Properties

Label 2400.2.k.f
Level 2400
Weight 2
Character orbit 2400.k
Analytic conductor 19.164
Analytic rank 0
Dimension 12
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.180227832610816.1
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} -\beta_{5} q^{7} - q^{9} +O(q^{10})\) \( q + \beta_{3} q^{3} -\beta_{5} q^{7} - q^{9} + \beta_{7} q^{11} + ( \beta_{3} - \beta_{11} ) q^{13} + ( -\beta_{8} - \beta_{9} ) q^{17} + ( \beta_{2} - \beta_{6} ) q^{19} -\beta_{2} q^{21} + ( -\beta_{5} + \beta_{8} + 2 \beta_{9} ) q^{23} -\beta_{3} q^{27} + ( -2 \beta_{2} - \beta_{6} - 2 \beta_{7} ) q^{29} + ( 3 + \beta_{4} - \beta_{10} ) q^{31} + ( \beta_{5} - \beta_{9} ) q^{33} + ( -3 \beta_{3} - \beta_{11} ) q^{37} + ( -1 - \beta_{10} ) q^{39} + ( 2 \beta_{4} - 2 \beta_{10} ) q^{41} -2 \beta_{1} q^{43} + ( \beta_{5} - \beta_{8} ) q^{47} + ( 1 + 2 \beta_{4} ) q^{49} + ( -\beta_{2} - \beta_{6} - \beta_{7} ) q^{51} + ( \beta_{1} - 4 \beta_{3} ) q^{53} + ( -\beta_{5} + \beta_{8} ) q^{57} + ( -2 \beta_{2} + \beta_{7} ) q^{59} + ( -2 \beta_{2} - 2 \beta_{6} ) q^{61} + \beta_{5} q^{63} -2 \beta_{1} q^{67} + ( \beta_{2} + \beta_{6} + 2 \beta_{7} ) q^{69} + ( -2 + 2 \beta_{4} - 2 \beta_{10} ) q^{71} + ( -4 \beta_{8} - 2 \beta_{9} ) q^{73} + 4 \beta_{3} q^{77} + ( 3 + \beta_{4} - \beta_{10} ) q^{79} + q^{81} + ( -2 \beta_{3} + 2 \beta_{11} ) q^{83} + ( \beta_{8} + 2 \beta_{9} ) q^{87} + ( 4 - 2 \beta_{4} - 2 \beta_{10} ) q^{89} + ( -4 \beta_{2} - 4 \beta_{6} - 2 \beta_{7} ) q^{91} + ( \beta_{1} + 3 \beta_{3} + \beta_{11} ) q^{93} + ( -2 \beta_{8} + 2 \beta_{9} ) q^{97} -\beta_{7} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 12q^{9} + O(q^{10}) \) \( 12q - 12q^{9} + 32q^{31} - 16q^{39} - 8q^{41} + 12q^{49} - 32q^{71} + 32q^{79} + 12q^{81} + 40q^{89} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} + x^{10} - 8 x^{6} + 16 x^{2} + 64\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{9} + \nu^{7} + 8 \nu \)\()/8\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{8} + \nu^{6} + 4 \nu^{4} - 4 \nu^{2} \)\()/8\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{11} - \nu^{9} + 2 \nu^{7} + 4 \nu^{5} + 8 \nu^{3} \)\()/64\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{8} - \nu^{6} + 4 \nu^{4} + 12 \nu^{2} \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( -\nu^{11} - 3 \nu^{9} + 2 \nu^{7} + 4 \nu^{5} + 24 \nu^{3} \)\()/32\)
