 0
\(851\) 3018.87 0.121605
\(852\) 0 0
\(853\) 13981.2 0.561203 0.280601 0.959824i \(-0.409466\pi\)
0.280601 + 0.959824i \(0.409466\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34773.7 −1.38605 −0.693025 0.720913i \(-0.743723\pi\)
−0.693025 + 0.720913i \(0.743723\pi\)
\(858\) 0 0
\(859\) 32000.1 1.27105 0.635523 0.772082i \(-0.280785\pi\)
0.635523 + 0.772082i \(0.280785\pi\)
\(860\) 0 0
\(861\) −23628.0 −0.935238
\(862\) 0 0
\(863\) −7424.00 −0.292834 −0.146417 0.989223i \(-0.546774\pi\)
−0.146417 + 0.989223i \(0.546774\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 37593.0 1.47258
\(868\) 0 0
\(869\) 1424.00 0.0555879
\(870\) 0 0
\(871\) −16000.0 −0.622434
\(872\) 0 0
\(873\) −4754.73 −0.184333
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11717.0 −0.451146 −0.225573 0.974226i \(-0.572425\pi\)
−0.225573 + 0.974226i \(0.572425\pi\)
\(878\) 0 0
\(879\) −27905.7 −1.07080
\(880\) 0 0
\(881\) −7722.00 −0.295302 −0.147651 0.989040i \(-0.547171\pi\)
−0.147651 + 0.989040i \(0.547171\pi\)
\(882\) 0 0
\(883\) 24400.0 0.929927 0.464963 0.885330i \(-0.346067\pi\)
0.464963 + 0.885330i \(0.346067\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1032.00 −0.0390656 −0.0195328 0.999809i \(-0.506218\pi\)
−0.0195328 + 0.999809i \(0.506218\pi\)
\(888\) 0 0
\(889\) −22220.0 −0.838284
\(890\) 0 0
\(891\) −1528.30 −0.0574637
\(892\) 0 0
\(893\) 452.831 0.0169691
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −9056.62 −0.337115
\(898\) 0 0
\(899\) 9660.40 0.358390
\(900\) 0 0
\(901\) −87220.0 −3.22499
\(902\) 0 0
\(903\) 11352.0 0.418351
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25380.0 −0.929139 −0.464569 0.885537i \(-0.653791\pi\)
−0.464569 + 0.885537i \(0.653791\pi\)
\(908\) 0 0
\(909\) 11016.0 0.401956
\(910\) 0 0
\(911\) 39245.4 1.42729 0.713643 0.700510i \(-0.247044\pi\)
0.713643 + 0.700510i \(0.247044\pi\)
\(912\) 0 0
\(913\) −11245.3 −0.407629
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20339.7 0.732470
\(918\) 0 0
\(919\) −30641.6 −1.09986 −0.549930 0.835210i \(-0.685346\pi\)
−0.549930 + 0.835210i \(0.685346\pi\)
\(920\) 0 0
\(921\) −14892.0 −0.532799
\(922\) 0 0
\(923\) −12104.0 −0.431645
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 126.000 0.00446428
\(928\) 0 0
\(929\) 25246.0 0.891598 0.445799 0.895133i \(-0.352920\pi\)
0.445799 + 0.895133i \(0.352920\pi\)
\(930\) 0 0
\(931\) −15962.3 −0.561915
\(932\) 0 0
\(933\) 15056.6 0.528330
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16528.3 0.576262 0.288131 0.957591i \(-0.406966\pi\)
0.288131 + 0.957591i \(0.406966\pi\)
\(938\) 0 0
\(939\) 8490.58 0.295080
\(940\) 0 0
\(941\) −13372.0 −0.463246 −0.231623 0.972806i \(-0.574404\pi\)
−0.231623 + 0.972806i \(0.574404\pi\)