\(\beta_{6}\)\(=\)\((\)\( -\nu^{8} + 3 \nu^{6} + 4 \nu^{2} - 16 \)\()/8\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{10} + \nu^{8} - 4 \nu^{6} - 12 \nu^{4} + 16 \nu^{2} + 32 \)\()/16\)
\(\beta_{8}\)\(=\)\((\)\( -\nu^{11} + \nu^{9} - 2 \nu^{7} + 12 \nu^{5} - 24 \nu^{3} + 32 \nu \)\()/32\)
\(\beta_{9}\)\(=\)\((\)\( \nu^{11} - \nu^{9} - 6 \nu^{7} - 4 \nu^{5} + 40 \nu^{3} + 32 \nu \)\()/32\)
\(\beta_{10}\)\(=\)\((\)\( -\nu^{10} + \nu^{6} + 4 \nu^{4} + 4 \nu^{2} - 8 \)\()/8\)
\(\beta_{11}\)\(=\)\((\)\( 3 \nu^{11} - 3 \nu^{9} - 10 \nu^{7} - 36 \nu^{5} - 8 \nu^{3} + 128 \nu \)\()/64\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{11} + \beta_{8} + \beta_{5} + \beta_{3} + \beta_{1}\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{10} + 2 \beta_{7} + \beta_{6} + \beta_{4} + \beta_{2} - 1\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{11} + 2 \beta_{9} - \beta_{8} + \beta_{5} - \beta_{3} + \beta_{1}\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{10} - 2 \beta_{7} - \beta_{6} + 3 \beta_{4} + 3 \beta_{2} + 1\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(-3 \beta_{11} + 2 \beta_{9} + 5 \beta_{8} - \beta_{5} + 13 \beta_{3} - \beta_{1}\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(\beta_{10} + 2 \beta_{7} + 9 \beta_{6} - 3 \beta_{4} + 5 \beta_{2} + 15\)\()/4\)
\(\nu^{7}\)\(=\)\((\)\(3 \beta_{11} - 10 \beta_{9} - 5 \beta_{8} + 9 \beta_{5} + 19 \beta_{3} + 9 \beta_{1}\)\()/4\)
\(\nu^{8}\)\(=\)\((\)\(7 \beta_{10} + 14 \beta_{7} - \beta_{6} - 5 \beta_{4} + 19 \beta_{2} - 23\)\()/4\)
\(\nu^{9}\)\(=\)\((\)\(-11 \beta_{11} + 10 \beta_{9} - 3 \beta_{8} - 17 \beta_{5} - 27 \beta_{3} + 15 \beta_{1}\)\()/4\)
\(\nu^{10}\)\(=\)\((\)\(-31 \beta_{10} + 2 \beta_{7} + 9 \beta_{6} + 13 \beta_{4} + 21 \beta_{2} - 17\)\()/4\)
\(\nu^{11}\)\(=\)\((\)\(3 \beta_{11} + 6 \beta_{9} - 5 \beta_{8} - 39 \beta_{5} + 147 \beta_{3} - 7 \beta_{1}\)\()/4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1201.1
1.37729 0.321037i
−0.450129 1.34067i
0.806504 + 1.16170i
−0.806504 + 1.16170i
0.450129 1.34067i
−1.37729 0.321037i
1.37729 + 0.321037i
−0.450129 + 1.34067i
0.806504 1.16170i
−0.806504 1.16170i
0.450129 + 1.34067i
−1.37729 + 0.321037i
0 1.00000i 0 0 0 −4.05705 0 −1.00000 0
1201.2 0 1.00000i 0 0 0 −2.64265 0 −1.00000 0
1201.3 0 1.00000i 0 0 0 −0.746175 0 −1.00000 0
1201.4 0 1.00000i 0 0 0 0.746175 0 −1.00000 0
1201.5 0 1.00000i 0 0 0 2.64265 0 −1.00000 0
1201.6 0 1.00000i 0 0 0 4.05705 0 −1.00000 0
1201.7 0 1.00000i 0 0 0 −4.05705 0 −1.00000 0
1201.8 0 1.00000i 0 0 0 −2.64265 0 −1.00000 0