\(942\) 0 0
\(943\) −57280.0 −1.97804
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19564.0 −0.671325 −0.335662 0.941982i \(-0.608960\pi\)
−0.335662 + 0.941982i \(0.608960\pi\)
\(948\) 0 0
\(949\) −22072.0 −0.754992
\(950\) 0 0
\(951\) −9000.02 −0.306883
\(952\) 0 0
\(953\) 13566.1 0.461121 0.230560 0.973058i \(-0.425944\pi\)
0.230560 + 0.973058i \(0.425944\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −7245.30 −0.244731
\(958\) 0 0
\(959\) 12868.0 0.433293
\(960\) 0 0
\(961\) −24095.0 −0.808801
\(962\) 0 0
\(963\) 7668.00 0.256592
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1874.00 −0.0623203 −0.0311602 0.999514i \(-0.509920\pi\)
−0.0311602 + 0.999514i \(0.509920\pi\)
\(968\) 0 0
\(969\) 44856.0 1.48708
\(970\) 0 0
\(971\) 24849.1 0.821262 0.410631 0.911802i \(-0.365308\pi\)
0.410631 + 0.911802i \(0.365308\pi\)
\(972\) 0 0
\(973\) 58113.3 1.91473
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22283.1 0.729681 0.364841 0.931070i \(-0.381124\pi\)
0.364841 + 0.931070i \(0.381124\pi\)
\(978\) 0 0
\(979\) −14151.0 −0.461968
\(980\) 0 0
\(981\) −9846.00 −0.320447
\(982\) 0 0
\(983\) 53892.0 1.74861 0.874307 0.485373i \(-0.161316\pi\)
0.874307 + 0.485373i \(0.161316\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −264.000 −0.00851389
\(988\) 0 0
\(989\) 27520.0 0.884818
\(990\) 0 0
\(991\) 60981.3 1.95473 0.977363 0.211570i \(-0.0678575\pi\)
0.977363 + 0.211570i \(0.0678575\pi\)
\(992\) 0 0
\(993\) 18000.0 0.575241
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −60019.0 −1.90654 −0.953270 0.302120i \(-0.902306\pi\)
−0.953270 + 0.302120i \(0.902306\pi\)
\(998\) 0 0
\(999\) 509.435 0.0161339
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.bd.1.1 2
4.3 odd 2 2400.4.a.w.1.2 2
5.2 odd 4 480.4.f.c.289.1 4
5.3 odd 4 480.4.f.c.289.4 yes 4
5.4 even 2 2400.4.a.w.1.1 2
15.2 even 4 1440.4.f.f.289.4 4
15.8 even 4 1440.4.f.f.289.1 4
20.3 even 4 480.4.f.c.289.2 yes 4
20.7 even 4 480.4.f.c.289.3 yes 4
20.19 odd 2 inner 2400.4.a.bd.1.2 2
40.3 even 4 960.4.f.m.769.3 4
40.13 odd 4 960.4.f.m.769.1 4
40.27 even 4 960.4.f.m.769.2 4
40.37 odd 4 960.4.f.m.769.4 4
60.23 odd 4 1440.4.f.f.289.2 4
60.47 odd 4 1440.4.f.f.289.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.f.c.289.1 4 5.2 odd 4
480.4.f.c.289.2 yes 4 20.3 even 4
480.4.f.c.289.3 yes 4 20.7 even 4
480.4.f.c.289.4 yes 4 5.3 odd 4
960.4.f.m.769.1 4 40.13 odd 4
960.4.f.m.769.2 4 40.27 even 4
960.4.f.m.769.3 4 40.3 even 4
960.4.f.m.769.4 4 40.37 odd 4
1440.4.f.f.289.1 4 15.8 even 4
1440.4.f.f.289.2 4 60.23 odd 4
1440.4.f.f.289.3 4 60.47 odd 4
1440.4.f.f.289.4 4 15.2 even 4
2400.4.a.w.1.1 2 5.4 even 2
2400.4.a.w.1.2 2 4.3 odd 2
2400.4.a.bd.1.1 2 1.1 even 1 trivial
2400.4.a.bd.1.2 2 20.19 odd 2 inner