1201.9 0 1.00000i 0 0 0 −0.746175 0 −1.00000 0
1201.10 0 1.00000i 0 0 0 0.746175 0 −1.00000 0
1201.11 0 1.00000i 0 0 0 2.64265 0 −1.00000 0
1201.12 0 1.00000i 0 0 0 4.05705 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1201.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.k.f 12
3.b odd 2 1 7200.2.k.u 12
4.b odd 2 1 600.2.k.f 12
5.b even 2 1 inner 2400.2.k.f 12
5.c odd 4 1 480.2.d.a 6
5.c odd 4 1 480.2.d.b 6
8.b even 2 1 inner 2400.2.k.f 12
8.d odd 2 1 600.2.k.f 12
12.b even 2 1 1800.2.k.u 12
15.d odd 2 1 7200.2.k.u 12
15.e even 4 1 1440.2.d.e 6
15.e even 4 1 1440.2.d.f 6
20.d odd 2 1 600.2.k.f 12
20.e even 4 1 120.2.d.a 6
20.e even 4 1 120.2.d.b yes 6
24.f even 2 1 1800.2.k.u 12
24.h odd 2 1 7200.2.k.u 12
40.e odd 2 1 600.2.k.f 12
40.f even 2 1 inner 2400.2.k.f 12
40.i odd 4 1 480.2.d.a 6
40.i odd 4 1 480.2.d.b 6
40.k even 4 1 120.2.d.a 6
40.k even 4 1 120.2.d.b yes 6
60.h even 2 1 1800.2.k.u 12
60.l odd 4 1 360.2.d.e 6
60.l odd 4 1 360.2.d.f 6
80.i odd 4 2 3840.2.f.m 12
80.j even 4 2 3840.2.f.l 12
80.s even 4 2 3840.2.f.l 12
80.t odd 4 2 3840.2.f.m 12
120.i odd 2 1 7200.2.k.u 12
120.m even 2 1 1800.2.k.u 12
120.q odd 4 1 360.2.d.e 6
120.q odd 4 1 360.2.d.f 6
120.w even 4 1 1440.2.d.e 6
120.w even 4 1 1440.2.d.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.d.a 6 20.e even 4 1
120.2.d.a 6 40.k even 4 1
120.2.d.b yes 6 20.e even 4 1
120.2.d.b yes 6 40.k even 4 1
360.2.d.e 6 60.l odd 4 1
360.2.d.e 6 120.q odd 4 1
360.2.d.f 6 60.l odd 4 1
360.2.d.f 6 120.q odd 4 1
480.2.d.a 6 5.c odd 4 1
480.2.d.a 6 40.i odd 4 1
480.2.d.b 6 5.c odd 4 1
480.2.d.b 6 40.i odd 4 1
600.2.k.f 12 4.b odd 2 1
600.2.k.f 12 8.d odd 2 1
600.2.k.f 12 20.d odd 2 1
600.2.k.f 12 40.e odd 2 1
1440.2.d.e 6 15.e even 4 1
1440.2.d.e 6 120.w even 4 1
1440.2.d.f 6 15.e even 4 1
1440.2.d.f 6 120.w even 4 1
1800.2.k.u 12 12.b even 2 1
1800.2.k.u 12 24.f even 2 1
1800.2.k.u 12 60.h even 2 1
1800.2.k.u 12 120.m even 2 1
2400.2.k.f 12 1.a even 1 1 trivial
2400.2.k.f 12 5.b even 2 1 inner
2400.2.k.f 12 8.b even 2 1 inner
2400.2.k.f 12 40.f even 2 1 inner
3840.2.f.l 12 80.j even 4 2
3840.2.f.l 12 80.s even 4 2
3840.2.f.m 12 80.i odd 4 2
3840.2.f.m 12 80.t odd 4 2
7200.2.k.u 12 3.b odd 2 1
7200.2.k.u 12 15.d odd 2 1
7200.2.k.u 12 24.h odd 2 1
7200.2.k.u 12 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} - 24 T_{7}^{4} + 128 T_{7}^{2} - 64 \) acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + T^{2} )^{6} \)
$5$ 1
$7$ \( ( 1 + 18 T^{2} + 191 T^{4} + 1532 T^{6} + 9359 T^{8} + 43218 T^{10} + 117649 T^{12} )^{2} \)
$11$ \( ( 1 - 34 T^{2} + 503 T^{4} - 5436 T^{6} + 60863 T^{8} - 497794 T^{10} + 1771561 T^{12} )^{2} \)
$13$ \( ( 1 - 30 T^{2} + 743 T^{4} - 10436 T^{6} + 125567 T^{8} - 856830 T^{10} + 4826809 T^{12} )^{2} \)
$17$ \( ( 1 + 66 T^{2} + 2255 T^{4} + 47324 T^{6} + 651695 T^{8} + 5512386 T^{10} + 24137569 T^{12} )^{2} \)
$19$ \( ( 1 - 54 T^{2} + 1367 T^{4} - 25652 T^{6} + 493487 T^{8} - 7037334 T^{10} + 47045881 T^{12} )^{2} \)
$23$ \( ( 1 + 46 T^{2} + 1775 T^{4} + 40932 T^{6} + 938975 T^{8} + 12872686 T^{10} + 148035889 T^{12} )^{2} \)
$29$ \( ( 1 - 66 T^{2} + 3207 T^{4} - 111228 T^{6} + 2697087 T^{8} - 46680546 T^{10} + 594823321 T^{12} )^{2} \)
$31$ \( ( 1 - 8 T + 89 T^{2} - 432 T^{3} + 2759 T^{4} - 7688 T^{5} + 29791 T^{6} )^{4} \)
$37$ \( ( 1 - 158 T^{2} + 11191 T^{4} - 496772 T^{6} + 15320479 T^{8} - 296117438 T^{10} + 2565726409 T^{12} )^{2} \)
$41$ \( ( 1 + 2 T + 23 T^{2} + 220 T^{3} + 943 T^{4} + 3362 T^{5} + 68921 T^{6} )^{4} \)
$43$ \( ( 1 - 130 T^{2} + 9815 T^{4} - 518268 T^{6} + 18147935 T^{8} - 444444130 T^{10} + 6321363049 T^{12} )^{2} \)
$47$ \( ( 1 + 222 T^{2} + 22367 T^{4} + 1328324 T^{6} + 49408703 T^{8} + 1083289182 T^{10} + 10779215329 T^{12} )^{2} \)
$53$ \( ( 1 - 238 T^{2} + 26391 T^{4} - 1758052 T^{6} + 74132319 T^{8} - 1877934478 T^{10} + 22164361129 T^{12} )^{2} \)
$59$ \( ( 1 - 178 T^{2} + 20567 T^{4} - 1418652 T^{6} + 71593727 T^{8} - 2156890258 T^{10} + 42180533641 T^{12} )^{2} \)
$61$ \( ( 1 - 190 T^{2} + 20039 T^{4} - 1419204 T^{6} + 74565119 T^{8} - 2630709790 T^{10} + 51520374361 T^{12} )^{2} \)
$67$ \( ( 1 - 274 T^{2} + 37127 T^{4} - 3112476 T^{6} + 166663103 T^{8} - 5521407154 T^{10} + 90458382169 T^{12} )^{2} \)
$71$ \( ( 1 + 8 T + 133 T^{2} + 1008 T^{3} + 9443 T^{4} + 40328 T^{5} + 357911 T^{6} )^{4} \)
$73$ \( ( 1 + 54 T^{2} + 2367 T^{4} + 531700 T^{6} + 12613743 T^{8} + 1533505014 T^{10} + 151334226289 T^{12} )^{2} \)
$79$ \( ( 1 - 8 T + 233 T^{2} - 1200 T^{3} + 18407 T^{4} - 49928 T^{5} + 493039 T^{6} )^{4} \)
$83$ \( ( 1 - 306 T^{2} + 50855 T^{4} - 5168732 T^{6} + 350340095 T^{8} - 14522246226 T^{10} + 326940373369 T^{12} )^{2} \)
$89$ \( ( 1 - 10 T + 103 T^{2} - 396 T^{3} + 9167 T^{4} - 79210 T^{5} + 704969 T^{6} )^{4} \)
$97$ \( ( 1 + 246 T^{2} + 39183 T^{4} + 4535476 T^{6} + 368672847 T^{8} + 21778203126 T^{10} + 832972004929 T^{12} )^{2} \)
show more
show less